Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mathieu Desnoyers | 1126 | 71.27% | 18 | 46.15% |
Peter Oskolkov | 204 | 12.91% | 1 | 2.56% |
Michal Clapinski | 133 | 8.42% | 1 | 2.56% |
Andrew Lutomirski | 49 | 3.10% | 3 | 7.69% |
Linus Torvalds | 20 | 1.27% | 1 | 2.56% |
Oleg Nesterov | 12 | 0.76% | 1 | 2.56% |
Linus Torvalds (pre-git) | 12 | 0.76% | 2 | 5.13% |
Andrea Parri | 9 | 0.57% | 3 | 7.69% |
Eric W. Biedermann | 3 | 0.19% | 1 | 2.56% |
Peter Zijlstra | 3 | 0.19% | 1 | 2.56% |
Thomas Gleixner | 2 | 0.13% | 1 | 2.56% |
Balbir Singh | 2 | 0.13% | 1 | 2.56% |
Randy Dunlap | 1 | 0.06% | 1 | 2.56% |
Ingo Molnar | 1 | 0.06% | 1 | 2.56% |
Paul E. McKenney | 1 | 0.06% | 1 | 2.56% |
Nadav Amit | 1 | 0.06% | 1 | 2.56% |
Rik Van Riel | 1 | 0.06% | 1 | 2.56% |
Total | 1580 | 39 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com> * * membarrier system call */ /* * For documentation purposes, here are some membarrier ordering * scenarios to keep in mind: * * A) Userspace thread execution after IPI vs membarrier's memory * barrier before sending the IPI * * Userspace variables: * * int x = 0, y = 0; * * The memory barrier at the start of membarrier() on CPU0 is necessary in * order to enforce the guarantee that any writes occurring on CPU0 before * the membarrier() is executed will be visible to any code executing on * CPU1 after the IPI-induced memory barrier: * * CPU0 CPU1 * * x = 1 * membarrier(): * a: smp_mb() * b: send IPI IPI-induced mb * c: smp_mb() * r2 = y * y = 1 * barrier() * r1 = x * * BUG_ON(r1 == 0 && r2 == 0) * * The write to y and load from x by CPU1 are unordered by the hardware, * so it's possible to have "r1 = x" reordered before "y = 1" at any * point after (b). If the memory barrier at (a) is omitted, then "x = 1" * can be reordered after (a) (although not after (c)), so we get r1 == 0 * and r2 == 0. This violates the guarantee that membarrier() is * supposed by provide. * * The timing of the memory barrier at (a) has to ensure that it executes * before the IPI-induced memory barrier on CPU1. * * B) Userspace thread execution before IPI vs membarrier's memory * barrier after completing the IPI * * Userspace variables: * * int x = 0, y = 0; * * The memory barrier at the end of membarrier() on CPU0 is necessary in * order to enforce the guarantee that any writes occurring on CPU1 before * the membarrier() is executed will be visible to any code executing on * CPU0 after the membarrier(): * * CPU0 CPU1 * * x = 1 * barrier() * y = 1 * r2 = y * membarrier(): * a: smp_mb() * b: send IPI IPI-induced mb * c: smp_mb() * r1 = x * BUG_ON(r1 == 0 && r2 == 1) * * The writes to x and y are unordered by the hardware, so it's possible to * have "r2 = 1" even though the write to x doesn't execute until (b). If * the memory barrier at (c) is omitted then "r1 = x" can be reordered * before (b) (although not before (a)), so we get "r1 = 0". This violates * the guarantee that membarrier() is supposed to provide. * * The timing of the memory barrier at (c) has to ensure that it executes * after the IPI-induced memory barrier on CPU1. * * C) Scheduling userspace thread -> kthread -> userspace thread vs membarrier * * CPU0 CPU1 * * membarrier(): * a: smp_mb() * d: switch to kthread (includes mb) * b: read rq->curr->mm == NULL * e: switch to user (includes mb) * c: smp_mb() * * Using the scenario from (A), we can show that (a) needs to be paired * with (e). Using the scenario from (B), we can show that (c) needs to * be paired with (d). * * D) exit_mm vs membarrier * * Two thread groups are created, A and B. Thread group B is created by * issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD. * Let's assume we have a single thread within each thread group (Thread A * and Thread B). Thread A runs on CPU0, Thread B runs on CPU1. * * CPU0 CPU1 * * membarrier(): * a: smp_mb() * exit_mm(): * d: smp_mb() * e: current->mm = NULL * b: read rq->curr->mm == NULL * c: smp_mb() * * Using scenario (B), we can show that (c) needs to be paired with (d). * * E) kthread_{use,unuse}_mm vs membarrier * * CPU0 CPU1 * * membarrier(): * a: smp_mb() * kthread_unuse_mm() * d: smp_mb() * e: current->mm = NULL * b: read rq->curr->mm == NULL * kthread_use_mm() * f: current->mm = mm * g: smp_mb() * c: smp_mb() * * Using the scenario from (A), we can show that (a) needs to be paired * with (g). Using the scenario from (B), we can show that (c) needs to * be paired with (d). */ /* * Bitmask made from a "or" of all commands within enum membarrier_cmd, * except MEMBARRIER_CMD_QUERY. */ #ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \ (MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE \ | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE) #else #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK 0 #endif #ifdef CONFIG_RSEQ #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK \ (MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ \ | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ) #else #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK 0 #endif #define MEMBARRIER_CMD_BITMASK \ (MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED \ | MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED \ | MEMBARRIER_CMD_PRIVATE_EXPEDITED \ | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED \ | MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \ | MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK \ | MEMBARRIER_CMD_GET_REGISTRATIONS) static DEFINE_MUTEX(membarrier_ipi_mutex); #define SERIALIZE_IPI() guard(mutex)(&membarrier_ipi_mutex) static void ipi_mb(void *info) { smp_mb(); /* IPIs should be serializing but paranoid. */ } static void ipi_sync_core(void *info) { /* * The smp_mb() in membarrier after all the IPIs is supposed to * ensure that memory on remote CPUs that occur before the IPI * become visible to membarrier()'s caller -- see scenario B in * the big comment at the top of this file. * * A sync_core() would provide this guarantee, but * sync_core_before_usermode() might end up being deferred until * after membarrier()'s smp_mb(). */ smp_mb(); /* IPIs should be serializing but paranoid. */ sync_core_before_usermode(); } static void ipi_rseq(void *info) { /* * Ensure that all stores done by the calling thread are visible * to the current task before the current task resumes. We could * probably optimize this away on most architectures, but by the * time we've already sent an IPI, the cost of the extra smp_mb() * is negligible. */ smp_mb(); rseq_preempt(current); } static void ipi_sync_rq_state(void *info) { struct mm_struct *mm = (struct mm_struct *) info; if (current->mm != mm) return; this_cpu_write(runqueues.membarrier_state, atomic_read(&mm->membarrier_state)); /* * Issue a memory barrier after setting * MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to * guarantee that no memory access following registration is reordered * before registration. */ smp_mb(); } void membarrier_exec_mmap(struct mm_struct *mm) { /* * Issue a memory barrier before clearing membarrier_state to * guarantee that no memory access prior to exec is reordered after * clearing this state. */ smp_mb(); atomic_set(&mm->membarrier_state, 0); /* * Keep the runqueue membarrier_state in sync with this mm * membarrier_state. */ this_cpu_write(runqueues.membarrier_state, 0); } void membarrier_update_current_mm(struct mm_struct *next_mm) { struct rq *rq = this_rq(); int membarrier_state = 0; if (next_mm) membarrier_state = atomic_read(&next_mm->membarrier_state); if (READ_ONCE(rq->membarrier_state) == membarrier_state) return; WRITE_ONCE(rq->membarrier_state, membarrier_state); } static int membarrier_global_expedited(void) { int cpu; cpumask_var_t tmpmask; if (num_online_cpus() == 1) return 0; /* * Matches memory barriers after rq->curr modification in * scheduler. */ smp_mb(); /* system call entry is not a mb. */ if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) return -ENOMEM; SERIALIZE_IPI(); cpus_read_lock(); rcu_read_lock(); for_each_online_cpu(cpu) { struct task_struct *p; /* * Skipping the current CPU is OK even through we can be * migrated at any point. The current CPU, at the point * where we read raw_smp_processor_id(), is ensured to * be in program order with respect to the caller * thread. Therefore, we can skip this CPU from the * iteration. */ if (cpu == raw_smp_processor_id()) continue; if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) & MEMBARRIER_STATE_GLOBAL_EXPEDITED)) continue; /* * Skip the CPU if it runs a kernel thread which is not using * a task mm. */ p = rcu_dereference(cpu_rq(cpu)->curr); if (!p->mm) continue; __cpumask_set_cpu(cpu, tmpmask); } rcu_read_unlock(); preempt_disable(); smp_call_function_many(tmpmask, ipi_mb, NULL, 1); preempt_enable(); free_cpumask_var(tmpmask); cpus_read_unlock(); /* * Memory barrier on the caller thread _after_ we finished * waiting for the last IPI. Matches memory barriers before * rq->curr modification in scheduler. */ smp_mb(); /* exit from system call is not a mb */ return 0; } static int membarrier_private_expedited(int flags, int cpu_id) { cpumask_var_t tmpmask; struct mm_struct *mm = current->mm; smp_call_func_t ipi_func = ipi_mb; if (flags == MEMBARRIER_FLAG_SYNC_CORE) { if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE)) return -EINVAL; if (!(atomic_read(&mm->membarrier_state) & MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY)) return -EPERM; ipi_func = ipi_sync_core; prepare_sync_core_cmd(mm); } else if (flags == MEMBARRIER_FLAG_RSEQ) { if (!IS_ENABLED(CONFIG_RSEQ)) return -EINVAL; if (!(atomic_read(&mm->membarrier_state) & MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY)) return -EPERM; ipi_func = ipi_rseq; } else { WARN_ON_ONCE(flags); if (!(atomic_read(&mm->membarrier_state) & MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY)) return -EPERM; } if (flags != MEMBARRIER_FLAG_SYNC_CORE && (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1)) return 0; /* * Matches memory barriers after rq->curr modification in * scheduler. * * On RISC-V, this barrier pairing is also needed for the * SYNC_CORE command when switching between processes, cf. * the inline comments in membarrier_arch_switch_mm(). */ smp_mb(); /* system call entry is not a mb. */ if (cpu_id < 0 && !zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) return -ENOMEM; SERIALIZE_IPI(); cpus_read_lock(); if (cpu_id >= 0) { struct task_struct *p; if (cpu_id >= nr_cpu_ids || !cpu_online(cpu_id)) goto out; rcu_read_lock(); p = rcu_dereference(cpu_rq(cpu_id)->curr); if (!p || p->mm != mm) { rcu_read_unlock(); goto out; } rcu_read_unlock(); } else { int cpu; rcu_read_lock(); for_each_online_cpu(cpu) { struct task_struct *p; p = rcu_dereference(cpu_rq(cpu)->curr); if (p && p->mm == mm) __cpumask_set_cpu(cpu, tmpmask); } rcu_read_unlock(); } if (cpu_id >= 0) { /* * smp_call_function_single() will call ipi_func() if cpu_id * is the calling CPU. */ smp_call_function_single(cpu_id, ipi_func, NULL, 1); } else { /* * For regular membarrier, we can save a few cycles by * skipping the current cpu -- we're about to do smp_mb() * below, and if we migrate to a different cpu, this cpu * and the new cpu will execute a full barrier in the * scheduler. * * For SYNC_CORE, we do need a barrier on the current cpu -- * otherwise, if we are migrated and replaced by a different * task in the same mm just before, during, or after * membarrier, we will end up with some thread in the mm * running without a core sync. * * For RSEQ, don't rseq_preempt() the caller. User code * is not supposed to issue syscalls at all from inside an * rseq critical section. */ if (flags != MEMBARRIER_FLAG_SYNC_CORE) { preempt_disable(); smp_call_function_many(tmpmask, ipi_func, NULL, true); preempt_enable(); } else { on_each_cpu_mask(tmpmask, ipi_func, NULL, true); } } out: if (cpu_id < 0) free_cpumask_var(tmpmask); cpus_read_unlock(); /* * Memory barrier on the caller thread _after_ we finished * waiting for the last IPI. Matches memory barriers before * rq->curr modification in scheduler. */ smp_mb(); /* exit from system call is not a mb */ return 0; } static int sync_runqueues_membarrier_state(struct mm_struct *mm) { int membarrier_state = atomic_read(&mm->membarrier_state); cpumask_var_t tmpmask; int cpu; if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) { this_cpu_write(runqueues.membarrier_state, membarrier_state); /* * For single mm user, we can simply issue a memory barrier * after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the * mm and in the current runqueue to guarantee that no memory * access following registration is reordered before * registration. */ smp_mb(); return 0; } if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) return -ENOMEM; /* * For mm with multiple users, we need to ensure all future * scheduler executions will observe @mm's new membarrier * state. */ synchronize_rcu(); /* * For each cpu runqueue, if the task's mm match @mm, ensure that all * @mm's membarrier state set bits are also set in the runqueue's * membarrier state. This ensures that a runqueue scheduling * between threads which are users of @mm has its membarrier state * updated. */ SERIALIZE_IPI(); cpus_read_lock(); rcu_read_lock(); for_each_online_cpu(cpu) { struct rq *rq = cpu_rq(cpu); struct task_struct *p; p = rcu_dereference(rq->curr); if (p && p->mm == mm) __cpumask_set_cpu(cpu, tmpmask); } rcu_read_unlock(); on_each_cpu_mask(tmpmask, ipi_sync_rq_state, mm, true); free_cpumask_var(tmpmask); cpus_read_unlock(); return 0; } static int membarrier_register_global_expedited(void) { struct task_struct *p = current; struct mm_struct *mm = p->mm; int ret; if (atomic_read(&mm->membarrier_state) & MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY) return 0; atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state); ret = sync_runqueues_membarrier_state(mm); if (ret) return ret; atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY, &mm->membarrier_state); return 0; } static int membarrier_register_private_expedited(int flags) { struct task_struct *p = current; struct mm_struct *mm = p->mm; int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY, set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED, ret; if (flags == MEMBARRIER_FLAG_SYNC_CORE) { if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE)) return -EINVAL; ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY; } else if (flags == MEMBARRIER_FLAG_RSEQ) { if (!IS_ENABLED(CONFIG_RSEQ)) return -EINVAL; ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY; } else { WARN_ON_ONCE(flags); } /* * We need to consider threads belonging to different thread * groups, which use the same mm. (CLONE_VM but not * CLONE_THREAD). */ if ((atomic_read(&mm->membarrier_state) & ready_state) == ready_state) return 0; if (flags & MEMBARRIER_FLAG_SYNC_CORE) set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE; if (flags & MEMBARRIER_FLAG_RSEQ) set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ; atomic_or(set_state, &mm->membarrier_state); ret = sync_runqueues_membarrier_state(mm); if (ret) return ret; atomic_or(ready_state, &mm->membarrier_state); return 0; } static int membarrier_get_registrations(void) { struct task_struct *p = current; struct mm_struct *mm = p->mm; int registrations_mask = 0, membarrier_state, i; static const int states[] = { MEMBARRIER_STATE_GLOBAL_EXPEDITED | MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY, MEMBARRIER_STATE_PRIVATE_EXPEDITED | MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY, MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE | MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY, MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ | MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY }; static const int registration_cmds[] = { MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED, MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED, MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE, MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ }; BUILD_BUG_ON(ARRAY_SIZE(states) != ARRAY_SIZE(registration_cmds)); membarrier_state = atomic_read(&mm->membarrier_state); for (i = 0; i < ARRAY_SIZE(states); ++i) { if (membarrier_state & states[i]) { registrations_mask |= registration_cmds[i]; membarrier_state &= ~states[i]; } } WARN_ON_ONCE(membarrier_state != 0); return registrations_mask; } /** * sys_membarrier - issue memory barriers on a set of threads * @cmd: Takes command values defined in enum membarrier_cmd. * @flags: Currently needs to be 0 for all commands other than * MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: in the latter * case it can be MEMBARRIER_CMD_FLAG_CPU, indicating that @cpu_id * contains the CPU on which to interrupt (= restart) * the RSEQ critical section. * @cpu_id: if @flags == MEMBARRIER_CMD_FLAG_CPU, indicates the cpu on which * RSEQ CS should be interrupted (@cmd must be * MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ). * * If this system call is not implemented, -ENOSYS is returned. If the * command specified does not exist, not available on the running * kernel, or if the command argument is invalid, this system call * returns -EINVAL. For a given command, with flags argument set to 0, * if this system call returns -ENOSYS or -EINVAL, it is guaranteed to * always return the same value until reboot. In addition, it can return * -ENOMEM if there is not enough memory available to perform the system * call. * * All memory accesses performed in program order from each targeted thread * is guaranteed to be ordered with respect to sys_membarrier(). If we use * the semantic "barrier()" to represent a compiler barrier forcing memory * accesses to be performed in program order across the barrier, and * smp_mb() to represent explicit memory barriers forcing full memory * ordering across the barrier, we have the following ordering table for * each pair of barrier(), sys_membarrier() and smp_mb(): * * The pair ordering is detailed as (O: ordered, X: not ordered): * * barrier() smp_mb() sys_membarrier() * barrier() X X O * smp_mb() X O O * sys_membarrier() O O O */ SYSCALL_DEFINE3(membarrier, int, cmd, unsigned int, flags, int, cpu_id) { switch (cmd) { case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: if (unlikely(flags && flags != MEMBARRIER_CMD_FLAG_CPU)) return -EINVAL; break; default: if (unlikely(flags)) return -EINVAL; } if (!(flags & MEMBARRIER_CMD_FLAG_CPU)) cpu_id = -1; switch (cmd) { case MEMBARRIER_CMD_QUERY: { int cmd_mask = MEMBARRIER_CMD_BITMASK; if (tick_nohz_full_enabled()) cmd_mask &= ~MEMBARRIER_CMD_GLOBAL; return cmd_mask; } case MEMBARRIER_CMD_GLOBAL: /* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */ if (tick_nohz_full_enabled()) return -EINVAL; if (num_online_cpus() > 1) synchronize_rcu(); return 0; case MEMBARRIER_CMD_GLOBAL_EXPEDITED: return membarrier_global_expedited(); case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED: return membarrier_register_global_expedited(); case MEMBARRIER_CMD_PRIVATE_EXPEDITED: return membarrier_private_expedited(0, cpu_id); case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED: return membarrier_register_private_expedited(0); case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE: return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE, cpu_id); case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE: return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE); case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: return membarrier_private_expedited(MEMBARRIER_FLAG_RSEQ, cpu_id); case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ: return membarrier_register_private_expedited(MEMBARRIER_FLAG_RSEQ); case MEMBARRIER_CMD_GET_REGISTRATIONS: return membarrier_get_registrations(); default: return -EINVAL; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1