Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christoph Hellwig | 3370 | 28.58% | 35 | 14.77% |
Brian Foster | 2960 | 25.10% | 24 | 10.13% |
David Chinner | 2495 | 21.16% | 81 | 34.18% |
Darrick J. Wong | 2224 | 18.86% | 51 | 21.52% |
Nathan Scott | 228 | 1.93% | 8 | 3.38% |
Stephen Lord | 161 | 1.37% | 3 | 1.27% |
Eric Sandeen | 123 | 1.04% | 11 | 4.64% |
Glen Overby | 71 | 0.60% | 1 | 0.42% |
Carlos Maiolino | 58 | 0.49% | 3 | 1.27% |
Russell Cattelan | 36 | 0.31% | 1 | 0.42% |
Chandan Babu R | 13 | 0.11% | 1 | 0.42% |
Chandra Seetharaman | 11 | 0.09% | 1 | 0.42% |
Jie Liu | 9 | 0.08% | 4 | 1.69% |
Mark Tinguely | 8 | 0.07% | 1 | 0.42% |
Hsiang Kao | 6 | 0.05% | 2 | 0.84% |
Jason A. Donenfeld | 5 | 0.04% | 3 | 1.27% |
Omar Sandoval | 4 | 0.03% | 1 | 0.42% |
Marcin Ślusarz | 3 | 0.03% | 1 | 0.42% |
Thomas Meyer | 2 | 0.02% | 1 | 0.42% |
Ben Myers | 1 | 0.01% | 1 | 0.42% |
George Wang | 1 | 0.01% | 1 | 0.42% |
Josef 'Jeff' Sipek | 1 | 0.01% | 1 | 0.42% |
Fengguang Wu | 1 | 0.01% | 1 | 0.42% |
Total | 11791 | 237 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_btree.h" #include "xfs_ialloc.h" #include "xfs_ialloc_btree.h" #include "xfs_alloc.h" #include "xfs_errortag.h" #include "xfs_error.h" #include "xfs_bmap.h" #include "xfs_trans.h" #include "xfs_buf_item.h" #include "xfs_icreate_item.h" #include "xfs_icache.h" #include "xfs_trace.h" #include "xfs_log.h" #include "xfs_rmap.h" #include "xfs_ag.h" #include "xfs_health.h" /* * Lookup a record by ino in the btree given by cur. */ int /* error */ xfs_inobt_lookup( struct xfs_btree_cur *cur, /* btree cursor */ xfs_agino_t ino, /* starting inode of chunk */ xfs_lookup_t dir, /* <=, >=, == */ int *stat) /* success/failure */ { cur->bc_rec.i.ir_startino = ino; cur->bc_rec.i.ir_holemask = 0; cur->bc_rec.i.ir_count = 0; cur->bc_rec.i.ir_freecount = 0; cur->bc_rec.i.ir_free = 0; return xfs_btree_lookup(cur, dir, stat); } /* * Update the record referred to by cur to the value given. * This either works (return 0) or gets an EFSCORRUPTED error. */ STATIC int /* error */ xfs_inobt_update( struct xfs_btree_cur *cur, /* btree cursor */ xfs_inobt_rec_incore_t *irec) /* btree record */ { union xfs_btree_rec rec; rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); if (xfs_has_sparseinodes(cur->bc_mp)) { rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); rec.inobt.ir_u.sp.ir_count = irec->ir_count; rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; } else { /* ir_holemask/ir_count not supported on-disk */ rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); } rec.inobt.ir_free = cpu_to_be64(irec->ir_free); return xfs_btree_update(cur, &rec); } /* Convert on-disk btree record to incore inobt record. */ void xfs_inobt_btrec_to_irec( struct xfs_mount *mp, const union xfs_btree_rec *rec, struct xfs_inobt_rec_incore *irec) { irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); if (xfs_has_sparseinodes(mp)) { irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); irec->ir_count = rec->inobt.ir_u.sp.ir_count; irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; } else { /* * ir_holemask/ir_count not supported on-disk. Fill in hardcoded * values for full inode chunks. */ irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; irec->ir_count = XFS_INODES_PER_CHUNK; irec->ir_freecount = be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); } irec->ir_free = be64_to_cpu(rec->inobt.ir_free); } /* Compute the freecount of an incore inode record. */ uint8_t xfs_inobt_rec_freecount( const struct xfs_inobt_rec_incore *irec) { uint64_t realfree = irec->ir_free; if (xfs_inobt_issparse(irec->ir_holemask)) realfree &= xfs_inobt_irec_to_allocmask(irec); return hweight64(realfree); } /* Simple checks for inode records. */ xfs_failaddr_t xfs_inobt_check_irec( struct xfs_perag *pag, const struct xfs_inobt_rec_incore *irec) { /* Record has to be properly aligned within the AG. */ if (!xfs_verify_agino(pag, irec->ir_startino)) return __this_address; if (!xfs_verify_agino(pag, irec->ir_startino + XFS_INODES_PER_CHUNK - 1)) return __this_address; if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT || irec->ir_count > XFS_INODES_PER_CHUNK) return __this_address; if (irec->ir_freecount > XFS_INODES_PER_CHUNK) return __this_address; if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount) return __this_address; return NULL; } static inline int xfs_inobt_complain_bad_rec( struct xfs_btree_cur *cur, xfs_failaddr_t fa, const struct xfs_inobt_rec_incore *irec) { struct xfs_mount *mp = cur->bc_mp; xfs_warn(mp, "%sbt record corruption in AG %d detected at %pS!", cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa); xfs_warn(mp, "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x", irec->ir_startino, irec->ir_count, irec->ir_freecount, irec->ir_free, irec->ir_holemask); xfs_btree_mark_sick(cur); return -EFSCORRUPTED; } /* * Get the data from the pointed-to record. */ int xfs_inobt_get_rec( struct xfs_btree_cur *cur, struct xfs_inobt_rec_incore *irec, int *stat) { struct xfs_mount *mp = cur->bc_mp; union xfs_btree_rec *rec; xfs_failaddr_t fa; int error; error = xfs_btree_get_rec(cur, &rec, stat); if (error || *stat == 0) return error; xfs_inobt_btrec_to_irec(mp, rec, irec); fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec); if (fa) return xfs_inobt_complain_bad_rec(cur, fa, irec); return 0; } /* * Insert a single inobt record. Cursor must already point to desired location. */ int xfs_inobt_insert_rec( struct xfs_btree_cur *cur, uint16_t holemask, uint8_t count, int32_t freecount, xfs_inofree_t free, int *stat) { cur->bc_rec.i.ir_holemask = holemask; cur->bc_rec.i.ir_count = count; cur->bc_rec.i.ir_freecount = freecount; cur->bc_rec.i.ir_free = free; return xfs_btree_insert(cur, stat); } /* * Insert records describing a newly allocated inode chunk into the inobt. */ STATIC int xfs_inobt_insert( struct xfs_perag *pag, struct xfs_trans *tp, struct xfs_buf *agbp, xfs_agino_t newino, xfs_agino_t newlen, bool is_finobt) { struct xfs_btree_cur *cur; xfs_agino_t thisino; int i; int error; if (is_finobt) cur = xfs_finobt_init_cursor(pag, tp, agbp); else cur = xfs_inobt_init_cursor(pag, tp, agbp); for (thisino = newino; thisino < newino + newlen; thisino += XFS_INODES_PER_CHUNK) { error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); if (error) { xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } ASSERT(i == 0); error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, XFS_INODES_PER_CHUNK, XFS_INODES_PER_CHUNK, XFS_INOBT_ALL_FREE, &i); if (error) { xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } ASSERT(i == 1); } xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); return 0; } /* * Verify that the number of free inodes in the AGI is correct. */ #ifdef DEBUG static int xfs_check_agi_freecount( struct xfs_btree_cur *cur) { if (cur->bc_nlevels == 1) { xfs_inobt_rec_incore_t rec; int freecount = 0; int error; int i; error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); if (error) return error; do { error = xfs_inobt_get_rec(cur, &rec, &i); if (error) return error; if (i) { freecount += rec.ir_freecount; error = xfs_btree_increment(cur, 0, &i); if (error) return error; } } while (i == 1); if (!xfs_is_shutdown(cur->bc_mp)) ASSERT(freecount == cur->bc_ag.pag->pagi_freecount); } return 0; } #else #define xfs_check_agi_freecount(cur) 0 #endif /* * Initialise a new set of inodes. When called without a transaction context * (e.g. from recovery) we initiate a delayed write of the inode buffers rather * than logging them (which in a transaction context puts them into the AIL * for writeback rather than the xfsbufd queue). */ int xfs_ialloc_inode_init( struct xfs_mount *mp, struct xfs_trans *tp, struct list_head *buffer_list, int icount, xfs_agnumber_t agno, xfs_agblock_t agbno, xfs_agblock_t length, unsigned int gen) { struct xfs_buf *fbuf; struct xfs_dinode *free; int nbufs; int version; int i, j; xfs_daddr_t d; xfs_ino_t ino = 0; int error; /* * Loop over the new block(s), filling in the inodes. For small block * sizes, manipulate the inodes in buffers which are multiples of the * blocks size. */ nbufs = length / M_IGEO(mp)->blocks_per_cluster; /* * Figure out what version number to use in the inodes we create. If * the superblock version has caught up to the one that supports the new * inode format, then use the new inode version. Otherwise use the old * version so that old kernels will continue to be able to use the file * system. * * For v3 inodes, we also need to write the inode number into the inode, * so calculate the first inode number of the chunk here as * XFS_AGB_TO_AGINO() only works within a filesystem block, not * across multiple filesystem blocks (such as a cluster) and so cannot * be used in the cluster buffer loop below. * * Further, because we are writing the inode directly into the buffer * and calculating a CRC on the entire inode, we have ot log the entire * inode so that the entire range the CRC covers is present in the log. * That means for v3 inode we log the entire buffer rather than just the * inode cores. */ if (xfs_has_v3inodes(mp)) { version = 3; ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno)); /* * log the initialisation that is about to take place as an * logical operation. This means the transaction does not * need to log the physical changes to the inode buffers as log * recovery will know what initialisation is actually needed. * Hence we only need to log the buffers as "ordered" buffers so * they track in the AIL as if they were physically logged. */ if (tp) xfs_icreate_log(tp, agno, agbno, icount, mp->m_sb.sb_inodesize, length, gen); } else version = 2; for (j = 0; j < nbufs; j++) { /* * Get the block. */ d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * M_IGEO(mp)->blocks_per_cluster)); error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize * M_IGEO(mp)->blocks_per_cluster, XBF_UNMAPPED, &fbuf); if (error) return error; /* Initialize the inode buffers and log them appropriately. */ fbuf->b_ops = &xfs_inode_buf_ops; xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) { int ioffset = i << mp->m_sb.sb_inodelog; free = xfs_make_iptr(mp, fbuf, i); free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); free->di_version = version; free->di_gen = cpu_to_be32(gen); free->di_next_unlinked = cpu_to_be32(NULLAGINO); if (version == 3) { free->di_ino = cpu_to_be64(ino); ino++; uuid_copy(&free->di_uuid, &mp->m_sb.sb_meta_uuid); xfs_dinode_calc_crc(mp, free); } else if (tp) { /* just log the inode core */ xfs_trans_log_buf(tp, fbuf, ioffset, ioffset + XFS_DINODE_SIZE(mp) - 1); } } if (tp) { /* * Mark the buffer as an inode allocation buffer so it * sticks in AIL at the point of this allocation * transaction. This ensures the they are on disk before * the tail of the log can be moved past this * transaction (i.e. by preventing relogging from moving * it forward in the log). */ xfs_trans_inode_alloc_buf(tp, fbuf); if (version == 3) { /* * Mark the buffer as ordered so that they are * not physically logged in the transaction but * still tracked in the AIL as part of the * transaction and pin the log appropriately. */ xfs_trans_ordered_buf(tp, fbuf); } } else { fbuf->b_flags |= XBF_DONE; xfs_buf_delwri_queue(fbuf, buffer_list); xfs_buf_relse(fbuf); } } return 0; } /* * Align startino and allocmask for a recently allocated sparse chunk such that * they are fit for insertion (or merge) into the on-disk inode btrees. * * Background: * * When enabled, sparse inode support increases the inode alignment from cluster * size to inode chunk size. This means that the minimum range between two * non-adjacent inode records in the inobt is large enough for a full inode * record. This allows for cluster sized, cluster aligned block allocation * without need to worry about whether the resulting inode record overlaps with * another record in the tree. Without this basic rule, we would have to deal * with the consequences of overlap by potentially undoing recent allocations in * the inode allocation codepath. * * Because of this alignment rule (which is enforced on mount), there are two * inobt possibilities for newly allocated sparse chunks. One is that the * aligned inode record for the chunk covers a range of inodes not already * covered in the inobt (i.e., it is safe to insert a new sparse record). The * other is that a record already exists at the aligned startino that considers * the newly allocated range as sparse. In the latter case, record content is * merged in hope that sparse inode chunks fill to full chunks over time. */ STATIC void xfs_align_sparse_ino( struct xfs_mount *mp, xfs_agino_t *startino, uint16_t *allocmask) { xfs_agblock_t agbno; xfs_agblock_t mod; int offset; agbno = XFS_AGINO_TO_AGBNO(mp, *startino); mod = agbno % mp->m_sb.sb_inoalignmt; if (!mod) return; /* calculate the inode offset and align startino */ offset = XFS_AGB_TO_AGINO(mp, mod); *startino -= offset; /* * Since startino has been aligned down, left shift allocmask such that * it continues to represent the same physical inodes relative to the * new startino. */ *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; } /* * Determine whether the source inode record can merge into the target. Both * records must be sparse, the inode ranges must match and there must be no * allocation overlap between the records. */ STATIC bool __xfs_inobt_can_merge( struct xfs_inobt_rec_incore *trec, /* tgt record */ struct xfs_inobt_rec_incore *srec) /* src record */ { uint64_t talloc; uint64_t salloc; /* records must cover the same inode range */ if (trec->ir_startino != srec->ir_startino) return false; /* both records must be sparse */ if (!xfs_inobt_issparse(trec->ir_holemask) || !xfs_inobt_issparse(srec->ir_holemask)) return false; /* both records must track some inodes */ if (!trec->ir_count || !srec->ir_count) return false; /* can't exceed capacity of a full record */ if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) return false; /* verify there is no allocation overlap */ talloc = xfs_inobt_irec_to_allocmask(trec); salloc = xfs_inobt_irec_to_allocmask(srec); if (talloc & salloc) return false; return true; } /* * Merge the source inode record into the target. The caller must call * __xfs_inobt_can_merge() to ensure the merge is valid. */ STATIC void __xfs_inobt_rec_merge( struct xfs_inobt_rec_incore *trec, /* target */ struct xfs_inobt_rec_incore *srec) /* src */ { ASSERT(trec->ir_startino == srec->ir_startino); /* combine the counts */ trec->ir_count += srec->ir_count; trec->ir_freecount += srec->ir_freecount; /* * Merge the holemask and free mask. For both fields, 0 bits refer to * allocated inodes. We combine the allocated ranges with bitwise AND. */ trec->ir_holemask &= srec->ir_holemask; trec->ir_free &= srec->ir_free; } /* * Insert a new sparse inode chunk into the associated inode allocation btree. * The inode record for the sparse chunk is pre-aligned to a startino that * should match any pre-existing sparse inode record in the tree. This allows * sparse chunks to fill over time. * * If no preexisting record exists, the provided record is inserted. * If there is a preexisting record, the provided record is merged with the * existing record and updated in place. The merged record is returned in nrec. * * It is considered corruption if a merge is requested and not possible. Given * the sparse inode alignment constraints, this should never happen. */ STATIC int xfs_inobt_insert_sprec( struct xfs_perag *pag, struct xfs_trans *tp, struct xfs_buf *agbp, struct xfs_inobt_rec_incore *nrec) /* in/out: new/merged rec. */ { struct xfs_mount *mp = pag->pag_mount; struct xfs_btree_cur *cur; int error; int i; struct xfs_inobt_rec_incore rec; cur = xfs_inobt_init_cursor(pag, tp, agbp); /* the new record is pre-aligned so we know where to look */ error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); if (error) goto error; /* if nothing there, insert a new record and return */ if (i == 0) { error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, nrec->ir_count, nrec->ir_freecount, nrec->ir_free, &i); if (error) goto error; if (XFS_IS_CORRUPT(mp, i != 1)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto error; } goto out; } /* * A record exists at this startino. Merge the records. */ error = xfs_inobt_get_rec(cur, &rec, &i); if (error) goto error; if (XFS_IS_CORRUPT(mp, i != 1)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto error; } if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto error; } /* * This should never fail. If we have coexisting records that * cannot merge, something is seriously wrong. */ if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto error; } trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino, rec.ir_holemask, nrec->ir_startino, nrec->ir_holemask); /* merge to nrec to output the updated record */ __xfs_inobt_rec_merge(nrec, &rec); trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino, nrec->ir_holemask); error = xfs_inobt_rec_check_count(mp, nrec); if (error) goto error; error = xfs_inobt_update(cur, nrec); if (error) goto error; out: xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); return 0; error: xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } /* * Insert a new sparse inode chunk into the free inode btree. The inode * record for the sparse chunk is pre-aligned to a startino that should match * any pre-existing sparse inode record in the tree. This allows sparse chunks * to fill over time. * * The new record is always inserted, overwriting a pre-existing record if * there is one. */ STATIC int xfs_finobt_insert_sprec( struct xfs_perag *pag, struct xfs_trans *tp, struct xfs_buf *agbp, struct xfs_inobt_rec_incore *nrec) /* in/out: new rec. */ { struct xfs_mount *mp = pag->pag_mount; struct xfs_btree_cur *cur; int error; int i; cur = xfs_finobt_init_cursor(pag, tp, agbp); /* the new record is pre-aligned so we know where to look */ error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); if (error) goto error; /* if nothing there, insert a new record and return */ if (i == 0) { error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, nrec->ir_count, nrec->ir_freecount, nrec->ir_free, &i); if (error) goto error; if (XFS_IS_CORRUPT(mp, i != 1)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto error; } } else { error = xfs_inobt_update(cur, nrec); if (error) goto error; } xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); return 0; error: xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } /* * Allocate new inodes in the allocation group specified by agbp. Returns 0 if * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so * the caller knows it can try another AG, a hard -ENOSPC when over the maximum * inode count threshold, or the usual negative error code for other errors. */ STATIC int xfs_ialloc_ag_alloc( struct xfs_perag *pag, struct xfs_trans *tp, struct xfs_buf *agbp) { struct xfs_agi *agi; struct xfs_alloc_arg args; int error; xfs_agino_t newino; /* new first inode's number */ xfs_agino_t newlen; /* new number of inodes */ int isaligned = 0; /* inode allocation at stripe */ /* unit boundary */ /* init. to full chunk */ struct xfs_inobt_rec_incore rec; struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp); uint16_t allocmask = (uint16_t) -1; int do_sparse = 0; memset(&args, 0, sizeof(args)); args.tp = tp; args.mp = tp->t_mountp; args.fsbno = NULLFSBLOCK; args.oinfo = XFS_RMAP_OINFO_INODES; args.pag = pag; #ifdef DEBUG /* randomly do sparse inode allocations */ if (xfs_has_sparseinodes(tp->t_mountp) && igeo->ialloc_min_blks < igeo->ialloc_blks) do_sparse = get_random_u32_below(2); #endif /* * Locking will ensure that we don't have two callers in here * at one time. */ newlen = igeo->ialloc_inos; if (igeo->maxicount && percpu_counter_read_positive(&args.mp->m_icount) + newlen > igeo->maxicount) return -ENOSPC; args.minlen = args.maxlen = igeo->ialloc_blks; /* * First try to allocate inodes contiguous with the last-allocated * chunk of inodes. If the filesystem is striped, this will fill * an entire stripe unit with inodes. */ agi = agbp->b_addr; newino = be32_to_cpu(agi->agi_newino); args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + igeo->ialloc_blks; if (do_sparse) goto sparse_alloc; if (likely(newino != NULLAGINO && (args.agbno < be32_to_cpu(agi->agi_length)))) { args.prod = 1; /* * We need to take into account alignment here to ensure that * we don't modify the free list if we fail to have an exact * block. If we don't have an exact match, and every oher * attempt allocation attempt fails, we'll end up cancelling * a dirty transaction and shutting down. * * For an exact allocation, alignment must be 1, * however we need to take cluster alignment into account when * fixing up the freelist. Use the minalignslop field to * indicate that extra blocks might be required for alignment, * but not to use them in the actual exact allocation. */ args.alignment = 1; args.minalignslop = igeo->cluster_align - 1; /* Allow space for the inode btree to split. */ args.minleft = igeo->inobt_maxlevels; error = xfs_alloc_vextent_exact_bno(&args, XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno)); if (error) return error; /* * This request might have dirtied the transaction if the AG can * satisfy the request, but the exact block was not available. * If the allocation did fail, subsequent requests will relax * the exact agbno requirement and increase the alignment * instead. It is critical that the total size of the request * (len + alignment + slop) does not increase from this point * on, so reset minalignslop to ensure it is not included in * subsequent requests. */ args.minalignslop = 0; } if (unlikely(args.fsbno == NULLFSBLOCK)) { /* * Set the alignment for the allocation. * If stripe alignment is turned on then align at stripe unit * boundary. * If the cluster size is smaller than a filesystem block * then we're doing I/O for inodes in filesystem block size * pieces, so don't need alignment anyway. */ isaligned = 0; if (igeo->ialloc_align) { ASSERT(!xfs_has_noalign(args.mp)); args.alignment = args.mp->m_dalign; isaligned = 1; } else args.alignment = igeo->cluster_align; /* * Allocate a fixed-size extent of inodes. */ args.prod = 1; /* * Allow space for the inode btree to split. */ args.minleft = igeo->inobt_maxlevels; error = xfs_alloc_vextent_near_bno(&args, XFS_AGB_TO_FSB(args.mp, pag->pag_agno, be32_to_cpu(agi->agi_root))); if (error) return error; } /* * If stripe alignment is turned on, then try again with cluster * alignment. */ if (isaligned && args.fsbno == NULLFSBLOCK) { args.alignment = igeo->cluster_align; error = xfs_alloc_vextent_near_bno(&args, XFS_AGB_TO_FSB(args.mp, pag->pag_agno, be32_to_cpu(agi->agi_root))); if (error) return error; } /* * Finally, try a sparse allocation if the filesystem supports it and * the sparse allocation length is smaller than a full chunk. */ if (xfs_has_sparseinodes(args.mp) && igeo->ialloc_min_blks < igeo->ialloc_blks && args.fsbno == NULLFSBLOCK) { sparse_alloc: args.alignment = args.mp->m_sb.sb_spino_align; args.prod = 1; args.minlen = igeo->ialloc_min_blks; args.maxlen = args.minlen; /* * The inode record will be aligned to full chunk size. We must * prevent sparse allocation from AG boundaries that result in * invalid inode records, such as records that start at agbno 0 * or extend beyond the AG. * * Set min agbno to the first aligned, non-zero agbno and max to * the last aligned agbno that is at least one full chunk from * the end of the AG. */ args.min_agbno = args.mp->m_sb.sb_inoalignmt; args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, args.mp->m_sb.sb_inoalignmt) - igeo->ialloc_blks; error = xfs_alloc_vextent_near_bno(&args, XFS_AGB_TO_FSB(args.mp, pag->pag_agno, be32_to_cpu(agi->agi_root))); if (error) return error; newlen = XFS_AGB_TO_AGINO(args.mp, args.len); ASSERT(newlen <= XFS_INODES_PER_CHUNK); allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; } if (args.fsbno == NULLFSBLOCK) return -EAGAIN; ASSERT(args.len == args.minlen); /* * Stamp and write the inode buffers. * * Seed the new inode cluster with a random generation number. This * prevents short-term reuse of generation numbers if a chunk is * freed and then immediately reallocated. We use random numbers * rather than a linear progression to prevent the next generation * number from being easily guessable. */ error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno, args.agbno, args.len, get_random_u32()); if (error) return error; /* * Convert the results. */ newino = XFS_AGB_TO_AGINO(args.mp, args.agbno); if (xfs_inobt_issparse(~allocmask)) { /* * We've allocated a sparse chunk. Align the startino and mask. */ xfs_align_sparse_ino(args.mp, &newino, &allocmask); rec.ir_startino = newino; rec.ir_holemask = ~allocmask; rec.ir_count = newlen; rec.ir_freecount = newlen; rec.ir_free = XFS_INOBT_ALL_FREE; /* * Insert the sparse record into the inobt and allow for a merge * if necessary. If a merge does occur, rec is updated to the * merged record. */ error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec); if (error == -EFSCORRUPTED) { xfs_alert(args.mp, "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", XFS_AGINO_TO_INO(args.mp, pag->pag_agno, rec.ir_startino), rec.ir_holemask, rec.ir_count); xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); } if (error) return error; /* * We can't merge the part we've just allocated as for the inobt * due to finobt semantics. The original record may or may not * exist independent of whether physical inodes exist in this * sparse chunk. * * We must update the finobt record based on the inobt record. * rec contains the fully merged and up to date inobt record * from the previous call. Set merge false to replace any * existing record with this one. */ if (xfs_has_finobt(args.mp)) { error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec); if (error) return error; } } else { /* full chunk - insert new records to both btrees */ error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false); if (error) return error; if (xfs_has_finobt(args.mp)) { error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, true); if (error) return error; } } /* * Update AGI counts and newino. */ be32_add_cpu(&agi->agi_count, newlen); be32_add_cpu(&agi->agi_freecount, newlen); pag->pagi_freecount += newlen; pag->pagi_count += newlen; agi->agi_newino = cpu_to_be32(newino); /* * Log allocation group header fields */ xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); /* * Modify/log superblock values for inode count and inode free count. */ xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); return 0; } /* * Try to retrieve the next record to the left/right from the current one. */ STATIC int xfs_ialloc_next_rec( struct xfs_btree_cur *cur, xfs_inobt_rec_incore_t *rec, int *done, int left) { int error; int i; if (left) error = xfs_btree_decrement(cur, 0, &i); else error = xfs_btree_increment(cur, 0, &i); if (error) return error; *done = !i; if (i) { error = xfs_inobt_get_rec(cur, rec, &i); if (error) return error; if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { xfs_btree_mark_sick(cur); return -EFSCORRUPTED; } } return 0; } STATIC int xfs_ialloc_get_rec( struct xfs_btree_cur *cur, xfs_agino_t agino, xfs_inobt_rec_incore_t *rec, int *done) { int error; int i; error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); if (error) return error; *done = !i; if (i) { error = xfs_inobt_get_rec(cur, rec, &i); if (error) return error; if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { xfs_btree_mark_sick(cur); return -EFSCORRUPTED; } } return 0; } /* * Return the offset of the first free inode in the record. If the inode chunk * is sparsely allocated, we convert the record holemask to inode granularity * and mask off the unallocated regions from the inode free mask. */ STATIC int xfs_inobt_first_free_inode( struct xfs_inobt_rec_incore *rec) { xfs_inofree_t realfree; /* if there are no holes, return the first available offset */ if (!xfs_inobt_issparse(rec->ir_holemask)) return xfs_lowbit64(rec->ir_free); realfree = xfs_inobt_irec_to_allocmask(rec); realfree &= rec->ir_free; return xfs_lowbit64(realfree); } /* * Allocate an inode using the inobt-only algorithm. */ STATIC int xfs_dialloc_ag_inobt( struct xfs_perag *pag, struct xfs_trans *tp, struct xfs_buf *agbp, xfs_ino_t parent, xfs_ino_t *inop) { struct xfs_mount *mp = tp->t_mountp; struct xfs_agi *agi = agbp->b_addr; xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); struct xfs_btree_cur *cur, *tcur; struct xfs_inobt_rec_incore rec, trec; xfs_ino_t ino; int error; int offset; int i, j; int searchdistance = 10; ASSERT(xfs_perag_initialised_agi(pag)); ASSERT(xfs_perag_allows_inodes(pag)); ASSERT(pag->pagi_freecount > 0); restart_pagno: cur = xfs_inobt_init_cursor(pag, tp, agbp); /* * If pagino is 0 (this is the root inode allocation) use newino. * This must work because we've just allocated some. */ if (!pagino) pagino = be32_to_cpu(agi->agi_newino); error = xfs_check_agi_freecount(cur); if (error) goto error0; /* * If in the same AG as the parent, try to get near the parent. */ if (pagno == pag->pag_agno) { int doneleft; /* done, to the left */ int doneright; /* done, to the right */ error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); if (error) goto error0; if (XFS_IS_CORRUPT(mp, i != 1)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto error0; } error = xfs_inobt_get_rec(cur, &rec, &j); if (error) goto error0; if (XFS_IS_CORRUPT(mp, j != 1)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto error0; } if (rec.ir_freecount > 0) { /* * Found a free inode in the same chunk * as the parent, done. */ goto alloc_inode; } /* * In the same AG as parent, but parent's chunk is full. */ /* duplicate the cursor, search left & right simultaneously */ error = xfs_btree_dup_cursor(cur, &tcur); if (error) goto error0; /* * Skip to last blocks looked up if same parent inode. */ if (pagino != NULLAGINO && pag->pagl_pagino == pagino && pag->pagl_leftrec != NULLAGINO && pag->pagl_rightrec != NULLAGINO) { error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, &trec, &doneleft); if (error) goto error1; error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, &rec, &doneright); if (error) goto error1; } else { /* search left with tcur, back up 1 record */ error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); if (error) goto error1; /* search right with cur, go forward 1 record. */ error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); if (error) goto error1; } /* * Loop until we find an inode chunk with a free inode. */ while (--searchdistance > 0 && (!doneleft || !doneright)) { int useleft; /* using left inode chunk this time */ /* figure out the closer block if both are valid. */ if (!doneleft && !doneright) { useleft = pagino - (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < rec.ir_startino - pagino; } else { useleft = !doneleft; } /* free inodes to the left? */ if (useleft && trec.ir_freecount) { xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); cur = tcur; pag->pagl_leftrec = trec.ir_startino; pag->pagl_rightrec = rec.ir_startino; pag->pagl_pagino = pagino; rec = trec; goto alloc_inode; } /* free inodes to the right? */ if (!useleft && rec.ir_freecount) { xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); pag->pagl_leftrec = trec.ir_startino; pag->pagl_rightrec = rec.ir_startino; pag->pagl_pagino = pagino; goto alloc_inode; } /* get next record to check */ if (useleft) { error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); } else { error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); } if (error) goto error1; } if (searchdistance <= 0) { /* * Not in range - save last search * location and allocate a new inode */ xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); pag->pagl_leftrec = trec.ir_startino; pag->pagl_rightrec = rec.ir_startino; pag->pagl_pagino = pagino; } else { /* * We've reached the end of the btree. because * we are only searching a small chunk of the * btree each search, there is obviously free * inodes closer to the parent inode than we * are now. restart the search again. */ pag->pagl_pagino = NULLAGINO; pag->pagl_leftrec = NULLAGINO; pag->pagl_rightrec = NULLAGINO; xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); goto restart_pagno; } } /* * In a different AG from the parent. * See if the most recently allocated block has any free. */ if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), XFS_LOOKUP_EQ, &i); if (error) goto error0; if (i == 1) { error = xfs_inobt_get_rec(cur, &rec, &j); if (error) goto error0; if (j == 1 && rec.ir_freecount > 0) { /* * The last chunk allocated in the group * still has a free inode. */ goto alloc_inode; } } } /* * None left in the last group, search the whole AG */ error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); if (error) goto error0; if (XFS_IS_CORRUPT(mp, i != 1)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto error0; } for (;;) { error = xfs_inobt_get_rec(cur, &rec, &i); if (error) goto error0; if (XFS_IS_CORRUPT(mp, i != 1)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto error0; } if (rec.ir_freecount > 0) break; error = xfs_btree_increment(cur, 0, &i); if (error) goto error0; if (XFS_IS_CORRUPT(mp, i != 1)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto error0; } } alloc_inode: offset = xfs_inobt_first_free_inode(&rec); ASSERT(offset >= 0); ASSERT(offset < XFS_INODES_PER_CHUNK); ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % XFS_INODES_PER_CHUNK) == 0); ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); rec.ir_free &= ~XFS_INOBT_MASK(offset); rec.ir_freecount--; error = xfs_inobt_update(cur, &rec); if (error) goto error0; be32_add_cpu(&agi->agi_freecount, -1); xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); pag->pagi_freecount--; error = xfs_check_agi_freecount(cur); if (error) goto error0; xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); *inop = ino; return 0; error1: xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); error0: xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } /* * Use the free inode btree to allocate an inode based on distance from the * parent. Note that the provided cursor may be deleted and replaced. */ STATIC int xfs_dialloc_ag_finobt_near( xfs_agino_t pagino, struct xfs_btree_cur **ocur, struct xfs_inobt_rec_incore *rec) { struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ struct xfs_btree_cur *rcur; /* right search cursor */ struct xfs_inobt_rec_incore rrec; int error; int i, j; error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); if (error) return error; if (i == 1) { error = xfs_inobt_get_rec(lcur, rec, &i); if (error) return error; if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) { xfs_btree_mark_sick(lcur); return -EFSCORRUPTED; } /* * See if we've landed in the parent inode record. The finobt * only tracks chunks with at least one free inode, so record * existence is enough. */ if (pagino >= rec->ir_startino && pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) return 0; } error = xfs_btree_dup_cursor(lcur, &rcur); if (error) return error; error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); if (error) goto error_rcur; if (j == 1) { error = xfs_inobt_get_rec(rcur, &rrec, &j); if (error) goto error_rcur; if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) { xfs_btree_mark_sick(lcur); error = -EFSCORRUPTED; goto error_rcur; } } if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) { xfs_btree_mark_sick(lcur); error = -EFSCORRUPTED; goto error_rcur; } if (i == 1 && j == 1) { /* * Both the left and right records are valid. Choose the closer * inode chunk to the target. */ if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > (rrec.ir_startino - pagino)) { *rec = rrec; xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); *ocur = rcur; } else { xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); } } else if (j == 1) { /* only the right record is valid */ *rec = rrec; xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); *ocur = rcur; } else if (i == 1) { /* only the left record is valid */ xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); } return 0; error_rcur: xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); return error; } /* * Use the free inode btree to find a free inode based on a newino hint. If * the hint is NULL, find the first free inode in the AG. */ STATIC int xfs_dialloc_ag_finobt_newino( struct xfs_agi *agi, struct xfs_btree_cur *cur, struct xfs_inobt_rec_incore *rec) { int error; int i; if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), XFS_LOOKUP_EQ, &i); if (error) return error; if (i == 1) { error = xfs_inobt_get_rec(cur, rec, &i); if (error) return error; if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { xfs_btree_mark_sick(cur); return -EFSCORRUPTED; } return 0; } } /* * Find the first inode available in the AG. */ error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); if (error) return error; if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { xfs_btree_mark_sick(cur); return -EFSCORRUPTED; } error = xfs_inobt_get_rec(cur, rec, &i); if (error) return error; if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { xfs_btree_mark_sick(cur); return -EFSCORRUPTED; } return 0; } /* * Update the inobt based on a modification made to the finobt. Also ensure that * the records from both trees are equivalent post-modification. */ STATIC int xfs_dialloc_ag_update_inobt( struct xfs_btree_cur *cur, /* inobt cursor */ struct xfs_inobt_rec_incore *frec, /* finobt record */ int offset) /* inode offset */ { struct xfs_inobt_rec_incore rec; int error; int i; error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); if (error) return error; if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { xfs_btree_mark_sick(cur); return -EFSCORRUPTED; } error = xfs_inobt_get_rec(cur, &rec, &i); if (error) return error; if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { xfs_btree_mark_sick(cur); return -EFSCORRUPTED; } ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % XFS_INODES_PER_CHUNK) == 0); rec.ir_free &= ~XFS_INOBT_MASK(offset); rec.ir_freecount--; if (XFS_IS_CORRUPT(cur->bc_mp, rec.ir_free != frec->ir_free || rec.ir_freecount != frec->ir_freecount)) { xfs_btree_mark_sick(cur); return -EFSCORRUPTED; } return xfs_inobt_update(cur, &rec); } /* * Allocate an inode using the free inode btree, if available. Otherwise, fall * back to the inobt search algorithm. * * The caller selected an AG for us, and made sure that free inodes are * available. */ static int xfs_dialloc_ag( struct xfs_perag *pag, struct xfs_trans *tp, struct xfs_buf *agbp, xfs_ino_t parent, xfs_ino_t *inop) { struct xfs_mount *mp = tp->t_mountp; struct xfs_agi *agi = agbp->b_addr; xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); struct xfs_btree_cur *cur; /* finobt cursor */ struct xfs_btree_cur *icur; /* inobt cursor */ struct xfs_inobt_rec_incore rec; xfs_ino_t ino; int error; int offset; int i; if (!xfs_has_finobt(mp)) return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop); /* * If pagino is 0 (this is the root inode allocation) use newino. * This must work because we've just allocated some. */ if (!pagino) pagino = be32_to_cpu(agi->agi_newino); cur = xfs_finobt_init_cursor(pag, tp, agbp); error = xfs_check_agi_freecount(cur); if (error) goto error_cur; /* * The search algorithm depends on whether we're in the same AG as the * parent. If so, find the closest available inode to the parent. If * not, consider the agi hint or find the first free inode in the AG. */ if (pag->pag_agno == pagno) error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); else error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); if (error) goto error_cur; offset = xfs_inobt_first_free_inode(&rec); ASSERT(offset >= 0); ASSERT(offset < XFS_INODES_PER_CHUNK); ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % XFS_INODES_PER_CHUNK) == 0); ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); /* * Modify or remove the finobt record. */ rec.ir_free &= ~XFS_INOBT_MASK(offset); rec.ir_freecount--; if (rec.ir_freecount) error = xfs_inobt_update(cur, &rec); else error = xfs_btree_delete(cur, &i); if (error) goto error_cur; /* * The finobt has now been updated appropriately. We haven't updated the * agi and superblock yet, so we can create an inobt cursor and validate * the original freecount. If all is well, make the equivalent update to * the inobt using the finobt record and offset information. */ icur = xfs_inobt_init_cursor(pag, tp, agbp); error = xfs_check_agi_freecount(icur); if (error) goto error_icur; error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); if (error) goto error_icur; /* * Both trees have now been updated. We must update the perag and * superblock before we can check the freecount for each btree. */ be32_add_cpu(&agi->agi_freecount, -1); xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); pag->pagi_freecount--; xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); error = xfs_check_agi_freecount(icur); if (error) goto error_icur; error = xfs_check_agi_freecount(cur); if (error) goto error_icur; xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); *inop = ino; return 0; error_icur: xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); error_cur: xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } static int xfs_dialloc_roll( struct xfs_trans **tpp, struct xfs_buf *agibp) { struct xfs_trans *tp = *tpp; struct xfs_dquot_acct *dqinfo; int error; /* * Hold to on to the agibp across the commit so no other allocation can * come in and take the free inodes we just allocated for our caller. */ xfs_trans_bhold(tp, agibp); /* * We want the quota changes to be associated with the next transaction, * NOT this one. So, detach the dqinfo from this and attach it to the * next transaction. */ dqinfo = tp->t_dqinfo; tp->t_dqinfo = NULL; error = xfs_trans_roll(&tp); /* Re-attach the quota info that we detached from prev trx. */ tp->t_dqinfo = dqinfo; /* * Join the buffer even on commit error so that the buffer is released * when the caller cancels the transaction and doesn't have to handle * this error case specially. */ xfs_trans_bjoin(tp, agibp); *tpp = tp; return error; } static bool xfs_dialloc_good_ag( struct xfs_perag *pag, struct xfs_trans *tp, umode_t mode, int flags, bool ok_alloc) { struct xfs_mount *mp = tp->t_mountp; xfs_extlen_t ineed; xfs_extlen_t longest = 0; int needspace; int error; if (!pag) return false; if (!xfs_perag_allows_inodes(pag)) return false; if (!xfs_perag_initialised_agi(pag)) { error = xfs_ialloc_read_agi(pag, tp, NULL); if (error) return false; } if (pag->pagi_freecount) return true; if (!ok_alloc) return false; if (!xfs_perag_initialised_agf(pag)) { error = xfs_alloc_read_agf(pag, tp, flags, NULL); if (error) return false; } /* * Check that there is enough free space for the file plus a chunk of * inodes if we need to allocate some. If this is the first pass across * the AGs, take into account the potential space needed for alignment * of inode chunks when checking the longest contiguous free space in * the AG - this prevents us from getting ENOSPC because we have free * space larger than ialloc_blks but alignment constraints prevent us * from using it. * * If we can't find an AG with space for full alignment slack to be * taken into account, we must be near ENOSPC in all AGs. Hence we * don't include alignment for the second pass and so if we fail * allocation due to alignment issues then it is most likely a real * ENOSPC condition. * * XXX(dgc): this calculation is now bogus thanks to the per-ag * reservations that xfs_alloc_fix_freelist() now does via * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will * be more than large enough for the check below to succeed, but * xfs_alloc_space_available() will fail because of the non-zero * metadata reservation and hence we won't actually be able to allocate * more inodes in this AG. We do soooo much unnecessary work near ENOSPC * because of this. */ ineed = M_IGEO(mp)->ialloc_min_blks; if (flags && ineed > 1) ineed += M_IGEO(mp)->cluster_align; longest = pag->pagf_longest; if (!longest) longest = pag->pagf_flcount > 0; needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); if (pag->pagf_freeblks < needspace + ineed || longest < ineed) return false; return true; } static int xfs_dialloc_try_ag( struct xfs_perag *pag, struct xfs_trans **tpp, xfs_ino_t parent, xfs_ino_t *new_ino, bool ok_alloc) { struct xfs_buf *agbp; xfs_ino_t ino; int error; /* * Then read in the AGI buffer and recheck with the AGI buffer * lock held. */ error = xfs_ialloc_read_agi(pag, *tpp, &agbp); if (error) return error; if (!pag->pagi_freecount) { if (!ok_alloc) { error = -EAGAIN; goto out_release; } error = xfs_ialloc_ag_alloc(pag, *tpp, agbp); if (error < 0) goto out_release; /* * We successfully allocated space for an inode cluster in this * AG. Roll the transaction so that we can allocate one of the * new inodes. */ ASSERT(pag->pagi_freecount > 0); error = xfs_dialloc_roll(tpp, agbp); if (error) goto out_release; } /* Allocate an inode in the found AG */ error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino); if (!error) *new_ino = ino; return error; out_release: xfs_trans_brelse(*tpp, agbp); return error; } /* * Allocate an on-disk inode. * * Mode is used to tell whether the new inode is a directory and hence where to * locate it. The on-disk inode that is allocated will be returned in @new_ino * on success, otherwise an error will be set to indicate the failure (e.g. * -ENOSPC). */ int xfs_dialloc( struct xfs_trans **tpp, xfs_ino_t parent, umode_t mode, xfs_ino_t *new_ino) { struct xfs_mount *mp = (*tpp)->t_mountp; xfs_agnumber_t agno; int error = 0; xfs_agnumber_t start_agno; struct xfs_perag *pag; struct xfs_ino_geometry *igeo = M_IGEO(mp); bool ok_alloc = true; bool low_space = false; int flags; xfs_ino_t ino = NULLFSINO; /* * Directories, symlinks, and regular files frequently allocate at least * one block, so factor that potential expansion when we examine whether * an AG has enough space for file creation. */ if (S_ISDIR(mode)) start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) % mp->m_maxagi; else { start_agno = XFS_INO_TO_AGNO(mp, parent); if (start_agno >= mp->m_maxagi) start_agno = 0; } /* * If we have already hit the ceiling of inode blocks then clear * ok_alloc so we scan all available agi structures for a free * inode. * * Read rough value of mp->m_icount by percpu_counter_read_positive, * which will sacrifice the preciseness but improve the performance. */ if (igeo->maxicount && percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos > igeo->maxicount) { ok_alloc = false; } /* * If we are near to ENOSPC, we want to prefer allocation from AGs that * have free inodes in them rather than use up free space allocating new * inode chunks. Hence we turn off allocation for the first non-blocking * pass through the AGs if we are near ENOSPC to consume free inodes * that we can immediately allocate, but then we allow allocation on the * second pass if we fail to find an AG with free inodes in it. */ if (percpu_counter_read_positive(&mp->m_fdblocks) < mp->m_low_space[XFS_LOWSP_1_PCNT]) { ok_alloc = false; low_space = true; } /* * Loop until we find an allocation group that either has free inodes * or in which we can allocate some inodes. Iterate through the * allocation groups upward, wrapping at the end. */ flags = XFS_ALLOC_FLAG_TRYLOCK; retry: for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) { if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) { error = xfs_dialloc_try_ag(pag, tpp, parent, &ino, ok_alloc); if (error != -EAGAIN) break; error = 0; } if (xfs_is_shutdown(mp)) { error = -EFSCORRUPTED; break; } } if (pag) xfs_perag_rele(pag); if (error) return error; if (ino == NULLFSINO) { if (flags) { flags = 0; if (low_space) ok_alloc = true; goto retry; } return -ENOSPC; } *new_ino = ino; return 0; } /* * Free the blocks of an inode chunk. We must consider that the inode chunk * might be sparse and only free the regions that are allocated as part of the * chunk. */ static int xfs_difree_inode_chunk( struct xfs_trans *tp, xfs_agnumber_t agno, struct xfs_inobt_rec_incore *rec) { struct xfs_mount *mp = tp->t_mountp; xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino); int startidx, endidx; int nextbit; xfs_agblock_t agbno; int contigblk; DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); if (!xfs_inobt_issparse(rec->ir_holemask)) { /* not sparse, calculate extent info directly */ return xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, sagbno), M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE, false); } /* holemask is only 16-bits (fits in an unsigned long) */ ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); holemask[0] = rec->ir_holemask; /* * Find contiguous ranges of zeroes (i.e., allocated regions) in the * holemask and convert the start/end index of each range to an extent. * We start with the start and end index both pointing at the first 0 in * the mask. */ startidx = endidx = find_first_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS); nextbit = startidx + 1; while (startidx < XFS_INOBT_HOLEMASK_BITS) { int error; nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, nextbit); /* * If the next zero bit is contiguous, update the end index of * the current range and continue. */ if (nextbit != XFS_INOBT_HOLEMASK_BITS && nextbit == endidx + 1) { endidx = nextbit; goto next; } /* * nextbit is not contiguous with the current end index. Convert * the current start/end to an extent and add it to the free * list. */ agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / mp->m_sb.sb_inopblock; contigblk = ((endidx - startidx + 1) * XFS_INODES_PER_HOLEMASK_BIT) / mp->m_sb.sb_inopblock; ASSERT(agbno % mp->m_sb.sb_spino_align == 0); ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); error = xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, agbno), contigblk, &XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE, false); if (error) return error; /* reset range to current bit and carry on... */ startidx = endidx = nextbit; next: nextbit++; } return 0; } STATIC int xfs_difree_inobt( struct xfs_perag *pag, struct xfs_trans *tp, struct xfs_buf *agbp, xfs_agino_t agino, struct xfs_icluster *xic, struct xfs_inobt_rec_incore *orec) { struct xfs_mount *mp = pag->pag_mount; struct xfs_agi *agi = agbp->b_addr; struct xfs_btree_cur *cur; struct xfs_inobt_rec_incore rec; int ilen; int error; int i; int off; ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); /* * Initialize the cursor. */ cur = xfs_inobt_init_cursor(pag, tp, agbp); error = xfs_check_agi_freecount(cur); if (error) goto error0; /* * Look for the entry describing this inode. */ if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", __func__, error); goto error0; } if (XFS_IS_CORRUPT(mp, i != 1)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto error0; } error = xfs_inobt_get_rec(cur, &rec, &i); if (error) { xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", __func__, error); goto error0; } if (XFS_IS_CORRUPT(mp, i != 1)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto error0; } /* * Get the offset in the inode chunk. */ off = agino - rec.ir_startino; ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); /* * Mark the inode free & increment the count. */ rec.ir_free |= XFS_INOBT_MASK(off); rec.ir_freecount++; /* * When an inode chunk is free, it becomes eligible for removal. Don't * remove the chunk if the block size is large enough for multiple inode * chunks (that might not be free). */ if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { xic->deleted = true; xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino); xic->alloc = xfs_inobt_irec_to_allocmask(&rec); /* * Remove the inode cluster from the AGI B+Tree, adjust the * AGI and Superblock inode counts, and mark the disk space * to be freed when the transaction is committed. */ ilen = rec.ir_freecount; be32_add_cpu(&agi->agi_count, -ilen); be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); pag->pagi_freecount -= ilen - 1; pag->pagi_count -= ilen; xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); if ((error = xfs_btree_delete(cur, &i))) { xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", __func__, error); goto error0; } error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec); if (error) goto error0; } else { xic->deleted = false; error = xfs_inobt_update(cur, &rec); if (error) { xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", __func__, error); goto error0; } /* * Change the inode free counts and log the ag/sb changes. */ be32_add_cpu(&agi->agi_freecount, 1); xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); pag->pagi_freecount++; xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); } error = xfs_check_agi_freecount(cur); if (error) goto error0; *orec = rec; xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); return 0; error0: xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } /* * Free an inode in the free inode btree. */ STATIC int xfs_difree_finobt( struct xfs_perag *pag, struct xfs_trans *tp, struct xfs_buf *agbp, xfs_agino_t agino, struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ { struct xfs_mount *mp = pag->pag_mount; struct xfs_btree_cur *cur; struct xfs_inobt_rec_incore rec; int offset = agino - ibtrec->ir_startino; int error; int i; cur = xfs_finobt_init_cursor(pag, tp, agbp); error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); if (error) goto error; if (i == 0) { /* * If the record does not exist in the finobt, we must have just * freed an inode in a previously fully allocated chunk. If not, * something is out of sync. */ if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto error; } error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, ibtrec->ir_count, ibtrec->ir_freecount, ibtrec->ir_free, &i); if (error) goto error; ASSERT(i == 1); goto out; } /* * Read and update the existing record. We could just copy the ibtrec * across here, but that would defeat the purpose of having redundant * metadata. By making the modifications independently, we can catch * corruptions that we wouldn't see if we just copied from one record * to another. */ error = xfs_inobt_get_rec(cur, &rec, &i); if (error) goto error; if (XFS_IS_CORRUPT(mp, i != 1)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto error; } rec.ir_free |= XFS_INOBT_MASK(offset); rec.ir_freecount++; if (XFS_IS_CORRUPT(mp, rec.ir_free != ibtrec->ir_free || rec.ir_freecount != ibtrec->ir_freecount)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto error; } /* * The content of inobt records should always match between the inobt * and finobt. The lifecycle of records in the finobt is different from * the inobt in that the finobt only tracks records with at least one * free inode. Hence, if all of the inodes are free and we aren't * keeping inode chunks permanently on disk, remove the record. * Otherwise, update the record with the new information. * * Note that we currently can't free chunks when the block size is large * enough for multiple chunks. Leave the finobt record to remain in sync * with the inobt. */ if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { error = xfs_btree_delete(cur, &i); if (error) goto error; ASSERT(i == 1); } else { error = xfs_inobt_update(cur, &rec); if (error) goto error; } out: error = xfs_check_agi_freecount(cur); if (error) goto error; xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); return 0; error: xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } /* * Free disk inode. Carefully avoids touching the incore inode, all * manipulations incore are the caller's responsibility. * The on-disk inode is not changed by this operation, only the * btree (free inode mask) is changed. */ int xfs_difree( struct xfs_trans *tp, struct xfs_perag *pag, xfs_ino_t inode, struct xfs_icluster *xic) { /* REFERENCED */ xfs_agblock_t agbno; /* block number containing inode */ struct xfs_buf *agbp; /* buffer for allocation group header */ xfs_agino_t agino; /* allocation group inode number */ int error; /* error return value */ struct xfs_mount *mp = tp->t_mountp; struct xfs_inobt_rec_incore rec;/* btree record */ /* * Break up inode number into its components. */ if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) { xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).", __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno); ASSERT(0); return -EINVAL; } agino = XFS_INO_TO_AGINO(mp, inode); if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", __func__, (unsigned long long)inode, (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); ASSERT(0); return -EINVAL; } agbno = XFS_AGINO_TO_AGBNO(mp, agino); if (agbno >= mp->m_sb.sb_agblocks) { xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", __func__, agbno, mp->m_sb.sb_agblocks); ASSERT(0); return -EINVAL; } /* * Get the allocation group header. */ error = xfs_ialloc_read_agi(pag, tp, &agbp); if (error) { xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", __func__, error); return error; } /* * Fix up the inode allocation btree. */ error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec); if (error) goto error0; /* * Fix up the free inode btree. */ if (xfs_has_finobt(mp)) { error = xfs_difree_finobt(pag, tp, agbp, agino, &rec); if (error) goto error0; } return 0; error0: return error; } STATIC int xfs_imap_lookup( struct xfs_perag *pag, struct xfs_trans *tp, xfs_agino_t agino, xfs_agblock_t agbno, xfs_agblock_t *chunk_agbno, xfs_agblock_t *offset_agbno, int flags) { struct xfs_mount *mp = pag->pag_mount; struct xfs_inobt_rec_incore rec; struct xfs_btree_cur *cur; struct xfs_buf *agbp; int error; int i; error = xfs_ialloc_read_agi(pag, tp, &agbp); if (error) { xfs_alert(mp, "%s: xfs_ialloc_read_agi() returned error %d, agno %d", __func__, error, pag->pag_agno); return error; } /* * Lookup the inode record for the given agino. If the record cannot be * found, then it's an invalid inode number and we should abort. Once * we have a record, we need to ensure it contains the inode number * we are looking up. */ cur = xfs_inobt_init_cursor(pag, tp, agbp); error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); if (!error) { if (i) error = xfs_inobt_get_rec(cur, &rec, &i); if (!error && i == 0) error = -EINVAL; } xfs_trans_brelse(tp, agbp); xfs_btree_del_cursor(cur, error); if (error) return error; /* check that the returned record contains the required inode */ if (rec.ir_startino > agino || rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino) return -EINVAL; /* for untrusted inodes check it is allocated first */ if ((flags & XFS_IGET_UNTRUSTED) && (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) return -EINVAL; *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); *offset_agbno = agbno - *chunk_agbno; return 0; } /* * Return the location of the inode in imap, for mapping it into a buffer. */ int xfs_imap( struct xfs_perag *pag, struct xfs_trans *tp, xfs_ino_t ino, /* inode to locate */ struct xfs_imap *imap, /* location map structure */ uint flags) /* flags for inode btree lookup */ { struct xfs_mount *mp = pag->pag_mount; xfs_agblock_t agbno; /* block number of inode in the alloc group */ xfs_agino_t agino; /* inode number within alloc group */ xfs_agblock_t chunk_agbno; /* first block in inode chunk */ xfs_agblock_t cluster_agbno; /* first block in inode cluster */ int error; /* error code */ int offset; /* index of inode in its buffer */ xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ ASSERT(ino != NULLFSINO); /* * Split up the inode number into its parts. */ agino = XFS_INO_TO_AGINO(mp, ino); agbno = XFS_AGINO_TO_AGBNO(mp, agino); if (agbno >= mp->m_sb.sb_agblocks || ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { error = -EINVAL; #ifdef DEBUG /* * Don't output diagnostic information for untrusted inodes * as they can be invalid without implying corruption. */ if (flags & XFS_IGET_UNTRUSTED) return error; if (agbno >= mp->m_sb.sb_agblocks) { xfs_alert(mp, "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", __func__, (unsigned long long)agbno, (unsigned long)mp->m_sb.sb_agblocks); } if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { xfs_alert(mp, "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", __func__, ino, XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); } xfs_stack_trace(); #endif /* DEBUG */ return error; } /* * For bulkstat and handle lookups, we have an untrusted inode number * that we have to verify is valid. We cannot do this just by reading * the inode buffer as it may have been unlinked and removed leaving * inodes in stale state on disk. Hence we have to do a btree lookup * in all cases where an untrusted inode number is passed. */ if (flags & XFS_IGET_UNTRUSTED) { error = xfs_imap_lookup(pag, tp, agino, agbno, &chunk_agbno, &offset_agbno, flags); if (error) return error; goto out_map; } /* * If the inode cluster size is the same as the blocksize or * smaller we get to the buffer by simple arithmetics. */ if (M_IGEO(mp)->blocks_per_cluster == 1) { offset = XFS_INO_TO_OFFSET(mp, ino); ASSERT(offset < mp->m_sb.sb_inopblock); imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno); imap->im_len = XFS_FSB_TO_BB(mp, 1); imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); return 0; } /* * If the inode chunks are aligned then use simple maths to * find the location. Otherwise we have to do a btree * lookup to find the location. */ if (M_IGEO(mp)->inoalign_mask) { offset_agbno = agbno & M_IGEO(mp)->inoalign_mask; chunk_agbno = agbno - offset_agbno; } else { error = xfs_imap_lookup(pag, tp, agino, agbno, &chunk_agbno, &offset_agbno, flags); if (error) return error; } out_map: ASSERT(agbno >= chunk_agbno); cluster_agbno = chunk_agbno + ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) * M_IGEO(mp)->blocks_per_cluster); offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + XFS_INO_TO_OFFSET(mp, ino); imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno); imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster); imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); /* * If the inode number maps to a block outside the bounds * of the file system then return NULL rather than calling * read_buf and panicing when we get an error from the * driver. */ if ((imap->im_blkno + imap->im_len) > XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { xfs_alert(mp, "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", __func__, (unsigned long long) imap->im_blkno, (unsigned long long) imap->im_len, XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); return -EINVAL; } return 0; } /* * Log specified fields for the ag hdr (inode section). The growth of the agi * structure over time requires that we interpret the buffer as two logical * regions delineated by the end of the unlinked list. This is due to the size * of the hash table and its location in the middle of the agi. * * For example, a request to log a field before agi_unlinked and a field after * agi_unlinked could cause us to log the entire hash table and use an excessive * amount of log space. To avoid this behavior, log the region up through * agi_unlinked in one call and the region after agi_unlinked through the end of * the structure in another. */ void xfs_ialloc_log_agi( struct xfs_trans *tp, struct xfs_buf *bp, uint32_t fields) { int first; /* first byte number */ int last; /* last byte number */ static const short offsets[] = { /* field starting offsets */ /* keep in sync with bit definitions */ offsetof(xfs_agi_t, agi_magicnum), offsetof(xfs_agi_t, agi_versionnum), offsetof(xfs_agi_t, agi_seqno), offsetof(xfs_agi_t, agi_length), offsetof(xfs_agi_t, agi_count), offsetof(xfs_agi_t, agi_root), offsetof(xfs_agi_t, agi_level), offsetof(xfs_agi_t, agi_freecount), offsetof(xfs_agi_t, agi_newino), offsetof(xfs_agi_t, agi_dirino), offsetof(xfs_agi_t, agi_unlinked), offsetof(xfs_agi_t, agi_free_root), offsetof(xfs_agi_t, agi_free_level), offsetof(xfs_agi_t, agi_iblocks), sizeof(xfs_agi_t) }; #ifdef DEBUG struct xfs_agi *agi = bp->b_addr; ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); #endif /* * Compute byte offsets for the first and last fields in the first * region and log the agi buffer. This only logs up through * agi_unlinked. */ if (fields & XFS_AGI_ALL_BITS_R1) { xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, &first, &last); xfs_trans_log_buf(tp, bp, first, last); } /* * Mask off the bits in the first region and calculate the first and * last field offsets for any bits in the second region. */ fields &= ~XFS_AGI_ALL_BITS_R1; if (fields) { xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, &first, &last); xfs_trans_log_buf(tp, bp, first, last); } } static xfs_failaddr_t xfs_agi_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_mount; struct xfs_agi *agi = bp->b_addr; xfs_failaddr_t fa; uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno); uint32_t agi_length = be32_to_cpu(agi->agi_length); int i; if (xfs_has_crc(mp)) { if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) return __this_address; if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn))) return __this_address; } /* * Validate the magic number of the agi block. */ if (!xfs_verify_magic(bp, agi->agi_magicnum)) return __this_address; if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) return __this_address; fa = xfs_validate_ag_length(bp, agi_seqno, agi_length); if (fa) return fa; if (be32_to_cpu(agi->agi_level) < 1 || be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels) return __this_address; if (xfs_has_finobt(mp) && (be32_to_cpu(agi->agi_free_level) < 1 || be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels)) return __this_address; for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO)) continue; if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i]))) return __this_address; } return NULL; } static void xfs_agi_read_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_mount; xfs_failaddr_t fa; if (xfs_has_crc(mp) && !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) xfs_verifier_error(bp, -EFSBADCRC, __this_address); else { fa = xfs_agi_verify(bp); if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI)) xfs_verifier_error(bp, -EFSCORRUPTED, fa); } } static void xfs_agi_write_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_mount; struct xfs_buf_log_item *bip = bp->b_log_item; struct xfs_agi *agi = bp->b_addr; xfs_failaddr_t fa; fa = xfs_agi_verify(bp); if (fa) { xfs_verifier_error(bp, -EFSCORRUPTED, fa); return; } if (!xfs_has_crc(mp)) return; if (bip) agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); } const struct xfs_buf_ops xfs_agi_buf_ops = { .name = "xfs_agi", .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) }, .verify_read = xfs_agi_read_verify, .verify_write = xfs_agi_write_verify, .verify_struct = xfs_agi_verify, }; /* * Read in the allocation group header (inode allocation section) */ int xfs_read_agi( struct xfs_perag *pag, struct xfs_trans *tp, struct xfs_buf **agibpp) { struct xfs_mount *mp = pag->pag_mount; int error; trace_xfs_read_agi(pag->pag_mount, pag->pag_agno); error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)), XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops); if (xfs_metadata_is_sick(error)) xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); if (error) return error; if (tp) xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF); xfs_buf_set_ref(*agibpp, XFS_AGI_REF); return 0; } /* * Read in the agi and initialise the per-ag data. If the caller supplies a * @agibpp, return the locked AGI buffer to them, otherwise release it. */ int xfs_ialloc_read_agi( struct xfs_perag *pag, struct xfs_trans *tp, struct xfs_buf **agibpp) { struct xfs_buf *agibp; struct xfs_agi *agi; int error; trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno); error = xfs_read_agi(pag, tp, &agibp); if (error) return error; agi = agibp->b_addr; if (!xfs_perag_initialised_agi(pag)) { pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); pag->pagi_count = be32_to_cpu(agi->agi_count); set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate); } /* * It's possible for these to be out of sync if * we are in the middle of a forced shutdown. */ ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || xfs_is_shutdown(pag->pag_mount)); if (agibpp) *agibpp = agibp; else xfs_trans_brelse(tp, agibp); return 0; } /* How many inodes are backed by inode clusters ondisk? */ STATIC int xfs_ialloc_count_ondisk( struct xfs_btree_cur *cur, xfs_agino_t low, xfs_agino_t high, unsigned int *allocated) { struct xfs_inobt_rec_incore irec; unsigned int ret = 0; int has_record; int error; error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record); if (error) return error; while (has_record) { unsigned int i, hole_idx; error = xfs_inobt_get_rec(cur, &irec, &has_record); if (error) return error; if (irec.ir_startino > high) break; for (i = 0; i < XFS_INODES_PER_CHUNK; i++) { if (irec.ir_startino + i < low) continue; if (irec.ir_startino + i > high) break; hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT; if (!(irec.ir_holemask & (1U << hole_idx))) ret++; } error = xfs_btree_increment(cur, 0, &has_record); if (error) return error; } *allocated = ret; return 0; } /* Is there an inode record covering a given extent? */ int xfs_ialloc_has_inodes_at_extent( struct xfs_btree_cur *cur, xfs_agblock_t bno, xfs_extlen_t len, enum xbtree_recpacking *outcome) { xfs_agino_t agino; xfs_agino_t last_agino; unsigned int allocated; int error; agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno); last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1; error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated); if (error) return error; if (allocated == 0) *outcome = XBTREE_RECPACKING_EMPTY; else if (allocated == last_agino - agino + 1) *outcome = XBTREE_RECPACKING_FULL; else *outcome = XBTREE_RECPACKING_SPARSE; return 0; } struct xfs_ialloc_count_inodes { xfs_agino_t count; xfs_agino_t freecount; }; /* Record inode counts across all inobt records. */ STATIC int xfs_ialloc_count_inodes_rec( struct xfs_btree_cur *cur, const union xfs_btree_rec *rec, void *priv) { struct xfs_inobt_rec_incore irec; struct xfs_ialloc_count_inodes *ci = priv; xfs_failaddr_t fa; xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec); fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec); if (fa) return xfs_inobt_complain_bad_rec(cur, fa, &irec); ci->count += irec.ir_count; ci->freecount += irec.ir_freecount; return 0; } /* Count allocated and free inodes under an inobt. */ int xfs_ialloc_count_inodes( struct xfs_btree_cur *cur, xfs_agino_t *count, xfs_agino_t *freecount) { struct xfs_ialloc_count_inodes ci = {0}; int error; ASSERT(xfs_btree_is_ino(cur->bc_ops)); error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci); if (error) return error; *count = ci.count; *freecount = ci.freecount; return 0; } /* * Initialize inode-related geometry information. * * Compute the inode btree min and max levels and set maxicount. * * Set the inode cluster size. This may still be overridden by the file * system block size if it is larger than the chosen cluster size. * * For v5 filesystems, scale the cluster size with the inode size to keep a * constant ratio of inode per cluster buffer, but only if mkfs has set the * inode alignment value appropriately for larger cluster sizes. * * Then compute the inode cluster alignment information. */ void xfs_ialloc_setup_geometry( struct xfs_mount *mp) { struct xfs_sb *sbp = &mp->m_sb; struct xfs_ino_geometry *igeo = M_IGEO(mp); uint64_t icount; uint inodes; igeo->new_diflags2 = 0; if (xfs_has_bigtime(mp)) igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME; if (xfs_has_large_extent_counts(mp)) igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64; /* Compute inode btree geometry. */ igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog; igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2; igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2; igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK, sbp->sb_inopblock); igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog; if (sbp->sb_spino_align) igeo->ialloc_min_blks = sbp->sb_spino_align; else igeo->ialloc_min_blks = igeo->ialloc_blks; /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */ inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr, inodes); ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk()); /* * Set the maximum inode count for this filesystem, being careful not * to use obviously garbage sb_inopblog/sb_inopblock values. Regular * users should never get here due to failing sb verification, but * certain users (xfs_db) need to be usable even with corrupt metadata. */ if (sbp->sb_imax_pct && igeo->ialloc_blks) { /* * Make sure the maximum inode count is a multiple * of the units we allocate inodes in. */ icount = sbp->sb_dblocks * sbp->sb_imax_pct; do_div(icount, 100); do_div(icount, igeo->ialloc_blks); igeo->maxicount = XFS_FSB_TO_INO(mp, icount * igeo->ialloc_blks); } else { igeo->maxicount = 0; } /* * Compute the desired size of an inode cluster buffer size, which * starts at 8K and (on v5 filesystems) scales up with larger inode * sizes. * * Preserve the desired inode cluster size because the sparse inodes * feature uses that desired size (not the actual size) to compute the * sparse inode alignment. The mount code validates this value, so we * cannot change the behavior. */ igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE; if (xfs_has_v3inodes(mp)) { int new_size = igeo->inode_cluster_size_raw; new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) igeo->inode_cluster_size_raw = new_size; } /* Calculate inode cluster ratios. */ if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize) igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw); else igeo->blocks_per_cluster = 1; igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster); igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster); /* Calculate inode cluster alignment. */ if (xfs_has_align(mp) && mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster) igeo->cluster_align = mp->m_sb.sb_inoalignmt; else igeo->cluster_align = 1; igeo->inoalign_mask = igeo->cluster_align - 1; igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align); /* * If we are using stripe alignment, check whether * the stripe unit is a multiple of the inode alignment */ if (mp->m_dalign && igeo->inoalign_mask && !(mp->m_dalign & igeo->inoalign_mask)) igeo->ialloc_align = mp->m_dalign; else igeo->ialloc_align = 0; } /* Compute the location of the root directory inode that is laid out by mkfs. */ xfs_ino_t xfs_ialloc_calc_rootino( struct xfs_mount *mp, int sunit) { struct xfs_ino_geometry *igeo = M_IGEO(mp); xfs_agblock_t first_bno; /* * Pre-calculate the geometry of AG 0. We know what it looks like * because libxfs knows how to create allocation groups now. * * first_bno is the first block in which mkfs could possibly have * allocated the root directory inode, once we factor in the metadata * that mkfs formats before it. Namely, the four AG headers... */ first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize); /* ...the two free space btree roots... */ first_bno += 2; /* ...the inode btree root... */ first_bno += 1; /* ...the initial AGFL... */ first_bno += xfs_alloc_min_freelist(mp, NULL); /* ...the free inode btree root... */ if (xfs_has_finobt(mp)) first_bno++; /* ...the reverse mapping btree root... */ if (xfs_has_rmapbt(mp)) first_bno++; /* ...the reference count btree... */ if (xfs_has_reflink(mp)) first_bno++; /* * ...and the log, if it is allocated in the first allocation group. * * This can happen with filesystems that only have a single * allocation group, or very odd geometries created by old mkfs * versions on very small filesystems. */ if (xfs_ag_contains_log(mp, 0)) first_bno += mp->m_sb.sb_logblocks; /* * Now round first_bno up to whatever allocation alignment is given * by the filesystem or was passed in. */ if (xfs_has_dalign(mp) && igeo->ialloc_align > 0) first_bno = roundup(first_bno, sunit); else if (xfs_has_align(mp) && mp->m_sb.sb_inoalignmt > 1) first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt); return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno)); } /* * Ensure there are not sparse inode clusters that cross the new EOAG. * * This is a no-op for non-spinode filesystems since clusters are always fully * allocated and checking the bnobt suffices. However, a spinode filesystem * could have a record where the upper inodes are free blocks. If those blocks * were removed from the filesystem, the inode record would extend beyond EOAG, * which will be flagged as corruption. */ int xfs_ialloc_check_shrink( struct xfs_perag *pag, struct xfs_trans *tp, struct xfs_buf *agibp, xfs_agblock_t new_length) { struct xfs_inobt_rec_incore rec; struct xfs_btree_cur *cur; xfs_agino_t agino; int has; int error; if (!xfs_has_sparseinodes(pag->pag_mount)) return 0; cur = xfs_inobt_init_cursor(pag, tp, agibp); /* Look up the inobt record that would correspond to the new EOFS. */ agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length); error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has); if (error || !has) goto out; error = xfs_inobt_get_rec(cur, &rec, &has); if (error) goto out; if (!has) { xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT); error = -EFSCORRUPTED; goto out; } /* If the record covers inodes that would be beyond EOFS, bail out. */ if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) { error = -ENOSPC; goto out; } out: xfs_btree_del_cursor(cur, error); return error; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1