Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Eric Biggers | 1548 | 100.00% | 23 | 100.00% |
Total | 1548 | 23 |
// SPDX-License-Identifier: GPL-2.0 /* * Opening fs-verity files * * Copyright 2019 Google LLC */ #include "fsverity_private.h" #include <linux/mm.h> #include <linux/slab.h> static struct kmem_cache *fsverity_info_cachep; /** * fsverity_init_merkle_tree_params() - initialize Merkle tree parameters * @params: the parameters struct to initialize * @inode: the inode for which the Merkle tree is being built * @hash_algorithm: number of hash algorithm to use * @log_blocksize: log base 2 of block size to use * @salt: pointer to salt (optional) * @salt_size: size of salt, possibly 0 * * Validate the hash algorithm and block size, then compute the tree topology * (num levels, num blocks in each level, etc.) and initialize @params. * * Return: 0 on success, -errno on failure */ int fsverity_init_merkle_tree_params(struct merkle_tree_params *params, const struct inode *inode, unsigned int hash_algorithm, unsigned int log_blocksize, const u8 *salt, size_t salt_size) { const struct fsverity_hash_alg *hash_alg; int err; u64 blocks; u64 blocks_in_level[FS_VERITY_MAX_LEVELS]; u64 offset; int level; memset(params, 0, sizeof(*params)); hash_alg = fsverity_get_hash_alg(inode, hash_algorithm); if (IS_ERR(hash_alg)) return PTR_ERR(hash_alg); params->hash_alg = hash_alg; params->digest_size = hash_alg->digest_size; params->hashstate = fsverity_prepare_hash_state(hash_alg, salt, salt_size); if (IS_ERR(params->hashstate)) { err = PTR_ERR(params->hashstate); params->hashstate = NULL; fsverity_err(inode, "Error %d preparing hash state", err); goto out_err; } /* * fs/verity/ directly assumes that the Merkle tree block size is a * power of 2 less than or equal to PAGE_SIZE. Another restriction * arises from the interaction between fs/verity/ and the filesystems * themselves: filesystems expect to be able to verify a single * filesystem block of data at a time. Therefore, the Merkle tree block * size must also be less than or equal to the filesystem block size. * * The above are the only hard limitations, so in theory the Merkle tree * block size could be as small as twice the digest size. However, * that's not useful, and it would result in some unusually deep and * large Merkle trees. So we currently require that the Merkle tree * block size be at least 1024 bytes. That's small enough to test the * sub-page block case on systems with 4K pages, but not too small. */ if (log_blocksize < 10 || log_blocksize > PAGE_SHIFT || log_blocksize > inode->i_blkbits) { fsverity_warn(inode, "Unsupported log_blocksize: %u", log_blocksize); err = -EINVAL; goto out_err; } params->log_blocksize = log_blocksize; params->block_size = 1 << log_blocksize; params->log_blocks_per_page = PAGE_SHIFT - log_blocksize; params->blocks_per_page = 1 << params->log_blocks_per_page; if (WARN_ON_ONCE(!is_power_of_2(params->digest_size))) { err = -EINVAL; goto out_err; } if (params->block_size < 2 * params->digest_size) { fsverity_warn(inode, "Merkle tree block size (%u) too small for hash algorithm \"%s\"", params->block_size, hash_alg->name); err = -EINVAL; goto out_err; } params->log_digestsize = ilog2(params->digest_size); params->log_arity = log_blocksize - params->log_digestsize; params->hashes_per_block = 1 << params->log_arity; /* * Compute the number of levels in the Merkle tree and create a map from * level to the starting block of that level. Level 'num_levels - 1' is * the root and is stored first. Level 0 is the level directly "above" * the data blocks and is stored last. */ /* Compute number of levels and the number of blocks in each level */ blocks = ((u64)inode->i_size + params->block_size - 1) >> log_blocksize; while (blocks > 1) { if (params->num_levels >= FS_VERITY_MAX_LEVELS) { fsverity_err(inode, "Too many levels in Merkle tree"); err = -EFBIG; goto out_err; } blocks = (blocks + params->hashes_per_block - 1) >> params->log_arity; blocks_in_level[params->num_levels++] = blocks; } /* Compute the starting block of each level */ offset = 0; for (level = (int)params->num_levels - 1; level >= 0; level--) { params->level_start[level] = offset; offset += blocks_in_level[level]; } /* * With block_size != PAGE_SIZE, an in-memory bitmap will need to be * allocated to track the "verified" status of hash blocks. Don't allow * this bitmap to get too large. For now, limit it to 1 MiB, which * limits the file size to about 4.4 TB with SHA-256 and 4K blocks. * * Together with the fact that the data, and thus also the Merkle tree, * cannot have more than ULONG_MAX pages, this implies that hash block * indices can always fit in an 'unsigned long'. But to be safe, we * explicitly check for that too. Note, this is only for hash block * indices; data block indices might not fit in an 'unsigned long'. */ if ((params->block_size != PAGE_SIZE && offset > 1 << 23) || offset > ULONG_MAX) { fsverity_err(inode, "Too many blocks in Merkle tree"); err = -EFBIG; goto out_err; } params->tree_size = offset << log_blocksize; params->tree_pages = PAGE_ALIGN(params->tree_size) >> PAGE_SHIFT; return 0; out_err: kfree(params->hashstate); memset(params, 0, sizeof(*params)); return err; } /* * Compute the file digest by hashing the fsverity_descriptor excluding the * builtin signature and with the sig_size field set to 0. */ static int compute_file_digest(const struct fsverity_hash_alg *hash_alg, struct fsverity_descriptor *desc, u8 *file_digest) { __le32 sig_size = desc->sig_size; int err; desc->sig_size = 0; err = fsverity_hash_buffer(hash_alg, desc, sizeof(*desc), file_digest); desc->sig_size = sig_size; return err; } /* * Create a new fsverity_info from the given fsverity_descriptor (with optional * appended builtin signature), and check the signature if present. The * fsverity_descriptor must have already undergone basic validation. */ struct fsverity_info *fsverity_create_info(const struct inode *inode, struct fsverity_descriptor *desc) { struct fsverity_info *vi; int err; vi = kmem_cache_zalloc(fsverity_info_cachep, GFP_KERNEL); if (!vi) return ERR_PTR(-ENOMEM); vi->inode = inode; err = fsverity_init_merkle_tree_params(&vi->tree_params, inode, desc->hash_algorithm, desc->log_blocksize, desc->salt, desc->salt_size); if (err) { fsverity_err(inode, "Error %d initializing Merkle tree parameters", err); goto fail; } memcpy(vi->root_hash, desc->root_hash, vi->tree_params.digest_size); err = compute_file_digest(vi->tree_params.hash_alg, desc, vi->file_digest); if (err) { fsverity_err(inode, "Error %d computing file digest", err); goto fail; } err = fsverity_verify_signature(vi, desc->signature, le32_to_cpu(desc->sig_size)); if (err) goto fail; if (vi->tree_params.block_size != PAGE_SIZE) { /* * When the Merkle tree block size and page size differ, we use * a bitmap to keep track of which hash blocks have been * verified. This bitmap must contain one bit per hash block, * including alignment to a page boundary at the end. * * Eventually, to support extremely large files in an efficient * way, it might be necessary to make pages of this bitmap * reclaimable. But for now, simply allocating the whole bitmap * is a simple solution that works well on the files on which * fsverity is realistically used. E.g., with SHA-256 and 4K * blocks, a 100MB file only needs a 24-byte bitmap, and the * bitmap for any file under 17GB fits in a 4K page. */ unsigned long num_bits = vi->tree_params.tree_pages << vi->tree_params.log_blocks_per_page; vi->hash_block_verified = kvcalloc(BITS_TO_LONGS(num_bits), sizeof(unsigned long), GFP_KERNEL); if (!vi->hash_block_verified) { err = -ENOMEM; goto fail; } } return vi; fail: fsverity_free_info(vi); return ERR_PTR(err); } void fsverity_set_info(struct inode *inode, struct fsverity_info *vi) { /* * Multiple tasks may race to set ->i_verity_info, so use * cmpxchg_release(). This pairs with the smp_load_acquire() in * fsverity_get_info(). I.e., here we publish ->i_verity_info with a * RELEASE barrier so that other tasks can ACQUIRE it. */ if (cmpxchg_release(&inode->i_verity_info, NULL, vi) != NULL) { /* Lost the race, so free the fsverity_info we allocated. */ fsverity_free_info(vi); /* * Afterwards, the caller may access ->i_verity_info directly, * so make sure to ACQUIRE the winning fsverity_info. */ (void)fsverity_get_info(inode); } } void fsverity_free_info(struct fsverity_info *vi) { if (!vi) return; kfree(vi->tree_params.hashstate); kvfree(vi->hash_block_verified); kmem_cache_free(fsverity_info_cachep, vi); } static bool validate_fsverity_descriptor(struct inode *inode, const struct fsverity_descriptor *desc, size_t desc_size) { if (desc_size < sizeof(*desc)) { fsverity_err(inode, "Unrecognized descriptor size: %zu bytes", desc_size); return false; } if (desc->version != 1) { fsverity_err(inode, "Unrecognized descriptor version: %u", desc->version); return false; } if (memchr_inv(desc->__reserved, 0, sizeof(desc->__reserved))) { fsverity_err(inode, "Reserved bits set in descriptor"); return false; } if (desc->salt_size > sizeof(desc->salt)) { fsverity_err(inode, "Invalid salt_size: %u", desc->salt_size); return false; } if (le64_to_cpu(desc->data_size) != inode->i_size) { fsverity_err(inode, "Wrong data_size: %llu (desc) != %lld (inode)", le64_to_cpu(desc->data_size), inode->i_size); return false; } if (le32_to_cpu(desc->sig_size) > desc_size - sizeof(*desc)) { fsverity_err(inode, "Signature overflows verity descriptor"); return false; } return true; } /* * Read the inode's fsverity_descriptor (with optional appended builtin * signature) from the filesystem, and do basic validation of it. */ int fsverity_get_descriptor(struct inode *inode, struct fsverity_descriptor **desc_ret) { int res; struct fsverity_descriptor *desc; res = inode->i_sb->s_vop->get_verity_descriptor(inode, NULL, 0); if (res < 0) { fsverity_err(inode, "Error %d getting verity descriptor size", res); return res; } if (res > FS_VERITY_MAX_DESCRIPTOR_SIZE) { fsverity_err(inode, "Verity descriptor is too large (%d bytes)", res); return -EMSGSIZE; } desc = kmalloc(res, GFP_KERNEL); if (!desc) return -ENOMEM; res = inode->i_sb->s_vop->get_verity_descriptor(inode, desc, res); if (res < 0) { fsverity_err(inode, "Error %d reading verity descriptor", res); kfree(desc); return res; } if (!validate_fsverity_descriptor(inode, desc, res)) { kfree(desc); return -EINVAL; } *desc_ret = desc; return 0; } /* Ensure the inode has an ->i_verity_info */ static int ensure_verity_info(struct inode *inode) { struct fsverity_info *vi = fsverity_get_info(inode); struct fsverity_descriptor *desc; int err; if (vi) return 0; err = fsverity_get_descriptor(inode, &desc); if (err) return err; vi = fsverity_create_info(inode, desc); if (IS_ERR(vi)) { err = PTR_ERR(vi); goto out_free_desc; } fsverity_set_info(inode, vi); err = 0; out_free_desc: kfree(desc); return err; } int __fsverity_file_open(struct inode *inode, struct file *filp) { if (filp->f_mode & FMODE_WRITE) return -EPERM; return ensure_verity_info(inode); } EXPORT_SYMBOL_GPL(__fsverity_file_open); int __fsverity_prepare_setattr(struct dentry *dentry, struct iattr *attr) { if (attr->ia_valid & ATTR_SIZE) return -EPERM; return 0; } EXPORT_SYMBOL_GPL(__fsverity_prepare_setattr); void __fsverity_cleanup_inode(struct inode *inode) { fsverity_free_info(inode->i_verity_info); inode->i_verity_info = NULL; } EXPORT_SYMBOL_GPL(__fsverity_cleanup_inode); void __init fsverity_init_info_cache(void) { fsverity_info_cachep = KMEM_CACHE_USERCOPY( fsverity_info, SLAB_RECLAIM_ACCOUNT | SLAB_PANIC, file_digest); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1