Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Steve French | 1253 | 28.63% | 34 | 23.45% |
Pavel Shilovsky | 1080 | 24.67% | 21 | 14.48% |
Shyam Prasad N | 541 | 12.36% | 16 | 11.03% |
Aurelien Aptel | 467 | 10.67% | 9 | 6.21% |
Shirish Pargaonkar | 237 | 5.41% | 7 | 4.83% |
Jeff Layton | 193 | 4.41% | 22 | 15.17% |
Paulo Alcantara | 171 | 3.91% | 7 | 4.83% |
Sachin S. Prabhu | 121 | 2.76% | 5 | 3.45% |
Long Li | 96 | 2.19% | 1 | 0.69% |
Ronnie Sahlberg | 64 | 1.46% | 6 | 4.14% |
Enzo Matsumiya | 53 | 1.21% | 4 | 2.76% |
Jeremy Allison | 24 | 0.55% | 1 | 0.69% |
Joe Perches | 18 | 0.41% | 1 | 0.69% |
David Howells | 13 | 0.30% | 1 | 0.69% |
Al Viro | 13 | 0.30% | 1 | 0.69% |
Vincent Whitchurch | 11 | 0.25% | 1 | 0.69% |
Lars Persson | 8 | 0.18% | 1 | 0.69% |
Esina Ekaterina | 7 | 0.16% | 1 | 0.69% |
Winston Wen | 2 | 0.05% | 1 | 0.69% |
Alexander Strakh | 1 | 0.02% | 1 | 0.69% |
Neil Brown | 1 | 0.02% | 1 | 0.69% |
Christoph Lameter | 1 | 0.02% | 1 | 0.69% |
Tim Gardner | 1 | 0.02% | 1 | 0.69% |
Justin Stitt | 1 | 0.02% | 1 | 0.69% |
Total | 4377 | 145 |
// SPDX-License-Identifier: LGPL-2.1 /* * * Copyright (C) International Business Machines Corp., 2002, 2011 * Etersoft, 2012 * Author(s): Steve French (sfrench@us.ibm.com) * Jeremy Allison (jra@samba.org) 2006 * Pavel Shilovsky (pshilovsky@samba.org) 2012 * */ #include <linux/fs.h> #include <linux/list.h> #include <linux/wait.h> #include <linux/net.h> #include <linux/delay.h> #include <linux/uaccess.h> #include <asm/processor.h> #include <linux/mempool.h> #include <linux/highmem.h> #include <crypto/aead.h> #include "cifsglob.h" #include "cifsproto.h" #include "smb2proto.h" #include "cifs_debug.h" #include "smb2status.h" #include "smb2glob.h" static int smb3_crypto_shash_allocate(struct TCP_Server_Info *server) { struct cifs_secmech *p = &server->secmech; int rc; rc = cifs_alloc_hash("hmac(sha256)", &p->hmacsha256); if (rc) goto err; rc = cifs_alloc_hash("cmac(aes)", &p->aes_cmac); if (rc) goto err; return 0; err: cifs_free_hash(&p->hmacsha256); return rc; } int smb311_crypto_shash_allocate(struct TCP_Server_Info *server) { struct cifs_secmech *p = &server->secmech; int rc = 0; rc = cifs_alloc_hash("hmac(sha256)", &p->hmacsha256); if (rc) return rc; rc = cifs_alloc_hash("cmac(aes)", &p->aes_cmac); if (rc) goto err; rc = cifs_alloc_hash("sha512", &p->sha512); if (rc) goto err; return 0; err: cifs_free_hash(&p->aes_cmac); cifs_free_hash(&p->hmacsha256); return rc; } static int smb2_get_sign_key(__u64 ses_id, struct TCP_Server_Info *server, u8 *key) { struct cifs_chan *chan; struct TCP_Server_Info *pserver; struct cifs_ses *ses = NULL; int i; int rc = 0; bool is_binding = false; spin_lock(&cifs_tcp_ses_lock); /* If server is a channel, select the primary channel */ pserver = SERVER_IS_CHAN(server) ? server->primary_server : server; list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) { if (ses->Suid == ses_id) goto found; } trace_smb3_ses_not_found(ses_id); cifs_server_dbg(FYI, "%s: Could not find session 0x%llx\n", __func__, ses_id); rc = -ENOENT; goto out; found: spin_lock(&ses->ses_lock); spin_lock(&ses->chan_lock); is_binding = (cifs_chan_needs_reconnect(ses, server) && ses->ses_status == SES_GOOD); if (is_binding) { /* * If we are in the process of binding a new channel * to an existing session, use the master connection * session key */ memcpy(key, ses->smb3signingkey, SMB3_SIGN_KEY_SIZE); spin_unlock(&ses->chan_lock); spin_unlock(&ses->ses_lock); goto out; } /* * Otherwise, use the channel key. */ for (i = 0; i < ses->chan_count; i++) { chan = ses->chans + i; if (chan->server == server) { memcpy(key, chan->signkey, SMB3_SIGN_KEY_SIZE); spin_unlock(&ses->chan_lock); spin_unlock(&ses->ses_lock); goto out; } } spin_unlock(&ses->chan_lock); spin_unlock(&ses->ses_lock); cifs_dbg(VFS, "%s: Could not find channel signing key for session 0x%llx\n", __func__, ses_id); rc = -ENOENT; out: spin_unlock(&cifs_tcp_ses_lock); return rc; } static struct cifs_ses * smb2_find_smb_ses_unlocked(struct TCP_Server_Info *server, __u64 ses_id) { struct TCP_Server_Info *pserver; struct cifs_ses *ses; /* If server is a channel, select the primary channel */ pserver = SERVER_IS_CHAN(server) ? server->primary_server : server; list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) { if (ses->Suid != ses_id) continue; spin_lock(&ses->ses_lock); if (ses->ses_status == SES_EXITING) { spin_unlock(&ses->ses_lock); continue; } cifs_smb_ses_inc_refcount(ses); spin_unlock(&ses->ses_lock); return ses; } return NULL; } struct cifs_ses * smb2_find_smb_ses(struct TCP_Server_Info *server, __u64 ses_id) { struct cifs_ses *ses; spin_lock(&cifs_tcp_ses_lock); ses = smb2_find_smb_ses_unlocked(server, ses_id); spin_unlock(&cifs_tcp_ses_lock); return ses; } static struct cifs_tcon * smb2_find_smb_sess_tcon_unlocked(struct cifs_ses *ses, __u32 tid) { struct cifs_tcon *tcon; list_for_each_entry(tcon, &ses->tcon_list, tcon_list) { if (tcon->tid != tid) continue; ++tcon->tc_count; trace_smb3_tcon_ref(tcon->debug_id, tcon->tc_count, netfs_trace_tcon_ref_get_find_sess_tcon); return tcon; } return NULL; } /* * Obtain tcon corresponding to the tid in the given * cifs_ses */ struct cifs_tcon * smb2_find_smb_tcon(struct TCP_Server_Info *server, __u64 ses_id, __u32 tid) { struct cifs_ses *ses; struct cifs_tcon *tcon; spin_lock(&cifs_tcp_ses_lock); ses = smb2_find_smb_ses_unlocked(server, ses_id); if (!ses) { spin_unlock(&cifs_tcp_ses_lock); return NULL; } tcon = smb2_find_smb_sess_tcon_unlocked(ses, tid); if (!tcon) { cifs_put_smb_ses(ses); spin_unlock(&cifs_tcp_ses_lock); return NULL; } spin_unlock(&cifs_tcp_ses_lock); /* tcon already has a ref to ses, so we don't need ses anymore */ cifs_put_smb_ses(ses); return tcon; } int smb2_calc_signature(struct smb_rqst *rqst, struct TCP_Server_Info *server, bool allocate_crypto) { int rc; unsigned char smb2_signature[SMB2_HMACSHA256_SIZE]; unsigned char *sigptr = smb2_signature; struct kvec *iov = rqst->rq_iov; struct smb2_hdr *shdr = (struct smb2_hdr *)iov[0].iov_base; struct cifs_ses *ses; struct shash_desc *shash = NULL; struct smb_rqst drqst; ses = smb2_find_smb_ses(server, le64_to_cpu(shdr->SessionId)); if (unlikely(!ses)) { cifs_server_dbg(VFS, "%s: Could not find session\n", __func__); return -ENOENT; } memset(smb2_signature, 0x0, SMB2_HMACSHA256_SIZE); memset(shdr->Signature, 0x0, SMB2_SIGNATURE_SIZE); if (allocate_crypto) { rc = cifs_alloc_hash("hmac(sha256)", &shash); if (rc) { cifs_server_dbg(VFS, "%s: sha256 alloc failed\n", __func__); goto out; } } else { shash = server->secmech.hmacsha256; } rc = crypto_shash_setkey(shash->tfm, ses->auth_key.response, SMB2_NTLMV2_SESSKEY_SIZE); if (rc) { cifs_server_dbg(VFS, "%s: Could not update with response\n", __func__); goto out; } rc = crypto_shash_init(shash); if (rc) { cifs_server_dbg(VFS, "%s: Could not init sha256", __func__); goto out; } /* * For SMB2+, __cifs_calc_signature() expects to sign only the actual * data, that is, iov[0] should not contain a rfc1002 length. * * Sign the rfc1002 length prior to passing the data (iov[1-N]) down to * __cifs_calc_signature(). */ drqst = *rqst; if (drqst.rq_nvec >= 2 && iov[0].iov_len == 4) { rc = crypto_shash_update(shash, iov[0].iov_base, iov[0].iov_len); if (rc) { cifs_server_dbg(VFS, "%s: Could not update with payload\n", __func__); goto out; } drqst.rq_iov++; drqst.rq_nvec--; } rc = __cifs_calc_signature(&drqst, server, sigptr, shash); if (!rc) memcpy(shdr->Signature, sigptr, SMB2_SIGNATURE_SIZE); out: if (allocate_crypto) cifs_free_hash(&shash); if (ses) cifs_put_smb_ses(ses); return rc; } static int generate_key(struct cifs_ses *ses, struct kvec label, struct kvec context, __u8 *key, unsigned int key_size) { unsigned char zero = 0x0; __u8 i[4] = {0, 0, 0, 1}; __u8 L128[4] = {0, 0, 0, 128}; __u8 L256[4] = {0, 0, 1, 0}; int rc = 0; unsigned char prfhash[SMB2_HMACSHA256_SIZE]; unsigned char *hashptr = prfhash; struct TCP_Server_Info *server = ses->server; memset(prfhash, 0x0, SMB2_HMACSHA256_SIZE); memset(key, 0x0, key_size); rc = smb3_crypto_shash_allocate(server); if (rc) { cifs_server_dbg(VFS, "%s: crypto alloc failed\n", __func__); goto smb3signkey_ret; } rc = crypto_shash_setkey(server->secmech.hmacsha256->tfm, ses->auth_key.response, SMB2_NTLMV2_SESSKEY_SIZE); if (rc) { cifs_server_dbg(VFS, "%s: Could not set with session key\n", __func__); goto smb3signkey_ret; } rc = crypto_shash_init(server->secmech.hmacsha256); if (rc) { cifs_server_dbg(VFS, "%s: Could not init sign hmac\n", __func__); goto smb3signkey_ret; } rc = crypto_shash_update(server->secmech.hmacsha256, i, 4); if (rc) { cifs_server_dbg(VFS, "%s: Could not update with n\n", __func__); goto smb3signkey_ret; } rc = crypto_shash_update(server->secmech.hmacsha256, label.iov_base, label.iov_len); if (rc) { cifs_server_dbg(VFS, "%s: Could not update with label\n", __func__); goto smb3signkey_ret; } rc = crypto_shash_update(server->secmech.hmacsha256, &zero, 1); if (rc) { cifs_server_dbg(VFS, "%s: Could not update with zero\n", __func__); goto smb3signkey_ret; } rc = crypto_shash_update(server->secmech.hmacsha256, context.iov_base, context.iov_len); if (rc) { cifs_server_dbg(VFS, "%s: Could not update with context\n", __func__); goto smb3signkey_ret; } if ((server->cipher_type == SMB2_ENCRYPTION_AES256_CCM) || (server->cipher_type == SMB2_ENCRYPTION_AES256_GCM)) { rc = crypto_shash_update(server->secmech.hmacsha256, L256, 4); } else { rc = crypto_shash_update(server->secmech.hmacsha256, L128, 4); } if (rc) { cifs_server_dbg(VFS, "%s: Could not update with L\n", __func__); goto smb3signkey_ret; } rc = crypto_shash_final(server->secmech.hmacsha256, hashptr); if (rc) { cifs_server_dbg(VFS, "%s: Could not generate sha256 hash\n", __func__); goto smb3signkey_ret; } memcpy(key, hashptr, key_size); smb3signkey_ret: return rc; } struct derivation { struct kvec label; struct kvec context; }; struct derivation_triplet { struct derivation signing; struct derivation encryption; struct derivation decryption; }; static int generate_smb3signingkey(struct cifs_ses *ses, struct TCP_Server_Info *server, const struct derivation_triplet *ptriplet) { int rc; bool is_binding = false; int chan_index = 0; spin_lock(&ses->ses_lock); spin_lock(&ses->chan_lock); is_binding = (cifs_chan_needs_reconnect(ses, server) && ses->ses_status == SES_GOOD); chan_index = cifs_ses_get_chan_index(ses, server); if (chan_index == CIFS_INVAL_CHAN_INDEX) { spin_unlock(&ses->chan_lock); spin_unlock(&ses->ses_lock); return -EINVAL; } spin_unlock(&ses->chan_lock); spin_unlock(&ses->ses_lock); /* * All channels use the same encryption/decryption keys but * they have their own signing key. * * When we generate the keys, check if it is for a new channel * (binding) in which case we only need to generate a signing * key and store it in the channel as to not overwrite the * master connection signing key stored in the session */ if (is_binding) { rc = generate_key(ses, ptriplet->signing.label, ptriplet->signing.context, ses->chans[chan_index].signkey, SMB3_SIGN_KEY_SIZE); if (rc) return rc; } else { rc = generate_key(ses, ptriplet->signing.label, ptriplet->signing.context, ses->smb3signingkey, SMB3_SIGN_KEY_SIZE); if (rc) return rc; /* safe to access primary channel, since it will never go away */ spin_lock(&ses->chan_lock); memcpy(ses->chans[chan_index].signkey, ses->smb3signingkey, SMB3_SIGN_KEY_SIZE); spin_unlock(&ses->chan_lock); rc = generate_key(ses, ptriplet->encryption.label, ptriplet->encryption.context, ses->smb3encryptionkey, SMB3_ENC_DEC_KEY_SIZE); if (rc) return rc; rc = generate_key(ses, ptriplet->decryption.label, ptriplet->decryption.context, ses->smb3decryptionkey, SMB3_ENC_DEC_KEY_SIZE); if (rc) return rc; } #ifdef CONFIG_CIFS_DEBUG_DUMP_KEYS cifs_dbg(VFS, "%s: dumping generated AES session keys\n", __func__); /* * The session id is opaque in terms of endianness, so we can't * print it as a long long. we dump it as we got it on the wire */ cifs_dbg(VFS, "Session Id %*ph\n", (int)sizeof(ses->Suid), &ses->Suid); cifs_dbg(VFS, "Cipher type %d\n", server->cipher_type); cifs_dbg(VFS, "Session Key %*ph\n", SMB2_NTLMV2_SESSKEY_SIZE, ses->auth_key.response); cifs_dbg(VFS, "Signing Key %*ph\n", SMB3_SIGN_KEY_SIZE, ses->smb3signingkey); if ((server->cipher_type == SMB2_ENCRYPTION_AES256_CCM) || (server->cipher_type == SMB2_ENCRYPTION_AES256_GCM)) { cifs_dbg(VFS, "ServerIn Key %*ph\n", SMB3_GCM256_CRYPTKEY_SIZE, ses->smb3encryptionkey); cifs_dbg(VFS, "ServerOut Key %*ph\n", SMB3_GCM256_CRYPTKEY_SIZE, ses->smb3decryptionkey); } else { cifs_dbg(VFS, "ServerIn Key %*ph\n", SMB3_GCM128_CRYPTKEY_SIZE, ses->smb3encryptionkey); cifs_dbg(VFS, "ServerOut Key %*ph\n", SMB3_GCM128_CRYPTKEY_SIZE, ses->smb3decryptionkey); } #endif return rc; } int generate_smb30signingkey(struct cifs_ses *ses, struct TCP_Server_Info *server) { struct derivation_triplet triplet; struct derivation *d; d = &triplet.signing; d->label.iov_base = "SMB2AESCMAC"; d->label.iov_len = 12; d->context.iov_base = "SmbSign"; d->context.iov_len = 8; d = &triplet.encryption; d->label.iov_base = "SMB2AESCCM"; d->label.iov_len = 11; d->context.iov_base = "ServerIn "; d->context.iov_len = 10; d = &triplet.decryption; d->label.iov_base = "SMB2AESCCM"; d->label.iov_len = 11; d->context.iov_base = "ServerOut"; d->context.iov_len = 10; return generate_smb3signingkey(ses, server, &triplet); } int generate_smb311signingkey(struct cifs_ses *ses, struct TCP_Server_Info *server) { struct derivation_triplet triplet; struct derivation *d; d = &triplet.signing; d->label.iov_base = "SMBSigningKey"; d->label.iov_len = 14; d->context.iov_base = ses->preauth_sha_hash; d->context.iov_len = 64; d = &triplet.encryption; d->label.iov_base = "SMBC2SCipherKey"; d->label.iov_len = 16; d->context.iov_base = ses->preauth_sha_hash; d->context.iov_len = 64; d = &triplet.decryption; d->label.iov_base = "SMBS2CCipherKey"; d->label.iov_len = 16; d->context.iov_base = ses->preauth_sha_hash; d->context.iov_len = 64; return generate_smb3signingkey(ses, server, &triplet); } int smb3_calc_signature(struct smb_rqst *rqst, struct TCP_Server_Info *server, bool allocate_crypto) { int rc; unsigned char smb3_signature[SMB2_CMACAES_SIZE]; unsigned char *sigptr = smb3_signature; struct kvec *iov = rqst->rq_iov; struct smb2_hdr *shdr = (struct smb2_hdr *)iov[0].iov_base; struct shash_desc *shash = NULL; struct smb_rqst drqst; u8 key[SMB3_SIGN_KEY_SIZE]; rc = smb2_get_sign_key(le64_to_cpu(shdr->SessionId), server, key); if (unlikely(rc)) { cifs_server_dbg(FYI, "%s: Could not get signing key\n", __func__); return rc; } if (allocate_crypto) { rc = cifs_alloc_hash("cmac(aes)", &shash); if (rc) return rc; } else { shash = server->secmech.aes_cmac; } memset(smb3_signature, 0x0, SMB2_CMACAES_SIZE); memset(shdr->Signature, 0x0, SMB2_SIGNATURE_SIZE); rc = crypto_shash_setkey(shash->tfm, key, SMB2_CMACAES_SIZE); if (rc) { cifs_server_dbg(VFS, "%s: Could not set key for cmac aes\n", __func__); goto out; } /* * we already allocate aes_cmac when we init smb3 signing key, * so unlike smb2 case we do not have to check here if secmech are * initialized */ rc = crypto_shash_init(shash); if (rc) { cifs_server_dbg(VFS, "%s: Could not init cmac aes\n", __func__); goto out; } /* * For SMB2+, __cifs_calc_signature() expects to sign only the actual * data, that is, iov[0] should not contain a rfc1002 length. * * Sign the rfc1002 length prior to passing the data (iov[1-N]) down to * __cifs_calc_signature(). */ drqst = *rqst; if (drqst.rq_nvec >= 2 && iov[0].iov_len == 4) { rc = crypto_shash_update(shash, iov[0].iov_base, iov[0].iov_len); if (rc) { cifs_server_dbg(VFS, "%s: Could not update with payload\n", __func__); goto out; } drqst.rq_iov++; drqst.rq_nvec--; } rc = __cifs_calc_signature(&drqst, server, sigptr, shash); if (!rc) memcpy(shdr->Signature, sigptr, SMB2_SIGNATURE_SIZE); out: if (allocate_crypto) cifs_free_hash(&shash); return rc; } /* must be called with server->srv_mutex held */ static int smb2_sign_rqst(struct smb_rqst *rqst, struct TCP_Server_Info *server) { int rc = 0; struct smb2_hdr *shdr; struct smb2_sess_setup_req *ssr; bool is_binding; bool is_signed; shdr = (struct smb2_hdr *)rqst->rq_iov[0].iov_base; ssr = (struct smb2_sess_setup_req *)shdr; is_binding = shdr->Command == SMB2_SESSION_SETUP && (ssr->Flags & SMB2_SESSION_REQ_FLAG_BINDING); is_signed = shdr->Flags & SMB2_FLAGS_SIGNED; if (!is_signed) return 0; spin_lock(&server->srv_lock); if (server->ops->need_neg && server->ops->need_neg(server)) { spin_unlock(&server->srv_lock); return 0; } spin_unlock(&server->srv_lock); if (!is_binding && !server->session_estab) { strscpy(shdr->Signature, "BSRSPYL"); return 0; } rc = server->ops->calc_signature(rqst, server, false); return rc; } int smb2_verify_signature(struct smb_rqst *rqst, struct TCP_Server_Info *server) { unsigned int rc; char server_response_sig[SMB2_SIGNATURE_SIZE]; struct smb2_hdr *shdr = (struct smb2_hdr *)rqst->rq_iov[0].iov_base; if ((shdr->Command == SMB2_NEGOTIATE) || (shdr->Command == SMB2_SESSION_SETUP) || (shdr->Command == SMB2_OPLOCK_BREAK) || server->ignore_signature || (!server->session_estab)) return 0; /* * BB what if signatures are supposed to be on for session but * server does not send one? BB */ /* Do not need to verify session setups with signature "BSRSPYL " */ if (memcmp(shdr->Signature, "BSRSPYL ", 8) == 0) cifs_dbg(FYI, "dummy signature received for smb command 0x%x\n", shdr->Command); /* * Save off the origiginal signature so we can modify the smb and check * our calculated signature against what the server sent. */ memcpy(server_response_sig, shdr->Signature, SMB2_SIGNATURE_SIZE); memset(shdr->Signature, 0, SMB2_SIGNATURE_SIZE); rc = server->ops->calc_signature(rqst, server, true); if (rc) return rc; if (memcmp(server_response_sig, shdr->Signature, SMB2_SIGNATURE_SIZE)) { cifs_dbg(VFS, "sign fail cmd 0x%x message id 0x%llx\n", shdr->Command, shdr->MessageId); return -EACCES; } else return 0; } /* * Set message id for the request. Should be called after wait_for_free_request * and when srv_mutex is held. */ static inline void smb2_seq_num_into_buf(struct TCP_Server_Info *server, struct smb2_hdr *shdr) { unsigned int i, num = le16_to_cpu(shdr->CreditCharge); shdr->MessageId = get_next_mid64(server); /* skip message numbers according to CreditCharge field */ for (i = 1; i < num; i++) get_next_mid(server); } static struct mid_q_entry * smb2_mid_entry_alloc(const struct smb2_hdr *shdr, struct TCP_Server_Info *server) { struct mid_q_entry *temp; unsigned int credits = le16_to_cpu(shdr->CreditCharge); if (server == NULL) { cifs_dbg(VFS, "Null TCP session in smb2_mid_entry_alloc\n"); return NULL; } temp = mempool_alloc(cifs_mid_poolp, GFP_NOFS); memset(temp, 0, sizeof(struct mid_q_entry)); kref_init(&temp->refcount); temp->mid = le64_to_cpu(shdr->MessageId); temp->credits = credits > 0 ? credits : 1; temp->pid = current->pid; temp->command = shdr->Command; /* Always LE */ temp->when_alloc = jiffies; temp->server = server; /* * The default is for the mid to be synchronous, so the * default callback just wakes up the current task. */ get_task_struct(current); temp->creator = current; temp->callback = cifs_wake_up_task; temp->callback_data = current; atomic_inc(&mid_count); temp->mid_state = MID_REQUEST_ALLOCATED; trace_smb3_cmd_enter(le32_to_cpu(shdr->Id.SyncId.TreeId), le64_to_cpu(shdr->SessionId), le16_to_cpu(shdr->Command), temp->mid); return temp; } static int smb2_get_mid_entry(struct cifs_ses *ses, struct TCP_Server_Info *server, struct smb2_hdr *shdr, struct mid_q_entry **mid) { spin_lock(&server->srv_lock); if (server->tcpStatus == CifsExiting) { spin_unlock(&server->srv_lock); return -ENOENT; } if (server->tcpStatus == CifsNeedReconnect) { spin_unlock(&server->srv_lock); cifs_dbg(FYI, "tcp session dead - return to caller to retry\n"); return -EAGAIN; } if (server->tcpStatus == CifsNeedNegotiate && shdr->Command != SMB2_NEGOTIATE) { spin_unlock(&server->srv_lock); return -EAGAIN; } spin_unlock(&server->srv_lock); spin_lock(&ses->ses_lock); if (ses->ses_status == SES_NEW) { if ((shdr->Command != SMB2_SESSION_SETUP) && (shdr->Command != SMB2_NEGOTIATE)) { spin_unlock(&ses->ses_lock); return -EAGAIN; } /* else ok - we are setting up session */ } if (ses->ses_status == SES_EXITING) { if (shdr->Command != SMB2_LOGOFF) { spin_unlock(&ses->ses_lock); return -EAGAIN; } /* else ok - we are shutting down the session */ } spin_unlock(&ses->ses_lock); *mid = smb2_mid_entry_alloc(shdr, server); if (*mid == NULL) return -ENOMEM; spin_lock(&server->mid_lock); list_add_tail(&(*mid)->qhead, &server->pending_mid_q); spin_unlock(&server->mid_lock); return 0; } int smb2_check_receive(struct mid_q_entry *mid, struct TCP_Server_Info *server, bool log_error) { unsigned int len = mid->resp_buf_size; struct kvec iov[1]; struct smb_rqst rqst = { .rq_iov = iov, .rq_nvec = 1 }; iov[0].iov_base = (char *)mid->resp_buf; iov[0].iov_len = len; dump_smb(mid->resp_buf, min_t(u32, 80, len)); /* convert the length into a more usable form */ if (len > 24 && server->sign && !mid->decrypted) { int rc; rc = smb2_verify_signature(&rqst, server); if (rc) cifs_server_dbg(VFS, "SMB signature verification returned error = %d\n", rc); } return map_smb2_to_linux_error(mid->resp_buf, log_error); } struct mid_q_entry * smb2_setup_request(struct cifs_ses *ses, struct TCP_Server_Info *server, struct smb_rqst *rqst) { int rc; struct smb2_hdr *shdr = (struct smb2_hdr *)rqst->rq_iov[0].iov_base; struct mid_q_entry *mid; smb2_seq_num_into_buf(server, shdr); rc = smb2_get_mid_entry(ses, server, shdr, &mid); if (rc) { revert_current_mid_from_hdr(server, shdr); return ERR_PTR(rc); } rc = smb2_sign_rqst(rqst, server); if (rc) { revert_current_mid_from_hdr(server, shdr); delete_mid(mid); return ERR_PTR(rc); } return mid; } struct mid_q_entry * smb2_setup_async_request(struct TCP_Server_Info *server, struct smb_rqst *rqst) { int rc; struct smb2_hdr *shdr = (struct smb2_hdr *)rqst->rq_iov[0].iov_base; struct mid_q_entry *mid; spin_lock(&server->srv_lock); if (server->tcpStatus == CifsNeedNegotiate && shdr->Command != SMB2_NEGOTIATE) { spin_unlock(&server->srv_lock); return ERR_PTR(-EAGAIN); } spin_unlock(&server->srv_lock); smb2_seq_num_into_buf(server, shdr); mid = smb2_mid_entry_alloc(shdr, server); if (mid == NULL) { revert_current_mid_from_hdr(server, shdr); return ERR_PTR(-ENOMEM); } rc = smb2_sign_rqst(rqst, server); if (rc) { revert_current_mid_from_hdr(server, shdr); release_mid(mid); return ERR_PTR(rc); } return mid; } int smb3_crypto_aead_allocate(struct TCP_Server_Info *server) { struct crypto_aead *tfm; if (!server->secmech.enc) { if ((server->cipher_type == SMB2_ENCRYPTION_AES128_GCM) || (server->cipher_type == SMB2_ENCRYPTION_AES256_GCM)) tfm = crypto_alloc_aead("gcm(aes)", 0, 0); else tfm = crypto_alloc_aead("ccm(aes)", 0, 0); if (IS_ERR(tfm)) { cifs_server_dbg(VFS, "%s: Failed alloc encrypt aead\n", __func__); return PTR_ERR(tfm); } server->secmech.enc = tfm; } if (!server->secmech.dec) { if ((server->cipher_type == SMB2_ENCRYPTION_AES128_GCM) || (server->cipher_type == SMB2_ENCRYPTION_AES256_GCM)) tfm = crypto_alloc_aead("gcm(aes)", 0, 0); else tfm = crypto_alloc_aead("ccm(aes)", 0, 0); if (IS_ERR(tfm)) { crypto_free_aead(server->secmech.enc); server->secmech.enc = NULL; cifs_server_dbg(VFS, "%s: Failed to alloc decrypt aead\n", __func__); return PTR_ERR(tfm); } server->secmech.dec = tfm; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1