Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
692 | 87.82% | 1 | 7.14% | |
70 | 8.88% | 7 | 50.00% | |
9 | 1.14% | 1 | 7.14% | |
7 | 0.89% | 2 | 14.29% | |
6 | 0.76% | 1 | 7.14% | |
3 | 0.38% | 1 | 7.14% | |
1 | 0.13% | 1 | 7.14% | |
Total | 788 | 14 |
Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vincenzo Frascino | 692 | 87.82% | 1 | 7.14% |
Thomas Gleixner | 70 | 8.88% | 7 | 50.00% |
Arnd Bergmann | 9 | 1.14% | 1 | 7.14% |
John Stultz | 7 | 0.89% | 2 | 14.29% |
Marcelo Tosatti | 6 | 0.76% | 1 | 7.14% |
Colin Cross | 3 | 0.38% | 1 | 7.14% |
Ingo Molnar | 1 | 0.13% | 1 | 7.14% |
Total | 788 | 14 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2019 ARM Ltd. * * Generic implementation of update_vsyscall and update_vsyscall_tz. * * Based on the x86 specific implementation. */ #include <linux/hrtimer.h> #include <linux/timekeeper_internal.h> #include <vdso/datapage.h> #include <vdso/helpers.h> #include <vdso/vsyscall.h> #include "timekeeping_internal.h" static inline void update_vdso_data(struct vdso_data *vdata, struct timekeeper *tk) { struct vdso_timestamp *vdso_ts; u64 nsec, sec; vdata[CS_HRES_COARSE].cycle_last = tk->tkr_mono.cycle_last; vdata[CS_HRES_COARSE].mask = tk->tkr_mono.mask; vdata[CS_HRES_COARSE].mult = tk->tkr_mono.mult; vdata[CS_HRES_COARSE].shift = tk->tkr_mono.shift; vdata[CS_RAW].cycle_last = tk->tkr_raw.cycle_last; vdata[CS_RAW].mask = tk->tkr_raw.mask; vdata[CS_RAW].mult = tk->tkr_raw.mult; vdata[CS_RAW].shift = tk->tkr_raw.shift; /* CLOCK_MONOTONIC */ vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC]; vdso_ts->sec = tk->xtime_sec + tk->wall_to_monotonic.tv_sec; nsec = tk->tkr_mono.xtime_nsec; nsec += ((u64)tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift); while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) { nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift); vdso_ts->sec++; } vdso_ts->nsec = nsec; /* Copy MONOTONIC time for BOOTTIME */ sec = vdso_ts->sec; /* Add the boot offset */ sec += tk->monotonic_to_boot.tv_sec; nsec += (u64)tk->monotonic_to_boot.tv_nsec << tk->tkr_mono.shift; /* CLOCK_BOOTTIME */ vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_BOOTTIME]; vdso_ts->sec = sec; while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) { nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift); vdso_ts->sec++; } vdso_ts->nsec = nsec; /* CLOCK_MONOTONIC_RAW */ vdso_ts = &vdata[CS_RAW].basetime[CLOCK_MONOTONIC_RAW]; vdso_ts->sec = tk->raw_sec; vdso_ts->nsec = tk->tkr_raw.xtime_nsec; /* CLOCK_TAI */ vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_TAI]; vdso_ts->sec = tk->xtime_sec + (s64)tk->tai_offset; vdso_ts->nsec = tk->tkr_mono.xtime_nsec; } void update_vsyscall(struct timekeeper *tk) { struct vdso_data *vdata = __arch_get_k_vdso_data(); struct vdso_timestamp *vdso_ts; s32 clock_mode; u64 nsec; /* copy vsyscall data */ vdso_write_begin(vdata); clock_mode = tk->tkr_mono.clock->vdso_clock_mode; vdata[CS_HRES_COARSE].clock_mode = clock_mode; vdata[CS_RAW].clock_mode = clock_mode; /* CLOCK_REALTIME also required for time() */ vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME]; vdso_ts->sec = tk->xtime_sec; vdso_ts->nsec = tk->tkr_mono.xtime_nsec; /* CLOCK_REALTIME_COARSE */ vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME_COARSE]; vdso_ts->sec = tk->xtime_sec; vdso_ts->nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; /* CLOCK_MONOTONIC_COARSE */ vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC_COARSE]; vdso_ts->sec = tk->xtime_sec + tk->wall_to_monotonic.tv_sec; nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; nsec = nsec + tk->wall_to_monotonic.tv_nsec; vdso_ts->sec += __iter_div_u64_rem(nsec, NSEC_PER_SEC, &vdso_ts->nsec); /* * Read without the seqlock held by clock_getres(). * Note: No need to have a second copy. */ WRITE_ONCE(vdata[CS_HRES_COARSE].hrtimer_res, hrtimer_resolution); /* * If the current clocksource is not VDSO capable, then spare the * update of the high resolution parts. */ if (clock_mode != VDSO_CLOCKMODE_NONE) update_vdso_data(vdata, tk); __arch_update_vsyscall(vdata, tk); vdso_write_end(vdata); __arch_sync_vdso_data(vdata); } void update_vsyscall_tz(void) { struct vdso_data *vdata = __arch_get_k_vdso_data(); vdata[CS_HRES_COARSE].tz_minuteswest = sys_tz.tz_minuteswest; vdata[CS_HRES_COARSE].tz_dsttime = sys_tz.tz_dsttime; __arch_sync_vdso_data(vdata); } /** * vdso_update_begin - Start of a VDSO update section * * Allows architecture code to safely update the architecture specific VDSO * data. Disables interrupts, acquires timekeeper lock to serialize against * concurrent updates from timekeeping and invalidates the VDSO data * sequence counter to prevent concurrent readers from accessing * inconsistent data. * * Returns: Saved interrupt flags which need to be handed in to * vdso_update_end(). */ unsigned long vdso_update_begin(void) { struct vdso_data *vdata = __arch_get_k_vdso_data(); unsigned long flags; raw_spin_lock_irqsave(&timekeeper_lock, flags); vdso_write_begin(vdata); return flags; } /** * vdso_update_end - End of a VDSO update section * @flags: Interrupt flags as returned from vdso_update_begin() * * Pairs with vdso_update_begin(). Marks vdso data consistent, invokes data * synchronization if the architecture requires it, drops timekeeper lock * and restores interrupt flags. */ void vdso_update_end(unsigned long flags) { struct vdso_data *vdata = __arch_get_k_vdso_data(); vdso_write_end(vdata); __arch_sync_vdso_data(vdata); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); }