Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul E. McKenney | 3092 | 73.65% | 38 | 62.30% |
Joel A Fernandes | 517 | 12.32% | 6 | 9.84% |
Qiuxu Zhuo | 482 | 11.48% | 2 | 3.28% |
Uladzislau Rezki | 45 | 1.07% | 2 | 3.28% |
Arnd Bergmann | 14 | 0.33% | 1 | 1.64% |
Wei Yongjun | 13 | 0.31% | 1 | 1.64% |
Zqiang | 7 | 0.17% | 2 | 3.28% |
Artem Savkov | 6 | 0.14% | 1 | 1.64% |
Li Zhijian | 5 | 0.12% | 1 | 1.64% |
Ingo Molnar | 3 | 0.07% | 1 | 1.64% |
Frédéric Weisbecker | 3 | 0.07% | 1 | 1.64% |
Boqun Feng | 3 | 0.07% | 1 | 1.64% |
Peter Zijlstra | 3 | 0.07% | 1 | 1.64% |
Joe Perches | 2 | 0.05% | 1 | 1.64% |
Jiangong.Han | 2 | 0.05% | 1 | 1.64% |
SeongJae Park | 1 | 0.02% | 1 | 1.64% |
Total | 4198 | 61 |
// SPDX-License-Identifier: GPL-2.0+ /* * Read-Copy Update module-based scalability-test facility * * Copyright (C) IBM Corporation, 2015 * * Authors: Paul E. McKenney <paulmck@linux.ibm.com> */ #define pr_fmt(fmt) fmt #include <linux/types.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/kthread.h> #include <linux/err.h> #include <linux/spinlock.h> #include <linux/smp.h> #include <linux/rcupdate.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <uapi/linux/sched/types.h> #include <linux/atomic.h> #include <linux/bitops.h> #include <linux/completion.h> #include <linux/moduleparam.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/reboot.h> #include <linux/freezer.h> #include <linux/cpu.h> #include <linux/delay.h> #include <linux/stat.h> #include <linux/srcu.h> #include <linux/slab.h> #include <asm/byteorder.h> #include <linux/torture.h> #include <linux/vmalloc.h> #include <linux/rcupdate_trace.h> #include "rcu.h" MODULE_LICENSE("GPL"); MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>"); #define SCALE_FLAG "-scale:" #define SCALEOUT_STRING(s) \ pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s) #define VERBOSE_SCALEOUT_STRING(s) \ do { if (verbose) pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s); } while (0) #define SCALEOUT_ERRSTRING(s) \ pr_alert("%s" SCALE_FLAG "!!! %s\n", scale_type, s) /* * The intended use cases for the nreaders and nwriters module parameters * are as follows: * * 1. Specify only the nr_cpus kernel boot parameter. This will * set both nreaders and nwriters to the value specified by * nr_cpus for a mixed reader/writer test. * * 2. Specify the nr_cpus kernel boot parameter, but set * rcuscale.nreaders to zero. This will set nwriters to the * value specified by nr_cpus for an update-only test. * * 3. Specify the nr_cpus kernel boot parameter, but set * rcuscale.nwriters to zero. This will set nreaders to the * value specified by nr_cpus for a read-only test. * * Various other use cases may of course be specified. * * Note that this test's readers are intended only as a test load for * the writers. The reader scalability statistics will be overly * pessimistic due to the per-critical-section interrupt disabling, * test-end checks, and the pair of calls through pointers. */ #ifdef MODULE # define RCUSCALE_SHUTDOWN 0 #else # define RCUSCALE_SHUTDOWN 1 #endif torture_param(bool, gp_async, false, "Use asynchronous GP wait primitives"); torture_param(int, gp_async_max, 1000, "Max # outstanding waits per writer"); torture_param(bool, gp_exp, false, "Use expedited GP wait primitives"); torture_param(int, holdoff, 10, "Holdoff time before test start (s)"); torture_param(int, minruntime, 0, "Minimum run time (s)"); torture_param(int, nreaders, -1, "Number of RCU reader threads"); torture_param(int, nwriters, -1, "Number of RCU updater threads"); torture_param(bool, shutdown, RCUSCALE_SHUTDOWN, "Shutdown at end of scalability tests."); torture_param(int, verbose, 1, "Enable verbose debugging printk()s"); torture_param(int, writer_holdoff, 0, "Holdoff (us) between GPs, zero to disable"); torture_param(int, writer_holdoff_jiffies, 0, "Holdoff (jiffies) between GPs, zero to disable"); torture_param(int, kfree_rcu_test, 0, "Do we run a kfree_rcu() scale test?"); torture_param(int, kfree_mult, 1, "Multiple of kfree_obj size to allocate."); torture_param(int, kfree_by_call_rcu, 0, "Use call_rcu() to emulate kfree_rcu()?"); static char *scale_type = "rcu"; module_param(scale_type, charp, 0444); MODULE_PARM_DESC(scale_type, "Type of RCU to scalability-test (rcu, srcu, ...)"); static int nrealreaders; static int nrealwriters; static struct task_struct **writer_tasks; static struct task_struct **reader_tasks; static struct task_struct *shutdown_task; static u64 **writer_durations; static int *writer_n_durations; static atomic_t n_rcu_scale_reader_started; static atomic_t n_rcu_scale_writer_started; static atomic_t n_rcu_scale_writer_finished; static wait_queue_head_t shutdown_wq; static u64 t_rcu_scale_writer_started; static u64 t_rcu_scale_writer_finished; static unsigned long b_rcu_gp_test_started; static unsigned long b_rcu_gp_test_finished; static DEFINE_PER_CPU(atomic_t, n_async_inflight); #define MAX_MEAS 10000 #define MIN_MEAS 100 /* * Operations vector for selecting different types of tests. */ struct rcu_scale_ops { int ptype; void (*init)(void); void (*cleanup)(void); int (*readlock)(void); void (*readunlock)(int idx); unsigned long (*get_gp_seq)(void); unsigned long (*gp_diff)(unsigned long new, unsigned long old); unsigned long (*exp_completed)(void); void (*async)(struct rcu_head *head, rcu_callback_t func); void (*gp_barrier)(void); void (*sync)(void); void (*exp_sync)(void); struct task_struct *(*rso_gp_kthread)(void); const char *name; }; static struct rcu_scale_ops *cur_ops; /* * Definitions for rcu scalability testing. */ static int rcu_scale_read_lock(void) __acquires(RCU) { rcu_read_lock(); return 0; } static void rcu_scale_read_unlock(int idx) __releases(RCU) { rcu_read_unlock(); } static unsigned long __maybe_unused rcu_no_completed(void) { return 0; } static void rcu_sync_scale_init(void) { } static struct rcu_scale_ops rcu_ops = { .ptype = RCU_FLAVOR, .init = rcu_sync_scale_init, .readlock = rcu_scale_read_lock, .readunlock = rcu_scale_read_unlock, .get_gp_seq = rcu_get_gp_seq, .gp_diff = rcu_seq_diff, .exp_completed = rcu_exp_batches_completed, .async = call_rcu_hurry, .gp_barrier = rcu_barrier, .sync = synchronize_rcu, .exp_sync = synchronize_rcu_expedited, .name = "rcu" }; /* * Definitions for srcu scalability testing. */ DEFINE_STATIC_SRCU(srcu_ctl_scale); static struct srcu_struct *srcu_ctlp = &srcu_ctl_scale; static int srcu_scale_read_lock(void) __acquires(srcu_ctlp) { return srcu_read_lock(srcu_ctlp); } static void srcu_scale_read_unlock(int idx) __releases(srcu_ctlp) { srcu_read_unlock(srcu_ctlp, idx); } static unsigned long srcu_scale_completed(void) { return srcu_batches_completed(srcu_ctlp); } static void srcu_call_rcu(struct rcu_head *head, rcu_callback_t func) { call_srcu(srcu_ctlp, head, func); } static void srcu_rcu_barrier(void) { srcu_barrier(srcu_ctlp); } static void srcu_scale_synchronize(void) { synchronize_srcu(srcu_ctlp); } static void srcu_scale_synchronize_expedited(void) { synchronize_srcu_expedited(srcu_ctlp); } static struct rcu_scale_ops srcu_ops = { .ptype = SRCU_FLAVOR, .init = rcu_sync_scale_init, .readlock = srcu_scale_read_lock, .readunlock = srcu_scale_read_unlock, .get_gp_seq = srcu_scale_completed, .gp_diff = rcu_seq_diff, .exp_completed = srcu_scale_completed, .async = srcu_call_rcu, .gp_barrier = srcu_rcu_barrier, .sync = srcu_scale_synchronize, .exp_sync = srcu_scale_synchronize_expedited, .name = "srcu" }; static struct srcu_struct srcud; static void srcu_sync_scale_init(void) { srcu_ctlp = &srcud; init_srcu_struct(srcu_ctlp); } static void srcu_sync_scale_cleanup(void) { cleanup_srcu_struct(srcu_ctlp); } static struct rcu_scale_ops srcud_ops = { .ptype = SRCU_FLAVOR, .init = srcu_sync_scale_init, .cleanup = srcu_sync_scale_cleanup, .readlock = srcu_scale_read_lock, .readunlock = srcu_scale_read_unlock, .get_gp_seq = srcu_scale_completed, .gp_diff = rcu_seq_diff, .exp_completed = srcu_scale_completed, .async = srcu_call_rcu, .gp_barrier = srcu_rcu_barrier, .sync = srcu_scale_synchronize, .exp_sync = srcu_scale_synchronize_expedited, .name = "srcud" }; #ifdef CONFIG_TASKS_RCU /* * Definitions for RCU-tasks scalability testing. */ static int tasks_scale_read_lock(void) { return 0; } static void tasks_scale_read_unlock(int idx) { } static struct rcu_scale_ops tasks_ops = { .ptype = RCU_TASKS_FLAVOR, .init = rcu_sync_scale_init, .readlock = tasks_scale_read_lock, .readunlock = tasks_scale_read_unlock, .get_gp_seq = rcu_no_completed, .gp_diff = rcu_seq_diff, .async = call_rcu_tasks, .gp_barrier = rcu_barrier_tasks, .sync = synchronize_rcu_tasks, .exp_sync = synchronize_rcu_tasks, .rso_gp_kthread = get_rcu_tasks_gp_kthread, .name = "tasks" }; #define TASKS_OPS &tasks_ops, #else // #ifdef CONFIG_TASKS_RCU #define TASKS_OPS #endif // #else // #ifdef CONFIG_TASKS_RCU #ifdef CONFIG_TASKS_RUDE_RCU /* * Definitions for RCU-tasks-rude scalability testing. */ static int tasks_rude_scale_read_lock(void) { return 0; } static void tasks_rude_scale_read_unlock(int idx) { } static struct rcu_scale_ops tasks_rude_ops = { .ptype = RCU_TASKS_RUDE_FLAVOR, .init = rcu_sync_scale_init, .readlock = tasks_rude_scale_read_lock, .readunlock = tasks_rude_scale_read_unlock, .get_gp_seq = rcu_no_completed, .gp_diff = rcu_seq_diff, .async = call_rcu_tasks_rude, .gp_barrier = rcu_barrier_tasks_rude, .sync = synchronize_rcu_tasks_rude, .exp_sync = synchronize_rcu_tasks_rude, .rso_gp_kthread = get_rcu_tasks_rude_gp_kthread, .name = "tasks-rude" }; #define TASKS_RUDE_OPS &tasks_rude_ops, #else // #ifdef CONFIG_TASKS_RUDE_RCU #define TASKS_RUDE_OPS #endif // #else // #ifdef CONFIG_TASKS_RUDE_RCU #ifdef CONFIG_TASKS_TRACE_RCU /* * Definitions for RCU-tasks-trace scalability testing. */ static int tasks_trace_scale_read_lock(void) { rcu_read_lock_trace(); return 0; } static void tasks_trace_scale_read_unlock(int idx) { rcu_read_unlock_trace(); } static struct rcu_scale_ops tasks_tracing_ops = { .ptype = RCU_TASKS_FLAVOR, .init = rcu_sync_scale_init, .readlock = tasks_trace_scale_read_lock, .readunlock = tasks_trace_scale_read_unlock, .get_gp_seq = rcu_no_completed, .gp_diff = rcu_seq_diff, .async = call_rcu_tasks_trace, .gp_barrier = rcu_barrier_tasks_trace, .sync = synchronize_rcu_tasks_trace, .exp_sync = synchronize_rcu_tasks_trace, .rso_gp_kthread = get_rcu_tasks_trace_gp_kthread, .name = "tasks-tracing" }; #define TASKS_TRACING_OPS &tasks_tracing_ops, #else // #ifdef CONFIG_TASKS_TRACE_RCU #define TASKS_TRACING_OPS #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU static unsigned long rcuscale_seq_diff(unsigned long new, unsigned long old) { if (!cur_ops->gp_diff) return new - old; return cur_ops->gp_diff(new, old); } /* * If scalability tests complete, wait for shutdown to commence. */ static void rcu_scale_wait_shutdown(void) { cond_resched_tasks_rcu_qs(); if (atomic_read(&n_rcu_scale_writer_finished) < nrealwriters) return; while (!torture_must_stop()) schedule_timeout_uninterruptible(1); } /* * RCU scalability reader kthread. Repeatedly does empty RCU read-side * critical section, minimizing update-side interference. However, the * point of this test is not to evaluate reader scalability, but instead * to serve as a test load for update-side scalability testing. */ static int rcu_scale_reader(void *arg) { unsigned long flags; int idx; long me = (long)arg; VERBOSE_SCALEOUT_STRING("rcu_scale_reader task started"); set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)); set_user_nice(current, MAX_NICE); atomic_inc(&n_rcu_scale_reader_started); do { local_irq_save(flags); idx = cur_ops->readlock(); cur_ops->readunlock(idx); local_irq_restore(flags); rcu_scale_wait_shutdown(); } while (!torture_must_stop()); torture_kthread_stopping("rcu_scale_reader"); return 0; } /* * Callback function for asynchronous grace periods from rcu_scale_writer(). */ static void rcu_scale_async_cb(struct rcu_head *rhp) { atomic_dec(this_cpu_ptr(&n_async_inflight)); kfree(rhp); } /* * RCU scale writer kthread. Repeatedly does a grace period. */ static int rcu_scale_writer(void *arg) { int i = 0; int i_max; unsigned long jdone; long me = (long)arg; struct rcu_head *rhp = NULL; bool started = false, done = false, alldone = false; u64 t; DEFINE_TORTURE_RANDOM(tr); u64 *wdp; u64 *wdpp = writer_durations[me]; VERBOSE_SCALEOUT_STRING("rcu_scale_writer task started"); WARN_ON(!wdpp); set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)); current->flags |= PF_NO_SETAFFINITY; sched_set_fifo_low(current); if (holdoff) schedule_timeout_idle(holdoff * HZ); /* * Wait until rcu_end_inkernel_boot() is called for normal GP tests * so that RCU is not always expedited for normal GP tests. * The system_state test is approximate, but works well in practice. */ while (!gp_exp && system_state != SYSTEM_RUNNING) schedule_timeout_uninterruptible(1); t = ktime_get_mono_fast_ns(); if (atomic_inc_return(&n_rcu_scale_writer_started) >= nrealwriters) { t_rcu_scale_writer_started = t; if (gp_exp) { b_rcu_gp_test_started = cur_ops->exp_completed() / 2; } else { b_rcu_gp_test_started = cur_ops->get_gp_seq(); } } jdone = jiffies + minruntime * HZ; do { if (writer_holdoff) udelay(writer_holdoff); if (writer_holdoff_jiffies) schedule_timeout_idle(torture_random(&tr) % writer_holdoff_jiffies + 1); wdp = &wdpp[i]; *wdp = ktime_get_mono_fast_ns(); if (gp_async) { retry: if (!rhp) rhp = kmalloc(sizeof(*rhp), GFP_KERNEL); if (rhp && atomic_read(this_cpu_ptr(&n_async_inflight)) < gp_async_max) { atomic_inc(this_cpu_ptr(&n_async_inflight)); cur_ops->async(rhp, rcu_scale_async_cb); rhp = NULL; } else if (!kthread_should_stop()) { cur_ops->gp_barrier(); goto retry; } else { kfree(rhp); /* Because we are stopping. */ } } else if (gp_exp) { cur_ops->exp_sync(); } else { cur_ops->sync(); } t = ktime_get_mono_fast_ns(); *wdp = t - *wdp; i_max = i; if (!started && atomic_read(&n_rcu_scale_writer_started) >= nrealwriters) started = true; if (!done && i >= MIN_MEAS && time_after(jiffies, jdone)) { done = true; sched_set_normal(current, 0); pr_alert("%s%s rcu_scale_writer %ld has %d measurements\n", scale_type, SCALE_FLAG, me, MIN_MEAS); if (atomic_inc_return(&n_rcu_scale_writer_finished) >= nrealwriters) { schedule_timeout_interruptible(10); rcu_ftrace_dump(DUMP_ALL); SCALEOUT_STRING("Test complete"); t_rcu_scale_writer_finished = t; if (gp_exp) { b_rcu_gp_test_finished = cur_ops->exp_completed() / 2; } else { b_rcu_gp_test_finished = cur_ops->get_gp_seq(); } if (shutdown) { smp_mb(); /* Assign before wake. */ wake_up(&shutdown_wq); } } } if (done && !alldone && atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters) alldone = true; if (started && !alldone && i < MAX_MEAS - 1) i++; rcu_scale_wait_shutdown(); } while (!torture_must_stop()); if (gp_async) { cur_ops->gp_barrier(); } writer_n_durations[me] = i_max + 1; torture_kthread_stopping("rcu_scale_writer"); return 0; } static void rcu_scale_print_module_parms(struct rcu_scale_ops *cur_ops, const char *tag) { pr_alert("%s" SCALE_FLAG "--- %s: gp_async=%d gp_async_max=%d gp_exp=%d holdoff=%d minruntime=%d nreaders=%d nwriters=%d writer_holdoff=%d writer_holdoff_jiffies=%d verbose=%d shutdown=%d\n", scale_type, tag, gp_async, gp_async_max, gp_exp, holdoff, minruntime, nrealreaders, nrealwriters, writer_holdoff, writer_holdoff_jiffies, verbose, shutdown); } /* * Return the number if non-negative. If -1, the number of CPUs. * If less than -1, that much less than the number of CPUs, but * at least one. */ static int compute_real(int n) { int nr; if (n >= 0) { nr = n; } else { nr = num_online_cpus() + 1 + n; if (nr <= 0) nr = 1; } return nr; } /* * kfree_rcu() scalability tests: Start a kfree_rcu() loop on all CPUs for number * of iterations and measure total time and number of GP for all iterations to complete. */ torture_param(int, kfree_nthreads, -1, "Number of threads running loops of kfree_rcu()."); torture_param(int, kfree_alloc_num, 8000, "Number of allocations and frees done in an iteration."); torture_param(int, kfree_loops, 10, "Number of loops doing kfree_alloc_num allocations and frees."); torture_param(bool, kfree_rcu_test_double, false, "Do we run a kfree_rcu() double-argument scale test?"); torture_param(bool, kfree_rcu_test_single, false, "Do we run a kfree_rcu() single-argument scale test?"); static struct task_struct **kfree_reader_tasks; static int kfree_nrealthreads; static atomic_t n_kfree_scale_thread_started; static atomic_t n_kfree_scale_thread_ended; static struct task_struct *kthread_tp; static u64 kthread_stime; struct kfree_obj { char kfree_obj[8]; struct rcu_head rh; }; /* Used if doing RCU-kfree'ing via call_rcu(). */ static void kfree_call_rcu(struct rcu_head *rh) { struct kfree_obj *obj = container_of(rh, struct kfree_obj, rh); kfree(obj); } static int kfree_scale_thread(void *arg) { int i, loop = 0; long me = (long)arg; struct kfree_obj *alloc_ptr; u64 start_time, end_time; long long mem_begin, mem_during = 0; bool kfree_rcu_test_both; DEFINE_TORTURE_RANDOM(tr); VERBOSE_SCALEOUT_STRING("kfree_scale_thread task started"); set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)); set_user_nice(current, MAX_NICE); kfree_rcu_test_both = (kfree_rcu_test_single == kfree_rcu_test_double); start_time = ktime_get_mono_fast_ns(); if (atomic_inc_return(&n_kfree_scale_thread_started) >= kfree_nrealthreads) { if (gp_exp) b_rcu_gp_test_started = cur_ops->exp_completed() / 2; else b_rcu_gp_test_started = cur_ops->get_gp_seq(); } do { if (!mem_during) { mem_during = mem_begin = si_mem_available(); } else if (loop % (kfree_loops / 4) == 0) { mem_during = (mem_during + si_mem_available()) / 2; } for (i = 0; i < kfree_alloc_num; i++) { alloc_ptr = kmalloc(kfree_mult * sizeof(struct kfree_obj), GFP_KERNEL); if (!alloc_ptr) return -ENOMEM; if (kfree_by_call_rcu) { call_rcu(&(alloc_ptr->rh), kfree_call_rcu); continue; } // By default kfree_rcu_test_single and kfree_rcu_test_double are // initialized to false. If both have the same value (false or true) // both are randomly tested, otherwise only the one with value true // is tested. if ((kfree_rcu_test_single && !kfree_rcu_test_double) || (kfree_rcu_test_both && torture_random(&tr) & 0x800)) kfree_rcu_mightsleep(alloc_ptr); else kfree_rcu(alloc_ptr, rh); } cond_resched(); } while (!torture_must_stop() && ++loop < kfree_loops); if (atomic_inc_return(&n_kfree_scale_thread_ended) >= kfree_nrealthreads) { end_time = ktime_get_mono_fast_ns(); if (gp_exp) b_rcu_gp_test_finished = cur_ops->exp_completed() / 2; else b_rcu_gp_test_finished = cur_ops->get_gp_seq(); pr_alert("Total time taken by all kfree'ers: %llu ns, loops: %d, batches: %ld, memory footprint: %lldMB\n", (unsigned long long)(end_time - start_time), kfree_loops, rcuscale_seq_diff(b_rcu_gp_test_finished, b_rcu_gp_test_started), (mem_begin - mem_during) >> (20 - PAGE_SHIFT)); if (shutdown) { smp_mb(); /* Assign before wake. */ wake_up(&shutdown_wq); } } torture_kthread_stopping("kfree_scale_thread"); return 0; } static void kfree_scale_cleanup(void) { int i; if (torture_cleanup_begin()) return; if (kfree_reader_tasks) { for (i = 0; i < kfree_nrealthreads; i++) torture_stop_kthread(kfree_scale_thread, kfree_reader_tasks[i]); kfree(kfree_reader_tasks); } torture_cleanup_end(); } /* * shutdown kthread. Just waits to be awakened, then shuts down system. */ static int kfree_scale_shutdown(void *arg) { wait_event_idle(shutdown_wq, atomic_read(&n_kfree_scale_thread_ended) >= kfree_nrealthreads); smp_mb(); /* Wake before output. */ kfree_scale_cleanup(); kernel_power_off(); return -EINVAL; } // Used if doing RCU-kfree'ing via call_rcu(). static unsigned long jiffies_at_lazy_cb; static struct rcu_head lazy_test1_rh; static int rcu_lazy_test1_cb_called; static void call_rcu_lazy_test1(struct rcu_head *rh) { jiffies_at_lazy_cb = jiffies; WRITE_ONCE(rcu_lazy_test1_cb_called, 1); } static int __init kfree_scale_init(void) { int firsterr = 0; long i; unsigned long jif_start; unsigned long orig_jif; pr_alert("%s" SCALE_FLAG "--- kfree_rcu_test: kfree_mult=%d kfree_by_call_rcu=%d kfree_nthreads=%d kfree_alloc_num=%d kfree_loops=%d kfree_rcu_test_double=%d kfree_rcu_test_single=%d\n", scale_type, kfree_mult, kfree_by_call_rcu, kfree_nthreads, kfree_alloc_num, kfree_loops, kfree_rcu_test_double, kfree_rcu_test_single); // Also, do a quick self-test to ensure laziness is as much as // expected. if (kfree_by_call_rcu && !IS_ENABLED(CONFIG_RCU_LAZY)) { pr_alert("CONFIG_RCU_LAZY is disabled, falling back to kfree_rcu() for delayed RCU kfree'ing\n"); kfree_by_call_rcu = 0; } if (kfree_by_call_rcu) { /* do a test to check the timeout. */ orig_jif = rcu_get_jiffies_lazy_flush(); rcu_set_jiffies_lazy_flush(2 * HZ); rcu_barrier(); jif_start = jiffies; jiffies_at_lazy_cb = 0; call_rcu(&lazy_test1_rh, call_rcu_lazy_test1); smp_cond_load_relaxed(&rcu_lazy_test1_cb_called, VAL == 1); rcu_set_jiffies_lazy_flush(orig_jif); if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start < 2 * HZ)) { pr_alert("ERROR: call_rcu() CBs are not being lazy as expected!\n"); WARN_ON_ONCE(1); return -1; } if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start > 3 * HZ)) { pr_alert("ERROR: call_rcu() CBs are being too lazy!\n"); WARN_ON_ONCE(1); return -1; } } kfree_nrealthreads = compute_real(kfree_nthreads); /* Start up the kthreads. */ if (shutdown) { init_waitqueue_head(&shutdown_wq); firsterr = torture_create_kthread(kfree_scale_shutdown, NULL, shutdown_task); if (torture_init_error(firsterr)) goto unwind; schedule_timeout_uninterruptible(1); } pr_alert("kfree object size=%zu, kfree_by_call_rcu=%d\n", kfree_mult * sizeof(struct kfree_obj), kfree_by_call_rcu); kfree_reader_tasks = kcalloc(kfree_nrealthreads, sizeof(kfree_reader_tasks[0]), GFP_KERNEL); if (kfree_reader_tasks == NULL) { firsterr = -ENOMEM; goto unwind; } for (i = 0; i < kfree_nrealthreads; i++) { firsterr = torture_create_kthread(kfree_scale_thread, (void *)i, kfree_reader_tasks[i]); if (torture_init_error(firsterr)) goto unwind; } while (atomic_read(&n_kfree_scale_thread_started) < kfree_nrealthreads) schedule_timeout_uninterruptible(1); torture_init_end(); return 0; unwind: torture_init_end(); kfree_scale_cleanup(); return firsterr; } static void rcu_scale_cleanup(void) { int i; int j; int ngps = 0; u64 *wdp; u64 *wdpp; /* * Would like warning at start, but everything is expedited * during the mid-boot phase, so have to wait till the end. */ if (rcu_gp_is_expedited() && !rcu_gp_is_normal() && !gp_exp) SCALEOUT_ERRSTRING("All grace periods expedited, no normal ones to measure!"); if (rcu_gp_is_normal() && gp_exp) SCALEOUT_ERRSTRING("All grace periods normal, no expedited ones to measure!"); if (gp_exp && gp_async) SCALEOUT_ERRSTRING("No expedited async GPs, so went with async!"); // If built-in, just report all of the GP kthread's CPU time. if (IS_BUILTIN(CONFIG_RCU_SCALE_TEST) && !kthread_tp && cur_ops->rso_gp_kthread) kthread_tp = cur_ops->rso_gp_kthread(); if (kthread_tp) { u32 ns; u64 us; kthread_stime = kthread_tp->stime - kthread_stime; us = div_u64_rem(kthread_stime, 1000, &ns); pr_info("rcu_scale: Grace-period kthread CPU time: %llu.%03u us\n", us, ns); show_rcu_gp_kthreads(); } if (kfree_rcu_test) { kfree_scale_cleanup(); return; } if (torture_cleanup_begin()) return; if (!cur_ops) { torture_cleanup_end(); return; } if (reader_tasks) { for (i = 0; i < nrealreaders; i++) torture_stop_kthread(rcu_scale_reader, reader_tasks[i]); kfree(reader_tasks); } if (writer_tasks) { for (i = 0; i < nrealwriters; i++) { torture_stop_kthread(rcu_scale_writer, writer_tasks[i]); if (!writer_n_durations) continue; j = writer_n_durations[i]; pr_alert("%s%s writer %d gps: %d\n", scale_type, SCALE_FLAG, i, j); ngps += j; } pr_alert("%s%s start: %llu end: %llu duration: %llu gps: %d batches: %ld\n", scale_type, SCALE_FLAG, t_rcu_scale_writer_started, t_rcu_scale_writer_finished, t_rcu_scale_writer_finished - t_rcu_scale_writer_started, ngps, rcuscale_seq_diff(b_rcu_gp_test_finished, b_rcu_gp_test_started)); for (i = 0; i < nrealwriters; i++) { if (!writer_durations) break; if (!writer_n_durations) continue; wdpp = writer_durations[i]; if (!wdpp) continue; for (j = 0; j < writer_n_durations[i]; j++) { wdp = &wdpp[j]; pr_alert("%s%s %4d writer-duration: %5d %llu\n", scale_type, SCALE_FLAG, i, j, *wdp); if (j % 100 == 0) schedule_timeout_uninterruptible(1); } kfree(writer_durations[i]); } kfree(writer_tasks); kfree(writer_durations); kfree(writer_n_durations); } /* Do torture-type-specific cleanup operations. */ if (cur_ops->cleanup != NULL) cur_ops->cleanup(); torture_cleanup_end(); } /* * RCU scalability shutdown kthread. Just waits to be awakened, then shuts * down system. */ static int rcu_scale_shutdown(void *arg) { wait_event_idle(shutdown_wq, atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters); smp_mb(); /* Wake before output. */ rcu_scale_cleanup(); kernel_power_off(); return -EINVAL; } static int __init rcu_scale_init(void) { long i; int firsterr = 0; static struct rcu_scale_ops *scale_ops[] = { &rcu_ops, &srcu_ops, &srcud_ops, TASKS_OPS TASKS_RUDE_OPS TASKS_TRACING_OPS }; if (!torture_init_begin(scale_type, verbose)) return -EBUSY; /* Process args and announce that the scalability'er is on the job. */ for (i = 0; i < ARRAY_SIZE(scale_ops); i++) { cur_ops = scale_ops[i]; if (strcmp(scale_type, cur_ops->name) == 0) break; } if (i == ARRAY_SIZE(scale_ops)) { pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type); pr_alert("rcu-scale types:"); for (i = 0; i < ARRAY_SIZE(scale_ops); i++) pr_cont(" %s", scale_ops[i]->name); pr_cont("\n"); firsterr = -EINVAL; cur_ops = NULL; goto unwind; } if (cur_ops->init) cur_ops->init(); if (cur_ops->rso_gp_kthread) { kthread_tp = cur_ops->rso_gp_kthread(); if (kthread_tp) kthread_stime = kthread_tp->stime; } if (kfree_rcu_test) return kfree_scale_init(); nrealwriters = compute_real(nwriters); nrealreaders = compute_real(nreaders); atomic_set(&n_rcu_scale_reader_started, 0); atomic_set(&n_rcu_scale_writer_started, 0); atomic_set(&n_rcu_scale_writer_finished, 0); rcu_scale_print_module_parms(cur_ops, "Start of test"); /* Start up the kthreads. */ if (shutdown) { init_waitqueue_head(&shutdown_wq); firsterr = torture_create_kthread(rcu_scale_shutdown, NULL, shutdown_task); if (torture_init_error(firsterr)) goto unwind; schedule_timeout_uninterruptible(1); } reader_tasks = kcalloc(nrealreaders, sizeof(reader_tasks[0]), GFP_KERNEL); if (reader_tasks == NULL) { SCALEOUT_ERRSTRING("out of memory"); firsterr = -ENOMEM; goto unwind; } for (i = 0; i < nrealreaders; i++) { firsterr = torture_create_kthread(rcu_scale_reader, (void *)i, reader_tasks[i]); if (torture_init_error(firsterr)) goto unwind; } while (atomic_read(&n_rcu_scale_reader_started) < nrealreaders) schedule_timeout_uninterruptible(1); writer_tasks = kcalloc(nrealwriters, sizeof(reader_tasks[0]), GFP_KERNEL); writer_durations = kcalloc(nrealwriters, sizeof(*writer_durations), GFP_KERNEL); writer_n_durations = kcalloc(nrealwriters, sizeof(*writer_n_durations), GFP_KERNEL); if (!writer_tasks || !writer_durations || !writer_n_durations) { SCALEOUT_ERRSTRING("out of memory"); firsterr = -ENOMEM; goto unwind; } for (i = 0; i < nrealwriters; i++) { writer_durations[i] = kcalloc(MAX_MEAS, sizeof(*writer_durations[i]), GFP_KERNEL); if (!writer_durations[i]) { firsterr = -ENOMEM; goto unwind; } firsterr = torture_create_kthread(rcu_scale_writer, (void *)i, writer_tasks[i]); if (torture_init_error(firsterr)) goto unwind; } torture_init_end(); return 0; unwind: torture_init_end(); rcu_scale_cleanup(); if (shutdown) { WARN_ON(!IS_MODULE(CONFIG_RCU_SCALE_TEST)); kernel_power_off(); } return firsterr; } module_init(rcu_scale_init); module_exit(rcu_scale_cleanup);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1