Contributors: 39
Author Tokens Token Proportion Commits Commit Proportion
Will Deacon 78 17.93% 2 2.60%
Linus Torvalds 68 15.63% 9 11.69%
Kees Cook 39 8.97% 6 7.79%
Steven Rostedt 38 8.74% 7 9.09%
Ard Biesheuvel 38 8.74% 1 1.30%
Tiezhu Yang 16 3.68% 1 1.30%
Vasily Gorbik 14 3.22% 1 1.30%
Rusty Russell 13 2.99% 5 6.49%
Sami Tolvanen 10 2.30% 1 1.30%
Josh Poimboeuf 9 2.07% 4 5.19%
Bart Van Assche 9 2.07% 2 2.60%
Josh Triplett 8 1.84% 2 2.60%
Arnd Bergmann 8 1.84% 1 1.30%
Rasmus Villemoes 8 1.84% 2 2.60%
Guenter Roeck 7 1.61% 1 1.30%
Boqun Feng 7 1.61% 1 1.30%
Borislav Petkov 6 1.38% 1 1.30%
Emese Revfy 6 1.38% 1 1.30%
David Rientjes 6 1.38% 1 1.30%
David Woodhouse 6 1.38% 2 2.60%
Andrew Morton 5 1.15% 3 3.90%
Arjan van de Ven 4 0.92% 2 2.60%
Nick Desaulniers 4 0.92% 4 5.19%
Thomas Gleixner 4 0.92% 1 1.30%
Linus Torvalds (pre-git) 4 0.92% 2 2.60%
Joe Perches 3 0.69% 1 1.30%
Michael S. Tsirkin 2 0.46% 1 1.30%
Andi Kleen 2 0.46% 1 1.30%
Peter Zijlstra 2 0.46% 1 1.30%
Arvind Sankar 2 0.46% 1 1.30%
Paul E. McKenney 1 0.23% 1 1.30%
Thorsten Blum 1 0.23% 1 1.30%
Daniel Santos 1 0.23% 1 1.30%
Greg Kroah-Hartman 1 0.23% 1 1.30%
Nicholas Piggin 1 0.23% 1 1.30%
Marco Elver 1 0.23% 1 1.30%
Cesar Eduardo Barros 1 0.23% 1 1.30%
Uros Bizjak 1 0.23% 1 1.30%
Benjamin Peterson 1 0.23% 1 1.30%
Total 435 77


/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_COMPILER_H
#define __LINUX_COMPILER_H

#include <linux/compiler_types.h>

#ifndef __ASSEMBLY__

#ifdef __KERNEL__

/*
 * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
 * to disable branch tracing on a per file basis.
 */
void ftrace_likely_update(struct ftrace_likely_data *f, int val,
			  int expect, int is_constant);
#if defined(CONFIG_TRACE_BRANCH_PROFILING) \
    && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
#define likely_notrace(x)	__builtin_expect(!!(x), 1)
#define unlikely_notrace(x)	__builtin_expect(!!(x), 0)

#define __branch_check__(x, expect, is_constant) ({			\
			long ______r;					\
			static struct ftrace_likely_data		\
				__aligned(4)				\
				__section("_ftrace_annotated_branch")	\
				______f = {				\
				.data.func = __func__,			\
				.data.file = __FILE__,			\
				.data.line = __LINE__,			\
			};						\
			______r = __builtin_expect(!!(x), expect);	\
			ftrace_likely_update(&______f, ______r,		\
					     expect, is_constant);	\
			______r;					\
		})

/*
 * Using __builtin_constant_p(x) to ignore cases where the return
 * value is always the same.  This idea is taken from a similar patch
 * written by Daniel Walker.
 */
# ifndef likely
#  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x)))
# endif
# ifndef unlikely
#  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x)))
# endif

#ifdef CONFIG_PROFILE_ALL_BRANCHES
/*
 * "Define 'is'", Bill Clinton
 * "Define 'if'", Steven Rostedt
 */
#define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) )

#define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond))

#define __trace_if_value(cond) ({			\
	static struct ftrace_branch_data		\
		__aligned(4)				\
		__section("_ftrace_branch")		\
		__if_trace = {				\
			.func = __func__,		\
			.file = __FILE__,		\
			.line = __LINE__,		\
		};					\
	(cond) ?					\
		(__if_trace.miss_hit[1]++,1) :		\
		(__if_trace.miss_hit[0]++,0);		\
})

#endif /* CONFIG_PROFILE_ALL_BRANCHES */

#else
# define likely(x)	__builtin_expect(!!(x), 1)
# define unlikely(x)	__builtin_expect(!!(x), 0)
# define likely_notrace(x)	likely(x)
# define unlikely_notrace(x)	unlikely(x)
#endif

/* Optimization barrier */
#ifndef barrier
/* The "volatile" is due to gcc bugs */
# define barrier() __asm__ __volatile__("": : :"memory")
#endif

#ifndef barrier_data
/*
 * This version is i.e. to prevent dead stores elimination on @ptr
 * where gcc and llvm may behave differently when otherwise using
 * normal barrier(): while gcc behavior gets along with a normal
 * barrier(), llvm needs an explicit input variable to be assumed
 * clobbered. The issue is as follows: while the inline asm might
 * access any memory it wants, the compiler could have fit all of
 * @ptr into memory registers instead, and since @ptr never escaped
 * from that, it proved that the inline asm wasn't touching any of
 * it. This version works well with both compilers, i.e. we're telling
 * the compiler that the inline asm absolutely may see the contents
 * of @ptr. See also: https://llvm.org/bugs/show_bug.cgi?id=15495
 */
# define barrier_data(ptr) __asm__ __volatile__("": :"r"(ptr) :"memory")
#endif

/* workaround for GCC PR82365 if needed */
#ifndef barrier_before_unreachable
# define barrier_before_unreachable() do { } while (0)
#endif

/* Unreachable code */
#ifdef CONFIG_OBJTOOL
/*
 * These macros help objtool understand GCC code flow for unreachable code.
 * The __COUNTER__ based labels are a hack to make each instance of the macros
 * unique, to convince GCC not to merge duplicate inline asm statements.
 */
#define __stringify_label(n) #n

#define __annotate_reachable(c) ({					\
	asm volatile(__stringify_label(c) ":\n\t"			\
			".pushsection .discard.reachable\n\t"		\
			".long " __stringify_label(c) "b - .\n\t"	\
			".popsection\n\t");				\
})
#define annotate_reachable() __annotate_reachable(__COUNTER__)

#define __annotate_unreachable(c) ({					\
	asm volatile(__stringify_label(c) ":\n\t"			\
		     ".pushsection .discard.unreachable\n\t"		\
		     ".long " __stringify_label(c) "b - .\n\t"		\
		     ".popsection\n\t" : : "i" (c));			\
})
#define annotate_unreachable() __annotate_unreachable(__COUNTER__)

/* Annotate a C jump table to allow objtool to follow the code flow */
#define __annotate_jump_table __section(".rodata..c_jump_table")

#else /* !CONFIG_OBJTOOL */
#define annotate_reachable()
#define annotate_unreachable()
#define __annotate_jump_table
#endif /* CONFIG_OBJTOOL */

#ifndef unreachable
# define unreachable() do {		\
	annotate_unreachable();		\
	__builtin_unreachable();	\
} while (0)
#endif

/*
 * KENTRY - kernel entry point
 * This can be used to annotate symbols (functions or data) that are used
 * without their linker symbol being referenced explicitly. For example,
 * interrupt vector handlers, or functions in the kernel image that are found
 * programatically.
 *
 * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
 * are handled in their own way (with KEEP() in linker scripts).
 *
 * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
 * linker script. For example an architecture could KEEP() its entire
 * boot/exception vector code rather than annotate each function and data.
 */
#ifndef KENTRY
# define KENTRY(sym)						\
	extern typeof(sym) sym;					\
	static const unsigned long __kentry_##sym		\
	__used							\
	__attribute__((__section__("___kentry+" #sym)))		\
	= (unsigned long)&sym;
#endif

#ifndef RELOC_HIDE
# define RELOC_HIDE(ptr, off)					\
  ({ unsigned long __ptr;					\
     __ptr = (unsigned long) (ptr);				\
    (typeof(ptr)) (__ptr + (off)); })
#endif

#define absolute_pointer(val)	RELOC_HIDE((void *)(val), 0)

#ifndef OPTIMIZER_HIDE_VAR
/* Make the optimizer believe the variable can be manipulated arbitrarily. */
#define OPTIMIZER_HIDE_VAR(var)						\
	__asm__ ("" : "=r" (var) : "0" (var))
#endif

#define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__)

/**
 * data_race - mark an expression as containing intentional data races
 *
 * This data_race() macro is useful for situations in which data races
 * should be forgiven.  One example is diagnostic code that accesses
 * shared variables but is not a part of the core synchronization design.
 *
 * This macro *does not* affect normal code generation, but is a hint
 * to tooling that data races here are to be ignored.
 */
#define data_race(expr)							\
({									\
	__unqual_scalar_typeof(({ expr; })) __v = ({			\
		__kcsan_disable_current();				\
		expr;							\
	});								\
	__kcsan_enable_current();					\
	__v;								\
})

#endif /* __KERNEL__ */

/*
 * Force the compiler to emit 'sym' as a symbol, so that we can reference
 * it from inline assembler. Necessary in case 'sym' could be inlined
 * otherwise, or eliminated entirely due to lack of references that are
 * visible to the compiler.
 */
#define ___ADDRESSABLE(sym, __attrs) \
	static void * __used __attrs \
	__UNIQUE_ID(__PASTE(__addressable_,sym)) = (void *)(uintptr_t)&sym;
#define __ADDRESSABLE(sym) \
	___ADDRESSABLE(sym, __section(".discard.addressable"))

/**
 * offset_to_ptr - convert a relative memory offset to an absolute pointer
 * @off:	the address of the 32-bit offset value
 */
static inline void *offset_to_ptr(const int *off)
{
	return (void *)((unsigned long)off + *off);
}

#endif /* __ASSEMBLY__ */

/* &a[0] degrades to a pointer: a different type from an array */
#define __must_be_array(a)	BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0]))

/*
 * This returns a constant expression while determining if an argument is
 * a constant expression, most importantly without evaluating the argument.
 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
 *
 * Details:
 * - sizeof() return an integer constant expression, and does not evaluate
 *   the value of its operand; it only examines the type of its operand.
 * - The results of comparing two integer constant expressions is also
 *   an integer constant expression.
 * - The first literal "8" isn't important. It could be any literal value.
 * - The second literal "8" is to avoid warnings about unaligned pointers;
 *   this could otherwise just be "1".
 * - (long)(x) is used to avoid warnings about 64-bit types on 32-bit
 *   architectures.
 * - The C Standard defines "null pointer constant", "(void *)0", as
 *   distinct from other void pointers.
 * - If (x) is an integer constant expression, then the "* 0l" resolves
 *   it into an integer constant expression of value 0. Since it is cast to
 *   "void *", this makes the second operand a null pointer constant.
 * - If (x) is not an integer constant expression, then the second operand
 *   resolves to a void pointer (but not a null pointer constant: the value
 *   is not an integer constant 0).
 * - The conditional operator's third operand, "(int *)8", is an object
 *   pointer (to type "int").
 * - The behavior (including the return type) of the conditional operator
 *   ("operand1 ? operand2 : operand3") depends on the kind of expressions
 *   given for the second and third operands. This is the central mechanism
 *   of the macro:
 *   - When one operand is a null pointer constant (i.e. when x is an integer
 *     constant expression) and the other is an object pointer (i.e. our
 *     third operand), the conditional operator returns the type of the
 *     object pointer operand (i.e. "int *"). Here, within the sizeof(), we
 *     would then get:
 *       sizeof(*((int *)(...))  == sizeof(int)  == 4
 *   - When one operand is a void pointer (i.e. when x is not an integer
 *     constant expression) and the other is an object pointer (i.e. our
 *     third operand), the conditional operator returns a "void *" type.
 *     Here, within the sizeof(), we would then get:
 *       sizeof(*((void *)(...)) == sizeof(void) == 1
 * - The equality comparison to "sizeof(int)" therefore depends on (x):
 *     sizeof(int) == sizeof(int)     (x) was a constant expression
 *     sizeof(int) != sizeof(void)    (x) was not a constant expression
 */
#define __is_constexpr(x) \
	(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))

/*
 * Whether 'type' is a signed type or an unsigned type. Supports scalar types,
 * bool and also pointer types.
 */
#define is_signed_type(type) (((type)(-1)) < (__force type)1)
#define is_unsigned_type(type) (!is_signed_type(type))

/*
 * This is needed in functions which generate the stack canary, see
 * arch/x86/kernel/smpboot.c::start_secondary() for an example.
 */
#define prevent_tail_call_optimization()	mb()

#include <asm/rwonce.h>

#endif /* __LINUX_COMPILER_H */