Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul E. McKenney | 6723 | 89.24% | 119 | 68.39% |
Lai Jiangshan | 232 | 3.08% | 9 | 5.17% |
Neeraj Upadhyay | 197 | 2.61% | 2 | 1.15% |
Sebastian Andrzej Siewior | 103 | 1.37% | 2 | 1.15% |
Joel A Fernandes | 77 | 1.02% | 4 | 2.30% |
Frédéric Weisbecker | 52 | 0.69% | 9 | 5.17% |
Lance Roy | 37 | 0.49% | 1 | 0.57% |
Ildar Ismagilov | 28 | 0.37% | 2 | 1.15% |
Liu Ping Fan | 17 | 0.23% | 2 | 1.15% |
Rusty Russell | 17 | 0.23% | 3 | 1.72% |
Ingo Molnar | 9 | 0.12% | 4 | 2.30% |
Boqun Feng | 9 | 0.12% | 2 | 1.15% |
Alexander Gordeev | 7 | 0.09% | 2 | 1.15% |
Zhen Lei | 5 | 0.07% | 1 | 0.57% |
Matthew Wilcox | 4 | 0.05% | 1 | 0.57% |
Paolo Bonzini | 3 | 0.04% | 1 | 0.57% |
Alan Stern | 3 | 0.04% | 1 | 0.57% |
Jiang Biao | 2 | 0.03% | 1 | 0.57% |
Denis Arefev | 2 | 0.03% | 1 | 0.57% |
SeongJae Park | 1 | 0.01% | 1 | 0.57% |
Paul Gortmaker | 1 | 0.01% | 1 | 0.57% |
Dipankar Sarma | 1 | 0.01% | 1 | 0.57% |
Joe Perches | 1 | 0.01% | 1 | 0.57% |
Ahmed S. Darwish | 1 | 0.01% | 1 | 0.57% |
Ethon Paul | 1 | 0.01% | 1 | 0.57% |
Jakub Kiciński | 1 | 0.01% | 1 | 0.57% |
Total | 7534 | 174 |
// SPDX-License-Identifier: GPL-2.0+ /* * Sleepable Read-Copy Update mechanism for mutual exclusion. * * Copyright (C) IBM Corporation, 2006 * Copyright (C) Fujitsu, 2012 * * Authors: Paul McKenney <paulmck@linux.ibm.com> * Lai Jiangshan <laijs@cn.fujitsu.com> * * For detailed explanation of Read-Copy Update mechanism see - * Documentation/RCU/ *.txt * */ #define pr_fmt(fmt) "rcu: " fmt #include <linux/export.h> #include <linux/mutex.h> #include <linux/percpu.h> #include <linux/preempt.h> #include <linux/rcupdate_wait.h> #include <linux/sched.h> #include <linux/smp.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/srcu.h> #include "rcu.h" #include "rcu_segcblist.h" /* Holdoff in nanoseconds for auto-expediting. */ #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; module_param(exp_holdoff, ulong, 0444); /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ static ulong counter_wrap_check = (ULONG_MAX >> 2); module_param(counter_wrap_check, ulong, 0444); /* * Control conversion to SRCU_SIZE_BIG: * 0: Don't convert at all. * 1: Convert at init_srcu_struct() time. * 2: Convert when rcutorture invokes srcu_torture_stats_print(). * 3: Decide at boot time based on system shape (default). * 0x1x: Convert when excessive contention encountered. */ #define SRCU_SIZING_NONE 0 #define SRCU_SIZING_INIT 1 #define SRCU_SIZING_TORTURE 2 #define SRCU_SIZING_AUTO 3 #define SRCU_SIZING_CONTEND 0x10 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x) #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE)) #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT)) #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE)) #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND) static int convert_to_big = SRCU_SIZING_AUTO; module_param(convert_to_big, int, 0444); /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */ static int big_cpu_lim __read_mostly = 128; module_param(big_cpu_lim, int, 0444); /* Contention events per jiffy to initiate transition to big. */ static int small_contention_lim __read_mostly = 100; module_param(small_contention_lim, int, 0444); /* Early-boot callback-management, so early that no lock is required! */ static LIST_HEAD(srcu_boot_list); static bool __read_mostly srcu_init_done; static void srcu_invoke_callbacks(struct work_struct *work); static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); static void process_srcu(struct work_struct *work); static void srcu_delay_timer(struct timer_list *t); /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ #define spin_lock_rcu_node(p) \ do { \ spin_lock(&ACCESS_PRIVATE(p, lock)); \ smp_mb__after_unlock_lock(); \ } while (0) #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) #define spin_lock_irq_rcu_node(p) \ do { \ spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ smp_mb__after_unlock_lock(); \ } while (0) #define spin_unlock_irq_rcu_node(p) \ spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) #define spin_lock_irqsave_rcu_node(p, flags) \ do { \ spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ smp_mb__after_unlock_lock(); \ } while (0) #define spin_trylock_irqsave_rcu_node(p, flags) \ ({ \ bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ \ if (___locked) \ smp_mb__after_unlock_lock(); \ ___locked; \ }) #define spin_unlock_irqrestore_rcu_node(p, flags) \ spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ /* * Initialize SRCU per-CPU data. Note that statically allocated * srcu_struct structures might already have srcu_read_lock() and * srcu_read_unlock() running against them. So if the is_static parameter * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. */ static void init_srcu_struct_data(struct srcu_struct *ssp) { int cpu; struct srcu_data *sdp; /* * Initialize the per-CPU srcu_data array, which feeds into the * leaves of the srcu_node tree. */ WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != ARRAY_SIZE(sdp->srcu_unlock_count)); for_each_possible_cpu(cpu) { sdp = per_cpu_ptr(ssp->sda, cpu); spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); rcu_segcblist_init(&sdp->srcu_cblist); sdp->srcu_cblist_invoking = false; sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq; sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq; sdp->mynode = NULL; sdp->cpu = cpu; INIT_WORK(&sdp->work, srcu_invoke_callbacks); timer_setup(&sdp->delay_work, srcu_delay_timer, 0); sdp->ssp = ssp; } } /* Invalid seq state, used during snp node initialization */ #define SRCU_SNP_INIT_SEQ 0x2 /* * Check whether sequence number corresponding to snp node, * is invalid. */ static inline bool srcu_invl_snp_seq(unsigned long s) { return s == SRCU_SNP_INIT_SEQ; } /* * Allocated and initialize SRCU combining tree. Returns @true if * allocation succeeded and @false otherwise. */ static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags) { int cpu; int i; int level = 0; int levelspread[RCU_NUM_LVLS]; struct srcu_data *sdp; struct srcu_node *snp; struct srcu_node *snp_first; /* Initialize geometry if it has not already been initialized. */ rcu_init_geometry(); ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags); if (!ssp->srcu_sup->node) return false; /* Work out the overall tree geometry. */ ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0]; for (i = 1; i < rcu_num_lvls; i++) ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1]; rcu_init_levelspread(levelspread, num_rcu_lvl); /* Each pass through this loop initializes one srcu_node structure. */ srcu_for_each_node_breadth_first(ssp, snp) { spin_lock_init(&ACCESS_PRIVATE(snp, lock)); WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != ARRAY_SIZE(snp->srcu_data_have_cbs)); for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ; snp->srcu_data_have_cbs[i] = 0; } snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ; snp->grplo = -1; snp->grphi = -1; if (snp == &ssp->srcu_sup->node[0]) { /* Root node, special case. */ snp->srcu_parent = NULL; continue; } /* Non-root node. */ if (snp == ssp->srcu_sup->level[level + 1]) level++; snp->srcu_parent = ssp->srcu_sup->level[level - 1] + (snp - ssp->srcu_sup->level[level]) / levelspread[level - 1]; } /* * Initialize the per-CPU srcu_data array, which feeds into the * leaves of the srcu_node tree. */ level = rcu_num_lvls - 1; snp_first = ssp->srcu_sup->level[level]; for_each_possible_cpu(cpu) { sdp = per_cpu_ptr(ssp->sda, cpu); sdp->mynode = &snp_first[cpu / levelspread[level]]; for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { if (snp->grplo < 0) snp->grplo = cpu; snp->grphi = cpu; } sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo); } smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER); return true; } /* * Initialize non-compile-time initialized fields, including the * associated srcu_node and srcu_data structures. The is_static parameter * tells us that ->sda has already been wired up to srcu_data. */ static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) { if (!is_static) ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL); if (!ssp->srcu_sup) return -ENOMEM; if (!is_static) spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL; ssp->srcu_sup->node = NULL; mutex_init(&ssp->srcu_sup->srcu_cb_mutex); mutex_init(&ssp->srcu_sup->srcu_gp_mutex); ssp->srcu_idx = 0; ssp->srcu_sup->srcu_gp_seq = 0; ssp->srcu_sup->srcu_barrier_seq = 0; mutex_init(&ssp->srcu_sup->srcu_barrier_mutex); atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0); INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu); ssp->srcu_sup->sda_is_static = is_static; if (!is_static) ssp->sda = alloc_percpu(struct srcu_data); if (!ssp->sda) goto err_free_sup; init_srcu_struct_data(ssp); ssp->srcu_sup->srcu_gp_seq_needed_exp = 0; ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns(); if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) { if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) goto err_free_sda; WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG); } ssp->srcu_sup->srcu_ssp = ssp; smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed, 0); /* Init done. */ return 0; err_free_sda: if (!is_static) { free_percpu(ssp->sda); ssp->sda = NULL; } err_free_sup: if (!is_static) { kfree(ssp->srcu_sup); ssp->srcu_sup = NULL; } return -ENOMEM; } #ifdef CONFIG_DEBUG_LOCK_ALLOC int __init_srcu_struct(struct srcu_struct *ssp, const char *name, struct lock_class_key *key) { /* Don't re-initialize a lock while it is held. */ debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); lockdep_init_map(&ssp->dep_map, name, key, 0); return init_srcu_struct_fields(ssp, false); } EXPORT_SYMBOL_GPL(__init_srcu_struct); #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ /** * init_srcu_struct - initialize a sleep-RCU structure * @ssp: structure to initialize. * * Must invoke this on a given srcu_struct before passing that srcu_struct * to any other function. Each srcu_struct represents a separate domain * of SRCU protection. */ int init_srcu_struct(struct srcu_struct *ssp) { return init_srcu_struct_fields(ssp, false); } EXPORT_SYMBOL_GPL(init_srcu_struct); #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ /* * Initiate a transition to SRCU_SIZE_BIG with lock held. */ static void __srcu_transition_to_big(struct srcu_struct *ssp) { lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC); } /* * Initiate an idempotent transition to SRCU_SIZE_BIG. */ static void srcu_transition_to_big(struct srcu_struct *ssp) { unsigned long flags; /* Double-checked locking on ->srcu_size-state. */ if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) return; spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) { spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); return; } __srcu_transition_to_big(ssp); spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); } /* * Check to see if the just-encountered contention event justifies * a transition to SRCU_SIZE_BIG. */ static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp) { unsigned long j; if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state) return; j = jiffies; if (ssp->srcu_sup->srcu_size_jiffies != j) { ssp->srcu_sup->srcu_size_jiffies = j; ssp->srcu_sup->srcu_n_lock_retries = 0; } if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim) return; __srcu_transition_to_big(ssp); } /* * Acquire the specified srcu_data structure's ->lock, but check for * excessive contention, which results in initiation of a transition * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module * parameter permits this. */ static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags) { struct srcu_struct *ssp = sdp->ssp; if (spin_trylock_irqsave_rcu_node(sdp, *flags)) return; spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); spin_lock_irqsave_check_contention(ssp); spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags); spin_lock_irqsave_rcu_node(sdp, *flags); } /* * Acquire the specified srcu_struct structure's ->lock, but check for * excessive contention, which results in initiation of a transition * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module * parameter permits this. */ static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags) { if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags)) return; spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); spin_lock_irqsave_check_contention(ssp); } /* * First-use initialization of statically allocated srcu_struct * structure. Wiring up the combining tree is more than can be * done with compile-time initialization, so this check is added * to each update-side SRCU primitive. Use ssp->lock, which -is- * compile-time initialized, to resolve races involving multiple * CPUs trying to garner first-use privileges. */ static void check_init_srcu_struct(struct srcu_struct *ssp) { unsigned long flags; /* The smp_load_acquire() pairs with the smp_store_release(). */ if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/ return; /* Already initialized. */ spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) { spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); return; } init_srcu_struct_fields(ssp, true); spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); } /* * Returns approximate total of the readers' ->srcu_lock_count[] values * for the rank of per-CPU counters specified by idx. */ static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx) { int cpu; unsigned long sum = 0; for_each_possible_cpu(cpu) { struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); sum += atomic_long_read(&cpuc->srcu_lock_count[idx]); } return sum; } /* * Returns approximate total of the readers' ->srcu_unlock_count[] values * for the rank of per-CPU counters specified by idx. */ static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx) { int cpu; unsigned long mask = 0; unsigned long sum = 0; for_each_possible_cpu(cpu) { struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]); if (IS_ENABLED(CONFIG_PROVE_RCU)) mask = mask | READ_ONCE(cpuc->srcu_nmi_safety); } WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)), "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp); return sum; } /* * Return true if the number of pre-existing readers is determined to * be zero. */ static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) { unsigned long unlocks; unlocks = srcu_readers_unlock_idx(ssp, idx); /* * Make sure that a lock is always counted if the corresponding * unlock is counted. Needs to be a smp_mb() as the read side may * contain a read from a variable that is written to before the * synchronize_srcu() in the write side. In this case smp_mb()s * A and B act like the store buffering pattern. * * This smp_mb() also pairs with smp_mb() C to prevent accesses * after the synchronize_srcu() from being executed before the * grace period ends. */ smp_mb(); /* A */ /* * If the locks are the same as the unlocks, then there must have * been no readers on this index at some point in this function. * But there might be more readers, as a task might have read * the current ->srcu_idx but not yet have incremented its CPU's * ->srcu_lock_count[idx] counter. In fact, it is possible * that most of the tasks have been preempted between fetching * ->srcu_idx and incrementing ->srcu_lock_count[idx]. And there * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks * in a system whose address space was fully populated with memory. * Call this quantity Nt. * * So suppose that the updater is preempted at this point in the * code for a long time. That now-preempted updater has already * flipped ->srcu_idx (possibly during the preceding grace period), * done an smp_mb() (again, possibly during the preceding grace * period), and summed up the ->srcu_unlock_count[idx] counters. * How many times can a given one of the aforementioned Nt tasks * increment the old ->srcu_idx value's ->srcu_lock_count[idx] * counter, in the absence of nesting? * * It can clearly do so once, given that it has already fetched * the old value of ->srcu_idx and is just about to use that value * to index its increment of ->srcu_lock_count[idx]. But as soon as * it leaves that SRCU read-side critical section, it will increment * ->srcu_unlock_count[idx], which must follow the updater's above * read from that same value. Thus, as soon the reading task does * an smp_mb() and a later fetch from ->srcu_idx, that task will be * guaranteed to get the new index. Except that the increment of * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock() * is before the smp_mb(). Thus, that task might not see the new * value of ->srcu_idx until the -second- __srcu_read_lock(), * which in turn means that this task might well increment * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice, * not just once. * * However, it is important to note that a given smp_mb() takes * effect not just for the task executing it, but also for any * later task running on that same CPU. * * That is, there can be almost Nt + Nc further increments of * ->srcu_lock_count[idx] for the old index, where Nc is the number * of CPUs. But this is OK because the size of the task_struct * structure limits the value of Nt and current systems limit Nc * to a few thousand. * * OK, but what about nesting? This does impose a limit on * nesting of half of the size of the task_struct structure * (measured in bytes), which should be sufficient. A late 2022 * TREE01 rcutorture run reported this size to be no less than * 9408 bytes, allowing up to 4704 levels of nesting, which is * comfortably beyond excessive. Especially on 64-bit systems, * which are unlikely to be configured with an address space fully * populated with memory, at least not anytime soon. */ return srcu_readers_lock_idx(ssp, idx) == unlocks; } /** * srcu_readers_active - returns true if there are readers. and false * otherwise * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). * * Note that this is not an atomic primitive, and can therefore suffer * severe errors when invoked on an active srcu_struct. That said, it * can be useful as an error check at cleanup time. */ static bool srcu_readers_active(struct srcu_struct *ssp) { int cpu; unsigned long sum = 0; for_each_possible_cpu(cpu) { struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); sum += atomic_long_read(&cpuc->srcu_lock_count[0]); sum += atomic_long_read(&cpuc->srcu_lock_count[1]); sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]); sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]); } return sum; } /* * We use an adaptive strategy for synchronize_srcu() and especially for * synchronize_srcu_expedited(). We spin for a fixed time period * (defined below, boot time configurable) to allow SRCU readers to exit * their read-side critical sections. If there are still some readers * after one jiffy, we repeatedly block for one jiffy time periods. * The blocking time is increased as the grace-period age increases, * with max blocking time capped at 10 jiffies. */ #define SRCU_DEFAULT_RETRY_CHECK_DELAY 5 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY; module_param(srcu_retry_check_delay, ulong, 0444); #define SRCU_INTERVAL 1 // Base delay if no expedited GPs pending. #define SRCU_MAX_INTERVAL 10 // Maximum incremental delay from slow readers. #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO 3UL // Lowmark on default per-GP-phase // no-delay instances. #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI 1000UL // Highmark on default per-GP-phase // no-delay instances. #define SRCU_UL_CLAMP_LO(val, low) ((val) > (low) ? (val) : (low)) #define SRCU_UL_CLAMP_HI(val, high) ((val) < (high) ? (val) : (high)) #define SRCU_UL_CLAMP(val, low, high) SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high)) // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay() // called from process_srcu(). #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED \ (2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY) // Maximum per-GP-phase consecutive no-delay instances. #define SRCU_DEFAULT_MAX_NODELAY_PHASE \ SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED, \ SRCU_DEFAULT_MAX_NODELAY_PHASE_LO, \ SRCU_DEFAULT_MAX_NODELAY_PHASE_HI) static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE; module_param(srcu_max_nodelay_phase, ulong, 0444); // Maximum consecutive no-delay instances. #define SRCU_DEFAULT_MAX_NODELAY (SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ? \ SRCU_DEFAULT_MAX_NODELAY_PHASE : 100) static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY; module_param(srcu_max_nodelay, ulong, 0444); /* * Return grace-period delay, zero if there are expedited grace * periods pending, SRCU_INTERVAL otherwise. */ static unsigned long srcu_get_delay(struct srcu_struct *ssp) { unsigned long gpstart; unsigned long j; unsigned long jbase = SRCU_INTERVAL; struct srcu_usage *sup = ssp->srcu_sup; if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp))) jbase = 0; if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) { j = jiffies - 1; gpstart = READ_ONCE(sup->srcu_gp_start); if (time_after(j, gpstart)) jbase += j - gpstart; if (!jbase) { WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1); if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase) jbase = 1; } } return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase; } /** * cleanup_srcu_struct - deconstruct a sleep-RCU structure * @ssp: structure to clean up. * * Must invoke this after you are finished using a given srcu_struct that * was initialized via init_srcu_struct(), else you leak memory. */ void cleanup_srcu_struct(struct srcu_struct *ssp) { int cpu; struct srcu_usage *sup = ssp->srcu_sup; if (WARN_ON(!srcu_get_delay(ssp))) return; /* Just leak it! */ if (WARN_ON(srcu_readers_active(ssp))) return; /* Just leak it! */ flush_delayed_work(&sup->work); for_each_possible_cpu(cpu) { struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); del_timer_sync(&sdp->delay_work); flush_work(&sdp->work); if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) return; /* Forgot srcu_barrier(), so just leak it! */ } if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) || WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) || WARN_ON(srcu_readers_active(ssp))) { pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n", __func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)), rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed); return; /* Caller forgot to stop doing call_srcu()? */ } kfree(sup->node); sup->node = NULL; sup->srcu_size_state = SRCU_SIZE_SMALL; if (!sup->sda_is_static) { free_percpu(ssp->sda); ssp->sda = NULL; kfree(sup); ssp->srcu_sup = NULL; } } EXPORT_SYMBOL_GPL(cleanup_srcu_struct); #ifdef CONFIG_PROVE_RCU /* * Check for consistent NMI safety. */ void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe) { int nmi_safe_mask = 1 << nmi_safe; int old_nmi_safe_mask; struct srcu_data *sdp; /* NMI-unsafe use in NMI is a bad sign */ WARN_ON_ONCE(!nmi_safe && in_nmi()); sdp = raw_cpu_ptr(ssp->sda); old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety); if (!old_nmi_safe_mask) { WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask); return; } WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask); } EXPORT_SYMBOL_GPL(srcu_check_nmi_safety); #endif /* CONFIG_PROVE_RCU */ /* * Counts the new reader in the appropriate per-CPU element of the * srcu_struct. * Returns an index that must be passed to the matching srcu_read_unlock(). */ int __srcu_read_lock(struct srcu_struct *ssp) { int idx; idx = READ_ONCE(ssp->srcu_idx) & 0x1; this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter); smp_mb(); /* B */ /* Avoid leaking the critical section. */ return idx; } EXPORT_SYMBOL_GPL(__srcu_read_lock); /* * Removes the count for the old reader from the appropriate per-CPU * element of the srcu_struct. Note that this may well be a different * CPU than that which was incremented by the corresponding srcu_read_lock(). */ void __srcu_read_unlock(struct srcu_struct *ssp, int idx) { smp_mb(); /* C */ /* Avoid leaking the critical section. */ this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter); } EXPORT_SYMBOL_GPL(__srcu_read_unlock); #ifdef CONFIG_NEED_SRCU_NMI_SAFE /* * Counts the new reader in the appropriate per-CPU element of the * srcu_struct, but in an NMI-safe manner using RMW atomics. * Returns an index that must be passed to the matching srcu_read_unlock(). */ int __srcu_read_lock_nmisafe(struct srcu_struct *ssp) { int idx; struct srcu_data *sdp = raw_cpu_ptr(ssp->sda); idx = READ_ONCE(ssp->srcu_idx) & 0x1; atomic_long_inc(&sdp->srcu_lock_count[idx]); smp_mb__after_atomic(); /* B */ /* Avoid leaking the critical section. */ return idx; } EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe); /* * Removes the count for the old reader from the appropriate per-CPU * element of the srcu_struct. Note that this may well be a different * CPU than that which was incremented by the corresponding srcu_read_lock(). */ void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx) { struct srcu_data *sdp = raw_cpu_ptr(ssp->sda); smp_mb__before_atomic(); /* C */ /* Avoid leaking the critical section. */ atomic_long_inc(&sdp->srcu_unlock_count[idx]); } EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe); #endif // CONFIG_NEED_SRCU_NMI_SAFE /* * Start an SRCU grace period. */ static void srcu_gp_start(struct srcu_struct *ssp) { int state; lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)); WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies); WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0); smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq); state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq); WARN_ON_ONCE(state != SRCU_STATE_SCAN1); } static void srcu_delay_timer(struct timer_list *t) { struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); } static void srcu_queue_delayed_work_on(struct srcu_data *sdp, unsigned long delay) { if (!delay) { queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); return; } timer_reduce(&sdp->delay_work, jiffies + delay); } /* * Schedule callback invocation for the specified srcu_data structure, * if possible, on the corresponding CPU. */ static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) { srcu_queue_delayed_work_on(sdp, delay); } /* * Schedule callback invocation for all srcu_data structures associated * with the specified srcu_node structure that have callbacks for the * just-completed grace period, the one corresponding to idx. If possible, * schedule this invocation on the corresponding CPUs. */ static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, unsigned long mask, unsigned long delay) { int cpu; for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { if (!(mask & (1UL << (cpu - snp->grplo)))) continue; srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); } } /* * Note the end of an SRCU grace period. Initiates callback invocation * and starts a new grace period if needed. * * The ->srcu_cb_mutex acquisition does not protect any data, but * instead prevents more than one grace period from starting while we * are initiating callback invocation. This allows the ->srcu_have_cbs[] * array to have a finite number of elements. */ static void srcu_gp_end(struct srcu_struct *ssp) { unsigned long cbdelay = 1; bool cbs; bool last_lvl; int cpu; unsigned long flags; unsigned long gpseq; int idx; unsigned long mask; struct srcu_data *sdp; unsigned long sgsne; struct srcu_node *snp; int ss_state; struct srcu_usage *sup = ssp->srcu_sup; /* Prevent more than one additional grace period. */ mutex_lock(&sup->srcu_cb_mutex); /* End the current grace period. */ spin_lock_irq_rcu_node(sup); idx = rcu_seq_state(sup->srcu_gp_seq); WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp))) cbdelay = 0; WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns()); rcu_seq_end(&sup->srcu_gp_seq); gpseq = rcu_seq_current(&sup->srcu_gp_seq); if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq)) WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq); spin_unlock_irq_rcu_node(sup); mutex_unlock(&sup->srcu_gp_mutex); /* A new grace period can start at this point. But only one. */ /* Initiate callback invocation as needed. */ ss_state = smp_load_acquire(&sup->srcu_size_state); if (ss_state < SRCU_SIZE_WAIT_BARRIER) { srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()), cbdelay); } else { idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); srcu_for_each_node_breadth_first(ssp, snp) { spin_lock_irq_rcu_node(snp); cbs = false; last_lvl = snp >= sup->level[rcu_num_lvls - 1]; if (last_lvl) cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq; snp->srcu_have_cbs[idx] = gpseq; rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); sgsne = snp->srcu_gp_seq_needed_exp; if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq)) WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq); if (ss_state < SRCU_SIZE_BIG) mask = ~0; else mask = snp->srcu_data_have_cbs[idx]; snp->srcu_data_have_cbs[idx] = 0; spin_unlock_irq_rcu_node(snp); if (cbs) srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); } } /* Occasionally prevent srcu_data counter wrap. */ if (!(gpseq & counter_wrap_check)) for_each_possible_cpu(cpu) { sdp = per_cpu_ptr(ssp->sda, cpu); spin_lock_irqsave_rcu_node(sdp, flags); if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100)) sdp->srcu_gp_seq_needed = gpseq; if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100)) sdp->srcu_gp_seq_needed_exp = gpseq; spin_unlock_irqrestore_rcu_node(sdp, flags); } /* Callback initiation done, allow grace periods after next. */ mutex_unlock(&sup->srcu_cb_mutex); /* Start a new grace period if needed. */ spin_lock_irq_rcu_node(sup); gpseq = rcu_seq_current(&sup->srcu_gp_seq); if (!rcu_seq_state(gpseq) && ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) { srcu_gp_start(ssp); spin_unlock_irq_rcu_node(sup); srcu_reschedule(ssp, 0); } else { spin_unlock_irq_rcu_node(sup); } /* Transition to big if needed. */ if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) { if (ss_state == SRCU_SIZE_ALLOC) init_srcu_struct_nodes(ssp, GFP_KERNEL); else smp_store_release(&sup->srcu_size_state, ss_state + 1); } } /* * Funnel-locking scheme to scalably mediate many concurrent expedited * grace-period requests. This function is invoked for the first known * expedited request for a grace period that has already been requested, * but without expediting. To start a completely new grace period, * whether expedited or not, use srcu_funnel_gp_start() instead. */ static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, unsigned long s) { unsigned long flags; unsigned long sgsne; if (snp) for (; snp != NULL; snp = snp->srcu_parent) { sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp); if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) || (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s))) return; spin_lock_irqsave_rcu_node(snp, flags); sgsne = snp->srcu_gp_seq_needed_exp; if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) { spin_unlock_irqrestore_rcu_node(snp, flags); return; } WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); spin_unlock_irqrestore_rcu_node(snp, flags); } spin_lock_irqsave_ssp_contention(ssp, &flags); if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s)) WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s); spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); } /* * Funnel-locking scheme to scalably mediate many concurrent grace-period * requests. The winner has to do the work of actually starting grace * period s. Losers must either ensure that their desired grace-period * number is recorded on at least their leaf srcu_node structure, or they * must take steps to invoke their own callbacks. * * Note that this function also does the work of srcu_funnel_exp_start(), * in some cases by directly invoking it. * * The srcu read lock should be hold around this function. And s is a seq snap * after holding that lock. */ static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, unsigned long s, bool do_norm) { unsigned long flags; int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); unsigned long sgsne; struct srcu_node *snp; struct srcu_node *snp_leaf; unsigned long snp_seq; struct srcu_usage *sup = ssp->srcu_sup; /* Ensure that snp node tree is fully initialized before traversing it */ if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) snp_leaf = NULL; else snp_leaf = sdp->mynode; if (snp_leaf) /* Each pass through the loop does one level of the srcu_node tree. */ for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) { if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf) return; /* GP already done and CBs recorded. */ spin_lock_irqsave_rcu_node(snp, flags); snp_seq = snp->srcu_have_cbs[idx]; if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) { if (snp == snp_leaf && snp_seq == s) snp->srcu_data_have_cbs[idx] |= sdp->grpmask; spin_unlock_irqrestore_rcu_node(snp, flags); if (snp == snp_leaf && snp_seq != s) { srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0); return; } if (!do_norm) srcu_funnel_exp_start(ssp, snp, s); return; } snp->srcu_have_cbs[idx] = s; if (snp == snp_leaf) snp->srcu_data_have_cbs[idx] |= sdp->grpmask; sgsne = snp->srcu_gp_seq_needed_exp; if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s))) WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); spin_unlock_irqrestore_rcu_node(snp, flags); } /* Top of tree, must ensure the grace period will be started. */ spin_lock_irqsave_ssp_contention(ssp, &flags); if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) { /* * Record need for grace period s. Pair with load * acquire setting up for initialization. */ smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/ } if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s)) WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s); /* If grace period not already in progress, start it. */ if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) { WARN_ON_ONCE(ULONG_CMP_GE(sup->srcu_gp_seq, sup->srcu_gp_seq_needed)); srcu_gp_start(ssp); // And how can that list_add() in the "else" clause // possibly be safe for concurrent execution? Well, // it isn't. And it does not have to be. After all, it // can only be executed during early boot when there is only // the one boot CPU running with interrupts still disabled. if (likely(srcu_init_done)) queue_delayed_work(rcu_gp_wq, &sup->work, !!srcu_get_delay(ssp)); else if (list_empty(&sup->work.work.entry)) list_add(&sup->work.work.entry, &srcu_boot_list); } spin_unlock_irqrestore_rcu_node(sup, flags); } /* * Wait until all readers counted by array index idx complete, but * loop an additional time if there is an expedited grace period pending. * The caller must ensure that ->srcu_idx is not changed while checking. */ static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) { unsigned long curdelay; curdelay = !srcu_get_delay(ssp); for (;;) { if (srcu_readers_active_idx_check(ssp, idx)) return true; if ((--trycount + curdelay) <= 0) return false; udelay(srcu_retry_check_delay); } } /* * Increment the ->srcu_idx counter so that future SRCU readers will * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows * us to wait for pre-existing readers in a starvation-free manner. */ static void srcu_flip(struct srcu_struct *ssp) { /* * Because the flip of ->srcu_idx is executed only if the * preceding call to srcu_readers_active_idx_check() found that * the ->srcu_unlock_count[] and ->srcu_lock_count[] sums matched * and because that summing uses atomic_long_read(), there is * ordering due to a control dependency between that summing and * the WRITE_ONCE() in this call to srcu_flip(). This ordering * ensures that if this updater saw a given reader's increment from * __srcu_read_lock(), that reader was using a value of ->srcu_idx * from before the previous call to srcu_flip(), which should be * quite rare. This ordering thus helps forward progress because * the grace period could otherwise be delayed by additional * calls to __srcu_read_lock() using that old (soon to be new) * value of ->srcu_idx. * * This sum-equality check and ordering also ensures that if * a given call to __srcu_read_lock() uses the new value of * ->srcu_idx, this updater's earlier scans cannot have seen * that reader's increments, which is all to the good, because * this grace period need not wait on that reader. After all, * if those earlier scans had seen that reader, there would have * been a sum mismatch and this code would not be reached. * * This means that the following smp_mb() is redundant, but * it stays until either (1) Compilers learn about this sort of * control dependency or (2) Some production workload running on * a production system is unduly delayed by this slowpath smp_mb(). */ smp_mb(); /* E */ /* Pairs with B and C. */ WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); // Flip the counter. /* * Ensure that if the updater misses an __srcu_read_unlock() * increment, that task's __srcu_read_lock() following its next * __srcu_read_lock() or __srcu_read_unlock() will see the above * counter update. Note that both this memory barrier and the * one in srcu_readers_active_idx_check() provide the guarantee * for __srcu_read_lock(). */ smp_mb(); /* D */ /* Pairs with C. */ } /* * If SRCU is likely idle, return true, otherwise return false. * * Note that it is OK for several current from-idle requests for a new * grace period from idle to specify expediting because they will all end * up requesting the same grace period anyhow. So no loss. * * Note also that if any CPU (including the current one) is still invoking * callbacks, this function will nevertheless say "idle". This is not * ideal, but the overhead of checking all CPUs' callback lists is even * less ideal, especially on large systems. Furthermore, the wakeup * can happen before the callback is fully removed, so we have no choice * but to accept this type of error. * * This function is also subject to counter-wrap errors, but let's face * it, if this function was preempted for enough time for the counters * to wrap, it really doesn't matter whether or not we expedite the grace * period. The extra overhead of a needlessly expedited grace period is * negligible when amortized over that time period, and the extra latency * of a needlessly non-expedited grace period is similarly negligible. */ static bool srcu_might_be_idle(struct srcu_struct *ssp) { unsigned long curseq; unsigned long flags; struct srcu_data *sdp; unsigned long t; unsigned long tlast; check_init_srcu_struct(ssp); /* If the local srcu_data structure has callbacks, not idle. */ sdp = raw_cpu_ptr(ssp->sda); spin_lock_irqsave_rcu_node(sdp, flags); if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { spin_unlock_irqrestore_rcu_node(sdp, flags); return false; /* Callbacks already present, so not idle. */ } spin_unlock_irqrestore_rcu_node(sdp, flags); /* * No local callbacks, so probabilistically probe global state. * Exact information would require acquiring locks, which would * kill scalability, hence the probabilistic nature of the probe. */ /* First, see if enough time has passed since the last GP. */ t = ktime_get_mono_fast_ns(); tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end); if (exp_holdoff == 0 || time_in_range_open(t, tlast, tlast + exp_holdoff)) return false; /* Too soon after last GP. */ /* Next, check for probable idleness. */ curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed))) return false; /* Grace period in progress, so not idle. */ smp_mb(); /* Order ->srcu_gp_seq with prior access. */ if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)) return false; /* GP # changed, so not idle. */ return true; /* With reasonable probability, idle! */ } /* * SRCU callback function to leak a callback. */ static void srcu_leak_callback(struct rcu_head *rhp) { } /* * Start an SRCU grace period, and also queue the callback if non-NULL. */ static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp, struct rcu_head *rhp, bool do_norm) { unsigned long flags; int idx; bool needexp = false; bool needgp = false; unsigned long s; struct srcu_data *sdp; struct srcu_node *sdp_mynode; int ss_state; check_init_srcu_struct(ssp); /* * While starting a new grace period, make sure we are in an * SRCU read-side critical section so that the grace-period * sequence number cannot wrap around in the meantime. */ idx = __srcu_read_lock_nmisafe(ssp); ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state); if (ss_state < SRCU_SIZE_WAIT_CALL) sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id()); else sdp = raw_cpu_ptr(ssp->sda); spin_lock_irqsave_sdp_contention(sdp, &flags); if (rhp) rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp); /* * It's crucial to capture the snapshot 's' for acceleration before * reading the current gp_seq that is used for advancing. This is * essential because if the acceleration snapshot is taken after a * failed advancement attempt, there's a risk that a grace period may * conclude and a new one may start in the interim. If the snapshot is * captured after this sequence of events, the acceleration snapshot 's' * could be excessively advanced, leading to acceleration failure. * In such a scenario, an 'acceleration leak' can occur, where new * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment. * Also note that encountering advancing failures is a normal * occurrence when the grace period for RCU_WAIT_TAIL is in progress. * * To see this, consider the following events which occur if * rcu_seq_snap() were to be called after advance: * * 1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the * RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8). * * 2) The grace period for RCU_WAIT_TAIL is seen as started but not * completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1. * * 3) This value is passed to rcu_segcblist_advance() which can't move * any segment forward and fails. * * 4) srcu_gp_start_if_needed() still proceeds with callback acceleration. * But then the call to rcu_seq_snap() observes the grace period for the * RCU_WAIT_TAIL segment as completed and the subsequent one for the * RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1) * so it returns a snapshot of the next grace period, which is X + 12. * * 5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the * freshly enqueued callback in RCU_NEXT_TAIL can't move to * RCU_NEXT_READY_TAIL which already has callbacks for a previous grace * period (gp_num = X + 8). So acceleration fails. */ s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); if (rhp) { rcu_segcblist_advance(&sdp->srcu_cblist, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); /* * Acceleration can never fail because the base current gp_seq * used for acceleration is <= the value of gp_seq used for * advancing. This means that RCU_NEXT_TAIL segment will * always be able to be emptied by the acceleration into the * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments. */ WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s)); } if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { sdp->srcu_gp_seq_needed = s; needgp = true; } if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { sdp->srcu_gp_seq_needed_exp = s; needexp = true; } spin_unlock_irqrestore_rcu_node(sdp, flags); /* Ensure that snp node tree is fully initialized before traversing it */ if (ss_state < SRCU_SIZE_WAIT_BARRIER) sdp_mynode = NULL; else sdp_mynode = sdp->mynode; if (needgp) srcu_funnel_gp_start(ssp, sdp, s, do_norm); else if (needexp) srcu_funnel_exp_start(ssp, sdp_mynode, s); __srcu_read_unlock_nmisafe(ssp, idx); return s; } /* * Enqueue an SRCU callback on the srcu_data structure associated with * the current CPU and the specified srcu_struct structure, initiating * grace-period processing if it is not already running. * * Note that all CPUs must agree that the grace period extended beyond * all pre-existing SRCU read-side critical section. On systems with * more than one CPU, this means that when "func()" is invoked, each CPU * is guaranteed to have executed a full memory barrier since the end of * its last corresponding SRCU read-side critical section whose beginning * preceded the call to call_srcu(). It also means that each CPU executing * an SRCU read-side critical section that continues beyond the start of * "func()" must have executed a memory barrier after the call_srcu() * but before the beginning of that SRCU read-side critical section. * Note that these guarantees include CPUs that are offline, idle, or * executing in user mode, as well as CPUs that are executing in the kernel. * * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the * resulting SRCU callback function "func()", then both CPU A and CPU * B are guaranteed to execute a full memory barrier during the time * interval between the call to call_srcu() and the invocation of "func()". * This guarantee applies even if CPU A and CPU B are the same CPU (but * again only if the system has more than one CPU). * * Of course, these guarantees apply only for invocations of call_srcu(), * srcu_read_lock(), and srcu_read_unlock() that are all passed the same * srcu_struct structure. */ static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, rcu_callback_t func, bool do_norm) { if (debug_rcu_head_queue(rhp)) { /* Probable double call_srcu(), so leak the callback. */ WRITE_ONCE(rhp->func, srcu_leak_callback); WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); return; } rhp->func = func; (void)srcu_gp_start_if_needed(ssp, rhp, do_norm); } /** * call_srcu() - Queue a callback for invocation after an SRCU grace period * @ssp: srcu_struct in queue the callback * @rhp: structure to be used for queueing the SRCU callback. * @func: function to be invoked after the SRCU grace period * * The callback function will be invoked some time after a full SRCU * grace period elapses, in other words after all pre-existing SRCU * read-side critical sections have completed. However, the callback * function might well execute concurrently with other SRCU read-side * critical sections that started after call_srcu() was invoked. SRCU * read-side critical sections are delimited by srcu_read_lock() and * srcu_read_unlock(), and may be nested. * * The callback will be invoked from process context, but must nevertheless * be fast and must not block. */ void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, rcu_callback_t func) { __call_srcu(ssp, rhp, func, true); } EXPORT_SYMBOL_GPL(call_srcu); /* * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). */ static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) { struct rcu_synchronize rcu; srcu_lock_sync(&ssp->dep_map); RCU_LOCKDEP_WARN(lockdep_is_held(ssp) || lock_is_held(&rcu_bh_lock_map) || lock_is_held(&rcu_lock_map) || lock_is_held(&rcu_sched_lock_map), "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) return; might_sleep(); check_init_srcu_struct(ssp); init_completion(&rcu.completion); init_rcu_head_on_stack(&rcu.head); __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); wait_for_completion(&rcu.completion); destroy_rcu_head_on_stack(&rcu.head); /* * Make sure that later code is ordered after the SRCU grace * period. This pairs with the spin_lock_irq_rcu_node() * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed * because the current CPU might have been totally uninvolved with * (and thus unordered against) that grace period. */ smp_mb(); } /** * synchronize_srcu_expedited - Brute-force SRCU grace period * @ssp: srcu_struct with which to synchronize. * * Wait for an SRCU grace period to elapse, but be more aggressive about * spinning rather than blocking when waiting. * * Note that synchronize_srcu_expedited() has the same deadlock and * memory-ordering properties as does synchronize_srcu(). */ void synchronize_srcu_expedited(struct srcu_struct *ssp) { __synchronize_srcu(ssp, rcu_gp_is_normal()); } EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); /** * synchronize_srcu - wait for prior SRCU read-side critical-section completion * @ssp: srcu_struct with which to synchronize. * * Wait for the count to drain to zero of both indexes. To avoid the * possible starvation of synchronize_srcu(), it waits for the count of * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, * and then flip the srcu_idx and wait for the count of the other index. * * Can block; must be called from process context. * * Note that it is illegal to call synchronize_srcu() from the corresponding * SRCU read-side critical section; doing so will result in deadlock. * However, it is perfectly legal to call synchronize_srcu() on one * srcu_struct from some other srcu_struct's read-side critical section, * as long as the resulting graph of srcu_structs is acyclic. * * There are memory-ordering constraints implied by synchronize_srcu(). * On systems with more than one CPU, when synchronize_srcu() returns, * each CPU is guaranteed to have executed a full memory barrier since * the end of its last corresponding SRCU read-side critical section * whose beginning preceded the call to synchronize_srcu(). In addition, * each CPU having an SRCU read-side critical section that extends beyond * the return from synchronize_srcu() is guaranteed to have executed a * full memory barrier after the beginning of synchronize_srcu() and before * the beginning of that SRCU read-side critical section. Note that these * guarantees include CPUs that are offline, idle, or executing in user mode, * as well as CPUs that are executing in the kernel. * * Furthermore, if CPU A invoked synchronize_srcu(), which returned * to its caller on CPU B, then both CPU A and CPU B are guaranteed * to have executed a full memory barrier during the execution of * synchronize_srcu(). This guarantee applies even if CPU A and CPU B * are the same CPU, but again only if the system has more than one CPU. * * Of course, these memory-ordering guarantees apply only when * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are * passed the same srcu_struct structure. * * Implementation of these memory-ordering guarantees is similar to * that of synchronize_rcu(). * * If SRCU is likely idle, expedite the first request. This semantic * was provided by Classic SRCU, and is relied upon by its users, so TREE * SRCU must also provide it. Note that detecting idleness is heuristic * and subject to both false positives and negatives. */ void synchronize_srcu(struct srcu_struct *ssp) { if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited()) synchronize_srcu_expedited(ssp); else __synchronize_srcu(ssp, true); } EXPORT_SYMBOL_GPL(synchronize_srcu); /** * get_state_synchronize_srcu - Provide an end-of-grace-period cookie * @ssp: srcu_struct to provide cookie for. * * This function returns a cookie that can be passed to * poll_state_synchronize_srcu(), which will return true if a full grace * period has elapsed in the meantime. It is the caller's responsibility * to make sure that grace period happens, for example, by invoking * call_srcu() after return from get_state_synchronize_srcu(). */ unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp) { // Any prior manipulation of SRCU-protected data must happen // before the load from ->srcu_gp_seq. smp_mb(); return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); } EXPORT_SYMBOL_GPL(get_state_synchronize_srcu); /** * start_poll_synchronize_srcu - Provide cookie and start grace period * @ssp: srcu_struct to provide cookie for. * * This function returns a cookie that can be passed to * poll_state_synchronize_srcu(), which will return true if a full grace * period has elapsed in the meantime. Unlike get_state_synchronize_srcu(), * this function also ensures that any needed SRCU grace period will be * started. This convenience does come at a cost in terms of CPU overhead. */ unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp) { return srcu_gp_start_if_needed(ssp, NULL, true); } EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu); /** * poll_state_synchronize_srcu - Has cookie's grace period ended? * @ssp: srcu_struct to provide cookie for. * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu(). * * This function takes the cookie that was returned from either * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and * returns @true if an SRCU grace period elapsed since the time that the * cookie was created. * * Because cookies are finite in size, wrapping/overflow is possible. * This is more pronounced on 32-bit systems where cookies are 32 bits, * where in theory wrapping could happen in about 14 hours assuming * 25-microsecond expedited SRCU grace periods. However, a more likely * overflow lower bound is on the order of 24 days in the case of * one-millisecond SRCU grace periods. Of course, wrapping in a 64-bit * system requires geologic timespans, as in more than seven million years * even for expedited SRCU grace periods. * * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU. This uses * a 16-bit cookie, which rcutorture routinely wraps in a matter of a * few minutes. If this proves to be a problem, this counter will be * expanded to the same size as for Tree SRCU. */ bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie) { if (!rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie)) return false; // Ensure that the end of the SRCU grace period happens before // any subsequent code that the caller might execute. smp_mb(); // ^^^ return true; } EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu); /* * Callback function for srcu_barrier() use. */ static void srcu_barrier_cb(struct rcu_head *rhp) { struct srcu_data *sdp; struct srcu_struct *ssp; sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); ssp = sdp->ssp; if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) complete(&ssp->srcu_sup->srcu_barrier_completion); } /* * Enqueue an srcu_barrier() callback on the specified srcu_data * structure's ->cblist. but only if that ->cblist already has at least one * callback enqueued. Note that if a CPU already has callbacks enqueue, * it must have already registered the need for a future grace period, * so all we need do is enqueue a callback that will use the same grace * period as the last callback already in the queue. */ static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp) { spin_lock_irq_rcu_node(sdp); atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt); sdp->srcu_barrier_head.func = srcu_barrier_cb; debug_rcu_head_queue(&sdp->srcu_barrier_head); if (!rcu_segcblist_entrain(&sdp->srcu_cblist, &sdp->srcu_barrier_head)) { debug_rcu_head_unqueue(&sdp->srcu_barrier_head); atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt); } spin_unlock_irq_rcu_node(sdp); } /** * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. * @ssp: srcu_struct on which to wait for in-flight callbacks. */ void srcu_barrier(struct srcu_struct *ssp) { int cpu; int idx; unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq); check_init_srcu_struct(ssp); mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex); if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) { smp_mb(); /* Force ordering following return. */ mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); return; /* Someone else did our work for us. */ } rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq); init_completion(&ssp->srcu_sup->srcu_barrier_completion); /* Initial count prevents reaching zero until all CBs are posted. */ atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1); idx = __srcu_read_lock_nmisafe(ssp); if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, get_boot_cpu_id())); else for_each_possible_cpu(cpu) srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu)); __srcu_read_unlock_nmisafe(ssp, idx); /* Remove the initial count, at which point reaching zero can happen. */ if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) complete(&ssp->srcu_sup->srcu_barrier_completion); wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion); rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq); mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); } EXPORT_SYMBOL_GPL(srcu_barrier); /** * srcu_batches_completed - return batches completed. * @ssp: srcu_struct on which to report batch completion. * * Report the number of batches, correlated with, but not necessarily * precisely the same as, the number of grace periods that have elapsed. */ unsigned long srcu_batches_completed(struct srcu_struct *ssp) { return READ_ONCE(ssp->srcu_idx); } EXPORT_SYMBOL_GPL(srcu_batches_completed); /* * Core SRCU state machine. Push state bits of ->srcu_gp_seq * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has * completed in that state. */ static void srcu_advance_state(struct srcu_struct *ssp) { int idx; mutex_lock(&ssp->srcu_sup->srcu_gp_mutex); /* * Because readers might be delayed for an extended period after * fetching ->srcu_idx for their index, at any point in time there * might well be readers using both idx=0 and idx=1. We therefore * need to wait for readers to clear from both index values before * invoking a callback. * * The load-acquire ensures that we see the accesses performed * by the prior grace period. */ idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */ if (idx == SRCU_STATE_IDLE) { spin_lock_irq_rcu_node(ssp->srcu_sup); if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)); spin_unlock_irq_rcu_node(ssp->srcu_sup); mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); return; } idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)); if (idx == SRCU_STATE_IDLE) srcu_gp_start(ssp); spin_unlock_irq_rcu_node(ssp->srcu_sup); if (idx != SRCU_STATE_IDLE) { mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); return; /* Someone else started the grace period. */ } } if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) { idx = 1 ^ (ssp->srcu_idx & 1); if (!try_check_zero(ssp, idx, 1)) { mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); return; /* readers present, retry later. */ } srcu_flip(ssp); spin_lock_irq_rcu_node(ssp->srcu_sup); rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2); ssp->srcu_sup->srcu_n_exp_nodelay = 0; spin_unlock_irq_rcu_node(ssp->srcu_sup); } if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) { /* * SRCU read-side critical sections are normally short, * so check at least twice in quick succession after a flip. */ idx = 1 ^ (ssp->srcu_idx & 1); if (!try_check_zero(ssp, idx, 2)) { mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); return; /* readers present, retry later. */ } ssp->srcu_sup->srcu_n_exp_nodelay = 0; srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ } } /* * Invoke a limited number of SRCU callbacks that have passed through * their grace period. If there are more to do, SRCU will reschedule * the workqueue. Note that needed memory barriers have been executed * in this task's context by srcu_readers_active_idx_check(). */ static void srcu_invoke_callbacks(struct work_struct *work) { long len; bool more; struct rcu_cblist ready_cbs; struct rcu_head *rhp; struct srcu_data *sdp; struct srcu_struct *ssp; sdp = container_of(work, struct srcu_data, work); ssp = sdp->ssp; rcu_cblist_init(&ready_cbs); spin_lock_irq_rcu_node(sdp); WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL)); rcu_segcblist_advance(&sdp->srcu_cblist, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); /* * Although this function is theoretically re-entrant, concurrent * callbacks invocation is disallowed to avoid executing an SRCU barrier * too early. */ if (sdp->srcu_cblist_invoking || !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { spin_unlock_irq_rcu_node(sdp); return; /* Someone else on the job or nothing to do. */ } /* We are on the job! Extract and invoke ready callbacks. */ sdp->srcu_cblist_invoking = true; rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); len = ready_cbs.len; spin_unlock_irq_rcu_node(sdp); rhp = rcu_cblist_dequeue(&ready_cbs); for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { debug_rcu_head_unqueue(rhp); debug_rcu_head_callback(rhp); local_bh_disable(); rhp->func(rhp); local_bh_enable(); } WARN_ON_ONCE(ready_cbs.len); /* * Update counts, accelerate new callbacks, and if needed, * schedule another round of callback invocation. */ spin_lock_irq_rcu_node(sdp); rcu_segcblist_add_len(&sdp->srcu_cblist, -len); sdp->srcu_cblist_invoking = false; more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); spin_unlock_irq_rcu_node(sdp); /* An SRCU barrier or callbacks from previous nesting work pending */ if (more) srcu_schedule_cbs_sdp(sdp, 0); } /* * Finished one round of SRCU grace period. Start another if there are * more SRCU callbacks queued, otherwise put SRCU into not-running state. */ static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) { bool pushgp = true; spin_lock_irq_rcu_node(ssp->srcu_sup); if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) { /* All requests fulfilled, time to go idle. */ pushgp = false; } } else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) { /* Outstanding request and no GP. Start one. */ srcu_gp_start(ssp); } spin_unlock_irq_rcu_node(ssp->srcu_sup); if (pushgp) queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay); } /* * This is the work-queue function that handles SRCU grace periods. */ static void process_srcu(struct work_struct *work) { unsigned long curdelay; unsigned long j; struct srcu_struct *ssp; struct srcu_usage *sup; sup = container_of(work, struct srcu_usage, work.work); ssp = sup->srcu_ssp; srcu_advance_state(ssp); curdelay = srcu_get_delay(ssp); if (curdelay) { WRITE_ONCE(sup->reschedule_count, 0); } else { j = jiffies; if (READ_ONCE(sup->reschedule_jiffies) == j) { WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1); if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay) curdelay = 1; } else { WRITE_ONCE(sup->reschedule_count, 1); WRITE_ONCE(sup->reschedule_jiffies, j); } } srcu_reschedule(ssp, curdelay); } void srcutorture_get_gp_data(enum rcutorture_type test_type, struct srcu_struct *ssp, int *flags, unsigned long *gp_seq) { if (test_type != SRCU_FLAVOR) return; *flags = 0; *gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); } EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); static const char * const srcu_size_state_name[] = { "SRCU_SIZE_SMALL", "SRCU_SIZE_ALLOC", "SRCU_SIZE_WAIT_BARRIER", "SRCU_SIZE_WAIT_CALL", "SRCU_SIZE_WAIT_CBS1", "SRCU_SIZE_WAIT_CBS2", "SRCU_SIZE_WAIT_CBS3", "SRCU_SIZE_WAIT_CBS4", "SRCU_SIZE_BIG", "SRCU_SIZE_???", }; void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) { int cpu; int idx; unsigned long s0 = 0, s1 = 0; int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state); int ss_state_idx = ss_state; idx = ssp->srcu_idx & 0x1; if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name)) ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1; pr_alert("%s%s Tree SRCU g%ld state %d (%s)", tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state, srcu_size_state_name[ss_state_idx]); if (!ssp->sda) { // Called after cleanup_srcu_struct(), perhaps. pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n"); } else { pr_cont(" per-CPU(idx=%d):", idx); for_each_possible_cpu(cpu) { unsigned long l0, l1; unsigned long u0, u1; long c0, c1; struct srcu_data *sdp; sdp = per_cpu_ptr(ssp->sda, cpu); u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx])); u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx])); /* * Make sure that a lock is always counted if the corresponding * unlock is counted. */ smp_rmb(); l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx])); l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx])); c0 = l0 - u0; c1 = l1 - u1; pr_cont(" %d(%ld,%ld %c)", cpu, c0, c1, "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]); s0 += c0; s1 += c1; } pr_cont(" T(%ld,%ld)\n", s0, s1); } if (SRCU_SIZING_IS_TORTURE()) srcu_transition_to_big(ssp); } EXPORT_SYMBOL_GPL(srcu_torture_stats_print); static int __init srcu_bootup_announce(void) { pr_info("Hierarchical SRCU implementation.\n"); if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY) pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay); if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY) pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay); pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase); return 0; } early_initcall(srcu_bootup_announce); void __init srcu_init(void) { struct srcu_usage *sup; /* Decide on srcu_struct-size strategy. */ if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) { if (nr_cpu_ids >= big_cpu_lim) { convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention. pr_info("%s: Setting srcu_struct sizes to big.\n", __func__); } else { convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND; pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__); } } /* * Once that is set, call_srcu() can follow the normal path and * queue delayed work. This must follow RCU workqueues creation * and timers initialization. */ srcu_init_done = true; while (!list_empty(&srcu_boot_list)) { sup = list_first_entry(&srcu_boot_list, struct srcu_usage, work.work.entry); list_del_init(&sup->work.work.entry); if (SRCU_SIZING_IS(SRCU_SIZING_INIT) && sup->srcu_size_state == SRCU_SIZE_SMALL) sup->srcu_size_state = SRCU_SIZE_ALLOC; queue_work(rcu_gp_wq, &sup->work.work); } } #ifdef CONFIG_MODULES /* Initialize any global-scope srcu_struct structures used by this module. */ static int srcu_module_coming(struct module *mod) { int i; struct srcu_struct *ssp; struct srcu_struct **sspp = mod->srcu_struct_ptrs; for (i = 0; i < mod->num_srcu_structs; i++) { ssp = *(sspp++); ssp->sda = alloc_percpu(struct srcu_data); if (WARN_ON_ONCE(!ssp->sda)) return -ENOMEM; } return 0; } /* Clean up any global-scope srcu_struct structures used by this module. */ static void srcu_module_going(struct module *mod) { int i; struct srcu_struct *ssp; struct srcu_struct **sspp = mod->srcu_struct_ptrs; for (i = 0; i < mod->num_srcu_structs; i++) { ssp = *(sspp++); if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) && !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static)) cleanup_srcu_struct(ssp); if (!WARN_ON(srcu_readers_active(ssp))) free_percpu(ssp->sda); } } /* Handle one module, either coming or going. */ static int srcu_module_notify(struct notifier_block *self, unsigned long val, void *data) { struct module *mod = data; int ret = 0; switch (val) { case MODULE_STATE_COMING: ret = srcu_module_coming(mod); break; case MODULE_STATE_GOING: srcu_module_going(mod); break; default: break; } return ret; } static struct notifier_block srcu_module_nb = { .notifier_call = srcu_module_notify, .priority = 0, }; static __init int init_srcu_module_notifier(void) { int ret; ret = register_module_notifier(&srcu_module_nb); if (ret) pr_warn("Failed to register srcu module notifier\n"); return ret; } late_initcall(init_srcu_module_notifier); #endif /* #ifdef CONFIG_MODULES */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1