Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Beau Belgrave | 10878 | 98.45% | 41 | 75.93% |
sunliming | 74 | 0.67% | 3 | 5.56% |
Linus Torvalds | 54 | 0.49% | 2 | 3.70% |
Mathieu Desnoyers | 19 | 0.17% | 1 | 1.85% |
Steven Rostedt | 8 | 0.07% | 2 | 3.70% |
Xiu Jianfeng | 7 | 0.06% | 1 | 1.85% |
Eric Vaughn | 6 | 0.05% | 1 | 1.85% |
Xiang wangx | 1 | 0.01% | 1 | 1.85% |
Jens Axboe | 1 | 0.01% | 1 | 1.85% |
Al Viro | 1 | 0.01% | 1 | 1.85% |
Total | 11049 | 54 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2021, Microsoft Corporation. * * Authors: * Beau Belgrave <beaub@linux.microsoft.com> */ #include <linux/bitmap.h> #include <linux/cdev.h> #include <linux/hashtable.h> #include <linux/list.h> #include <linux/io.h> #include <linux/uio.h> #include <linux/ioctl.h> #include <linux/jhash.h> #include <linux/refcount.h> #include <linux/trace_events.h> #include <linux/tracefs.h> #include <linux/types.h> #include <linux/uaccess.h> #include <linux/highmem.h> #include <linux/init.h> #include <linux/user_events.h> #include "trace_dynevent.h" #include "trace_output.h" #include "trace.h" #define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1) #define FIELD_DEPTH_TYPE 0 #define FIELD_DEPTH_NAME 1 #define FIELD_DEPTH_SIZE 2 /* Limit how long of an event name plus args within the subsystem. */ #define MAX_EVENT_DESC 512 #define EVENT_NAME(user_event) ((user_event)->reg_name) #define EVENT_TP_NAME(user_event) ((user_event)->tracepoint.name) #define MAX_FIELD_ARRAY_SIZE 1024 /* * Internal bits (kernel side only) to keep track of connected probes: * These are used when status is requested in text form about an event. These * bits are compared against an internal byte on the event to determine which * probes to print out to the user. * * These do not reflect the mapped bytes between the user and kernel space. */ #define EVENT_STATUS_FTRACE BIT(0) #define EVENT_STATUS_PERF BIT(1) #define EVENT_STATUS_OTHER BIT(7) /* * Stores the system name, tables, and locks for a group of events. This * allows isolation for events by various means. */ struct user_event_group { char *system_name; char *system_multi_name; struct hlist_node node; struct mutex reg_mutex; DECLARE_HASHTABLE(register_table, 8); /* ID that moves forward within the group for multi-event names */ u64 multi_id; }; /* Group for init_user_ns mapping, top-most group */ static struct user_event_group *init_group; /* Max allowed events for the whole system */ static unsigned int max_user_events = 32768; /* Current number of events on the whole system */ static unsigned int current_user_events; /* * Stores per-event properties, as users register events * within a file a user_event might be created if it does not * already exist. These are globally used and their lifetime * is tied to the refcnt member. These cannot go away until the * refcnt reaches one. */ struct user_event { struct user_event_group *group; char *reg_name; struct tracepoint tracepoint; struct trace_event_call call; struct trace_event_class class; struct dyn_event devent; struct hlist_node node; struct list_head fields; struct list_head validators; struct work_struct put_work; refcount_t refcnt; int min_size; int reg_flags; char status; }; /* * Stores per-mm/event properties that enable an address to be * updated properly for each task. As tasks are forked, we use * these to track enablement sites that are tied to an event. */ struct user_event_enabler { struct list_head mm_enablers_link; struct user_event *event; unsigned long addr; /* Track enable bit, flags, etc. Aligned for bitops. */ unsigned long values; }; /* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */ #define ENABLE_VAL_BIT_MASK 0x3F /* Bit 6 is for faulting status of enablement */ #define ENABLE_VAL_FAULTING_BIT 6 /* Bit 7 is for freeing status of enablement */ #define ENABLE_VAL_FREEING_BIT 7 /* Bit 8 is for marking 32-bit on 64-bit */ #define ENABLE_VAL_32_ON_64_BIT 8 #define ENABLE_VAL_COMPAT_MASK (1 << ENABLE_VAL_32_ON_64_BIT) /* Only duplicate the bit and compat values */ #define ENABLE_VAL_DUP_MASK (ENABLE_VAL_BIT_MASK | ENABLE_VAL_COMPAT_MASK) #define ENABLE_BITOPS(e) (&(e)->values) #define ENABLE_BIT(e) ((int)((e)->values & ENABLE_VAL_BIT_MASK)) #define EVENT_MULTI_FORMAT(f) ((f) & USER_EVENT_REG_MULTI_FORMAT) /* Used for asynchronous faulting in of pages */ struct user_event_enabler_fault { struct work_struct work; struct user_event_mm *mm; struct user_event_enabler *enabler; int attempt; }; static struct kmem_cache *fault_cache; /* Global list of memory descriptors using user_events */ static LIST_HEAD(user_event_mms); static DEFINE_SPINLOCK(user_event_mms_lock); /* * Stores per-file events references, as users register events * within a file this structure is modified and freed via RCU. * The lifetime of this struct is tied to the lifetime of the file. * These are not shared and only accessible by the file that created it. */ struct user_event_refs { struct rcu_head rcu; int count; struct user_event *events[]; }; struct user_event_file_info { struct user_event_group *group; struct user_event_refs *refs; }; #define VALIDATOR_ENSURE_NULL (1 << 0) #define VALIDATOR_REL (1 << 1) struct user_event_validator { struct list_head user_event_link; int offset; int flags; }; static inline void align_addr_bit(unsigned long *addr, int *bit, unsigned long *flags) { if (IS_ALIGNED(*addr, sizeof(long))) { #ifdef __BIG_ENDIAN /* 32 bit on BE 64 bit requires a 32 bit offset when aligned. */ if (test_bit(ENABLE_VAL_32_ON_64_BIT, flags)) *bit += 32; #endif return; } *addr = ALIGN_DOWN(*addr, sizeof(long)); /* * We only support 32 and 64 bit values. The only time we need * to align is a 32 bit value on a 64 bit kernel, which on LE * is always 32 bits, and on BE requires no change when unaligned. */ #ifdef __LITTLE_ENDIAN *bit += 32; #endif } typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i, void *tpdata, bool *faulted); static int user_event_parse(struct user_event_group *group, char *name, char *args, char *flags, struct user_event **newuser, int reg_flags); static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm); static struct user_event_mm *user_event_mm_get_all(struct user_event *user); static void user_event_mm_put(struct user_event_mm *mm); static int destroy_user_event(struct user_event *user); static bool user_fields_match(struct user_event *user, int argc, const char **argv); static u32 user_event_key(char *name) { return jhash(name, strlen(name), 0); } static bool user_event_capable(u16 reg_flags) { /* Persistent events require CAP_PERFMON / CAP_SYS_ADMIN */ if (reg_flags & USER_EVENT_REG_PERSIST) { if (!perfmon_capable()) return false; } return true; } static struct user_event *user_event_get(struct user_event *user) { refcount_inc(&user->refcnt); return user; } static void delayed_destroy_user_event(struct work_struct *work) { struct user_event *user = container_of( work, struct user_event, put_work); mutex_lock(&event_mutex); if (!refcount_dec_and_test(&user->refcnt)) goto out; if (destroy_user_event(user)) { /* * The only reason this would fail here is if we cannot * update the visibility of the event. In this case the * event stays in the hashtable, waiting for someone to * attempt to delete it later. */ pr_warn("user_events: Unable to delete event\n"); refcount_set(&user->refcnt, 1); } out: mutex_unlock(&event_mutex); } static void user_event_put(struct user_event *user, bool locked) { bool delete; if (unlikely(!user)) return; /* * When the event is not enabled for auto-delete there will always * be at least 1 reference to the event. During the event creation * we initially set the refcnt to 2 to achieve this. In those cases * the caller must acquire event_mutex and after decrement check if * the refcnt is 1, meaning this is the last reference. When auto * delete is enabled, there will only be 1 ref, IE: refcnt will be * only set to 1 during creation to allow the below checks to go * through upon the last put. The last put must always be done with * the event mutex held. */ if (!locked) { lockdep_assert_not_held(&event_mutex); delete = refcount_dec_and_mutex_lock(&user->refcnt, &event_mutex); } else { lockdep_assert_held(&event_mutex); delete = refcount_dec_and_test(&user->refcnt); } if (!delete) return; /* * We now have the event_mutex in all cases, which ensures that * no new references will be taken until event_mutex is released. * New references come through find_user_event(), which requires * the event_mutex to be held. */ if (user->reg_flags & USER_EVENT_REG_PERSIST) { /* We should not get here when persist flag is set */ pr_alert("BUG: Auto-delete engaged on persistent event\n"); goto out; } /* * Unfortunately we have to attempt the actual destroy in a work * queue. This is because not all cases handle a trace_event_call * being removed within the class->reg() operation for unregister. */ INIT_WORK(&user->put_work, delayed_destroy_user_event); /* * Since the event is still in the hashtable, we have to re-inc * the ref count to 1. This count will be decremented and checked * in the work queue to ensure it's still the last ref. This is * needed because a user-process could register the same event in * between the time of event_mutex release and the work queue * running the delayed destroy. If we removed the item now from * the hashtable, this would result in a timing window where a * user process would fail a register because the trace_event_call * register would fail in the tracing layers. */ refcount_set(&user->refcnt, 1); if (WARN_ON_ONCE(!schedule_work(&user->put_work))) { /* * If we fail we must wait for an admin to attempt delete or * another register/close of the event, whichever is first. */ pr_warn("user_events: Unable to queue delayed destroy\n"); } out: /* Ensure if we didn't have event_mutex before we unlock it */ if (!locked) mutex_unlock(&event_mutex); } static void user_event_group_destroy(struct user_event_group *group) { kfree(group->system_name); kfree(group->system_multi_name); kfree(group); } static char *user_event_group_system_name(void) { char *system_name; int len = sizeof(USER_EVENTS_SYSTEM) + 1; system_name = kmalloc(len, GFP_KERNEL); if (!system_name) return NULL; snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM); return system_name; } static char *user_event_group_system_multi_name(void) { return kstrdup(USER_EVENTS_MULTI_SYSTEM, GFP_KERNEL); } static struct user_event_group *current_user_event_group(void) { return init_group; } static struct user_event_group *user_event_group_create(void) { struct user_event_group *group; group = kzalloc(sizeof(*group), GFP_KERNEL); if (!group) return NULL; group->system_name = user_event_group_system_name(); if (!group->system_name) goto error; group->system_multi_name = user_event_group_system_multi_name(); if (!group->system_multi_name) goto error; mutex_init(&group->reg_mutex); hash_init(group->register_table); return group; error: if (group) user_event_group_destroy(group); return NULL; }; static void user_event_enabler_destroy(struct user_event_enabler *enabler, bool locked) { list_del_rcu(&enabler->mm_enablers_link); /* No longer tracking the event via the enabler */ user_event_put(enabler->event, locked); kfree(enabler); } static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr, int attempt) { bool unlocked; int ret; /* * Normally this is low, ensure that it cannot be taken advantage of by * bad user processes to cause excessive looping. */ if (attempt > 10) return -EFAULT; mmap_read_lock(mm->mm); /* Ensure MM has tasks, cannot use after exit_mm() */ if (refcount_read(&mm->tasks) == 0) { ret = -ENOENT; goto out; } ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, &unlocked); out: mmap_read_unlock(mm->mm); return ret; } static int user_event_enabler_write(struct user_event_mm *mm, struct user_event_enabler *enabler, bool fixup_fault, int *attempt); static void user_event_enabler_fault_fixup(struct work_struct *work) { struct user_event_enabler_fault *fault = container_of( work, struct user_event_enabler_fault, work); struct user_event_enabler *enabler = fault->enabler; struct user_event_mm *mm = fault->mm; unsigned long uaddr = enabler->addr; int attempt = fault->attempt; int ret; ret = user_event_mm_fault_in(mm, uaddr, attempt); if (ret && ret != -ENOENT) { struct user_event *user = enabler->event; pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n", mm->mm, (unsigned long long)uaddr, EVENT_NAME(user)); } /* Prevent state changes from racing */ mutex_lock(&event_mutex); /* User asked for enabler to be removed during fault */ if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) { user_event_enabler_destroy(enabler, true); goto out; } /* * If we managed to get the page, re-issue the write. We do not * want to get into a possible infinite loop, which is why we only * attempt again directly if the page came in. If we couldn't get * the page here, then we will try again the next time the event is * enabled/disabled. */ clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)); if (!ret) { mmap_read_lock(mm->mm); user_event_enabler_write(mm, enabler, true, &attempt); mmap_read_unlock(mm->mm); } out: mutex_unlock(&event_mutex); /* In all cases we no longer need the mm or fault */ user_event_mm_put(mm); kmem_cache_free(fault_cache, fault); } static bool user_event_enabler_queue_fault(struct user_event_mm *mm, struct user_event_enabler *enabler, int attempt) { struct user_event_enabler_fault *fault; fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN); if (!fault) return false; INIT_WORK(&fault->work, user_event_enabler_fault_fixup); fault->mm = user_event_mm_get(mm); fault->enabler = enabler; fault->attempt = attempt; /* Don't try to queue in again while we have a pending fault */ set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)); if (!schedule_work(&fault->work)) { /* Allow another attempt later */ clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)); user_event_mm_put(mm); kmem_cache_free(fault_cache, fault); return false; } return true; } static int user_event_enabler_write(struct user_event_mm *mm, struct user_event_enabler *enabler, bool fixup_fault, int *attempt) { unsigned long uaddr = enabler->addr; unsigned long *ptr; struct page *page; void *kaddr; int bit = ENABLE_BIT(enabler); int ret; lockdep_assert_held(&event_mutex); mmap_assert_locked(mm->mm); *attempt += 1; /* Ensure MM has tasks, cannot use after exit_mm() */ if (refcount_read(&mm->tasks) == 0) return -ENOENT; if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) || test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler)))) return -EBUSY; align_addr_bit(&uaddr, &bit, ENABLE_BITOPS(enabler)); ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT, &page, NULL); if (unlikely(ret <= 0)) { if (!fixup_fault) return -EFAULT; if (!user_event_enabler_queue_fault(mm, enabler, *attempt)) pr_warn("user_events: Unable to queue fault handler\n"); return -EFAULT; } kaddr = kmap_local_page(page); ptr = kaddr + (uaddr & ~PAGE_MASK); /* Update bit atomically, user tracers must be atomic as well */ if (enabler->event && enabler->event->status) set_bit(bit, ptr); else clear_bit(bit, ptr); kunmap_local(kaddr); unpin_user_pages_dirty_lock(&page, 1, true); return 0; } static bool user_event_enabler_exists(struct user_event_mm *mm, unsigned long uaddr, unsigned char bit) { struct user_event_enabler *enabler; list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) { if (enabler->addr == uaddr && ENABLE_BIT(enabler) == bit) return true; } return false; } static void user_event_enabler_update(struct user_event *user) { struct user_event_enabler *enabler; struct user_event_mm *next; struct user_event_mm *mm; int attempt; lockdep_assert_held(&event_mutex); /* * We need to build a one-shot list of all the mms that have an * enabler for the user_event passed in. This list is only valid * while holding the event_mutex. The only reason for this is due * to the global mm list being RCU protected and we use methods * which can wait (mmap_read_lock and pin_user_pages_remote). * * NOTE: user_event_mm_get_all() increments the ref count of each * mm that is added to the list to prevent removal timing windows. * We must always put each mm after they are used, which may wait. */ mm = user_event_mm_get_all(user); while (mm) { next = mm->next; mmap_read_lock(mm->mm); list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) { if (enabler->event == user) { attempt = 0; user_event_enabler_write(mm, enabler, true, &attempt); } } mmap_read_unlock(mm->mm); user_event_mm_put(mm); mm = next; } } static bool user_event_enabler_dup(struct user_event_enabler *orig, struct user_event_mm *mm) { struct user_event_enabler *enabler; /* Skip pending frees */ if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig)))) return true; enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT); if (!enabler) return false; enabler->event = user_event_get(orig->event); enabler->addr = orig->addr; /* Only dup part of value (ignore future flags, etc) */ enabler->values = orig->values & ENABLE_VAL_DUP_MASK; /* Enablers not exposed yet, RCU not required */ list_add(&enabler->mm_enablers_link, &mm->enablers); return true; } static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm) { refcount_inc(&mm->refcnt); return mm; } static struct user_event_mm *user_event_mm_get_all(struct user_event *user) { struct user_event_mm *found = NULL; struct user_event_enabler *enabler; struct user_event_mm *mm; /* * We use the mm->next field to build a one-shot list from the global * RCU protected list. To build this list the event_mutex must be held. * This lets us build a list without requiring allocs that could fail * when user based events are most wanted for diagnostics. */ lockdep_assert_held(&event_mutex); /* * We do not want to block fork/exec while enablements are being * updated, so we use RCU to walk the current tasks that have used * user_events ABI for 1 or more events. Each enabler found in each * task that matches the event being updated has a write to reflect * the kernel state back into the process. Waits/faults must not occur * during this. So we scan the list under RCU for all the mm that have * the event within it. This is needed because mm_read_lock() can wait. * Each user mm returned has a ref inc to handle remove RCU races. */ rcu_read_lock(); list_for_each_entry_rcu(mm, &user_event_mms, mms_link) { list_for_each_entry_rcu(enabler, &mm->enablers, mm_enablers_link) { if (enabler->event == user) { mm->next = found; found = user_event_mm_get(mm); break; } } } rcu_read_unlock(); return found; } static struct user_event_mm *user_event_mm_alloc(struct task_struct *t) { struct user_event_mm *user_mm; user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT); if (!user_mm) return NULL; user_mm->mm = t->mm; INIT_LIST_HEAD(&user_mm->enablers); refcount_set(&user_mm->refcnt, 1); refcount_set(&user_mm->tasks, 1); /* * The lifetime of the memory descriptor can slightly outlast * the task lifetime if a ref to the user_event_mm is taken * between list_del_rcu() and call_rcu(). Therefore we need * to take a reference to it to ensure it can live this long * under this corner case. This can also occur in clones that * outlast the parent. */ mmgrab(user_mm->mm); return user_mm; } static void user_event_mm_attach(struct user_event_mm *user_mm, struct task_struct *t) { unsigned long flags; spin_lock_irqsave(&user_event_mms_lock, flags); list_add_rcu(&user_mm->mms_link, &user_event_mms); spin_unlock_irqrestore(&user_event_mms_lock, flags); t->user_event_mm = user_mm; } static struct user_event_mm *current_user_event_mm(void) { struct user_event_mm *user_mm = current->user_event_mm; if (user_mm) goto inc; user_mm = user_event_mm_alloc(current); if (!user_mm) goto error; user_event_mm_attach(user_mm, current); inc: refcount_inc(&user_mm->refcnt); error: return user_mm; } static void user_event_mm_destroy(struct user_event_mm *mm) { struct user_event_enabler *enabler, *next; list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) user_event_enabler_destroy(enabler, false); mmdrop(mm->mm); kfree(mm); } static void user_event_mm_put(struct user_event_mm *mm) { if (mm && refcount_dec_and_test(&mm->refcnt)) user_event_mm_destroy(mm); } static void delayed_user_event_mm_put(struct work_struct *work) { struct user_event_mm *mm; mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork); user_event_mm_put(mm); } void user_event_mm_remove(struct task_struct *t) { struct user_event_mm *mm; unsigned long flags; might_sleep(); mm = t->user_event_mm; t->user_event_mm = NULL; /* Clone will increment the tasks, only remove if last clone */ if (!refcount_dec_and_test(&mm->tasks)) return; /* Remove the mm from the list, so it can no longer be enabled */ spin_lock_irqsave(&user_event_mms_lock, flags); list_del_rcu(&mm->mms_link); spin_unlock_irqrestore(&user_event_mms_lock, flags); /* * We need to wait for currently occurring writes to stop within * the mm. This is required since exit_mm() snaps the current rss * stats and clears them. On the final mmdrop(), check_mm() will * report a bug if these increment. * * All writes/pins are done under mmap_read lock, take the write * lock to ensure in-progress faults have completed. Faults that * are pending but yet to run will check the task count and skip * the fault since the mm is going away. */ mmap_write_lock(mm->mm); mmap_write_unlock(mm->mm); /* * Put for mm must be done after RCU delay to handle new refs in * between the list_del_rcu() and now. This ensures any get refs * during rcu_read_lock() are accounted for during list removal. * * CPU A | CPU B * --------------------------------------------------------------- * user_event_mm_remove() | rcu_read_lock(); * list_del_rcu() | list_for_each_entry_rcu(); * call_rcu() | refcount_inc(); * . | rcu_read_unlock(); * schedule_work() | . * user_event_mm_put() | . * * mmdrop() cannot be called in the softirq context of call_rcu() * so we use a work queue after call_rcu() to run within. */ INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put); queue_rcu_work(system_wq, &mm->put_rwork); } void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm) { struct user_event_mm *mm = user_event_mm_alloc(t); struct user_event_enabler *enabler; if (!mm) return; rcu_read_lock(); list_for_each_entry_rcu(enabler, &old_mm->enablers, mm_enablers_link) { if (!user_event_enabler_dup(enabler, mm)) goto error; } rcu_read_unlock(); user_event_mm_attach(mm, t); return; error: rcu_read_unlock(); user_event_mm_destroy(mm); } static bool current_user_event_enabler_exists(unsigned long uaddr, unsigned char bit) { struct user_event_mm *user_mm = current_user_event_mm(); bool exists; if (!user_mm) return false; exists = user_event_enabler_exists(user_mm, uaddr, bit); user_event_mm_put(user_mm); return exists; } static struct user_event_enabler *user_event_enabler_create(struct user_reg *reg, struct user_event *user, int *write_result) { struct user_event_enabler *enabler; struct user_event_mm *user_mm; unsigned long uaddr = (unsigned long)reg->enable_addr; int attempt = 0; user_mm = current_user_event_mm(); if (!user_mm) return NULL; enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT); if (!enabler) goto out; enabler->event = user; enabler->addr = uaddr; enabler->values = reg->enable_bit; #if BITS_PER_LONG >= 64 if (reg->enable_size == 4) set_bit(ENABLE_VAL_32_ON_64_BIT, ENABLE_BITOPS(enabler)); #endif retry: /* Prevents state changes from racing with new enablers */ mutex_lock(&event_mutex); /* Attempt to reflect the current state within the process */ mmap_read_lock(user_mm->mm); *write_result = user_event_enabler_write(user_mm, enabler, false, &attempt); mmap_read_unlock(user_mm->mm); /* * If the write works, then we will track the enabler. A ref to the * underlying user_event is held by the enabler to prevent it going * away while the enabler is still in use by a process. The ref is * removed when the enabler is destroyed. This means a event cannot * be forcefully deleted from the system until all tasks using it * exit or run exec(), which includes forks and clones. */ if (!*write_result) { user_event_get(user); list_add_rcu(&enabler->mm_enablers_link, &user_mm->enablers); } mutex_unlock(&event_mutex); if (*write_result) { /* Attempt to fault-in and retry if it worked */ if (!user_event_mm_fault_in(user_mm, uaddr, attempt)) goto retry; kfree(enabler); enabler = NULL; } out: user_event_mm_put(user_mm); return enabler; } static __always_inline __must_check bool user_event_last_ref(struct user_event *user) { int last = 0; if (user->reg_flags & USER_EVENT_REG_PERSIST) last = 1; return refcount_read(&user->refcnt) == last; } static __always_inline __must_check size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i) { size_t ret; pagefault_disable(); ret = copy_from_iter_nocache(addr, bytes, i); pagefault_enable(); return ret; } static struct list_head *user_event_get_fields(struct trace_event_call *call) { struct user_event *user = (struct user_event *)call->data; return &user->fields; } /* * Parses a register command for user_events * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]] * * Example event named 'test' with a 20 char 'msg' field with an unsigned int * 'id' field after: * test char[20] msg;unsigned int id * * NOTE: Offsets are from the user data perspective, they are not from the * trace_entry/buffer perspective. We automatically add the common properties * sizes to the offset for the user. * * Upon success user_event has its ref count increased by 1. */ static int user_event_parse_cmd(struct user_event_group *group, char *raw_command, struct user_event **newuser, int reg_flags) { char *name = raw_command; char *args = strpbrk(name, " "); char *flags; if (args) *args++ = '\0'; flags = strpbrk(name, ":"); if (flags) *flags++ = '\0'; return user_event_parse(group, name, args, flags, newuser, reg_flags); } static int user_field_array_size(const char *type) { const char *start = strchr(type, '['); char val[8]; char *bracket; int size = 0; if (start == NULL) return -EINVAL; if (strscpy(val, start + 1, sizeof(val)) <= 0) return -EINVAL; bracket = strchr(val, ']'); if (!bracket) return -EINVAL; *bracket = '\0'; if (kstrtouint(val, 0, &size)) return -EINVAL; if (size > MAX_FIELD_ARRAY_SIZE) return -EINVAL; return size; } static int user_field_size(const char *type) { /* long is not allowed from a user, since it's ambigious in size */ if (strcmp(type, "s64") == 0) return sizeof(s64); if (strcmp(type, "u64") == 0) return sizeof(u64); if (strcmp(type, "s32") == 0) return sizeof(s32); if (strcmp(type, "u32") == 0) return sizeof(u32); if (strcmp(type, "int") == 0) return sizeof(int); if (strcmp(type, "unsigned int") == 0) return sizeof(unsigned int); if (strcmp(type, "s16") == 0) return sizeof(s16); if (strcmp(type, "u16") == 0) return sizeof(u16); if (strcmp(type, "short") == 0) return sizeof(short); if (strcmp(type, "unsigned short") == 0) return sizeof(unsigned short); if (strcmp(type, "s8") == 0) return sizeof(s8); if (strcmp(type, "u8") == 0) return sizeof(u8); if (strcmp(type, "char") == 0) return sizeof(char); if (strcmp(type, "unsigned char") == 0) return sizeof(unsigned char); if (str_has_prefix(type, "char[")) return user_field_array_size(type); if (str_has_prefix(type, "unsigned char[")) return user_field_array_size(type); if (str_has_prefix(type, "__data_loc ")) return sizeof(u32); if (str_has_prefix(type, "__rel_loc ")) return sizeof(u32); /* Uknown basic type, error */ return -EINVAL; } static void user_event_destroy_validators(struct user_event *user) { struct user_event_validator *validator, *next; struct list_head *head = &user->validators; list_for_each_entry_safe(validator, next, head, user_event_link) { list_del(&validator->user_event_link); kfree(validator); } } static void user_event_destroy_fields(struct user_event *user) { struct ftrace_event_field *field, *next; struct list_head *head = &user->fields; list_for_each_entry_safe(field, next, head, link) { list_del(&field->link); kfree(field); } } static int user_event_add_field(struct user_event *user, const char *type, const char *name, int offset, int size, int is_signed, int filter_type) { struct user_event_validator *validator; struct ftrace_event_field *field; int validator_flags = 0; field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT); if (!field) return -ENOMEM; if (str_has_prefix(type, "__data_loc ")) goto add_validator; if (str_has_prefix(type, "__rel_loc ")) { validator_flags |= VALIDATOR_REL; goto add_validator; } goto add_field; add_validator: if (strstr(type, "char") != NULL) validator_flags |= VALIDATOR_ENSURE_NULL; validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT); if (!validator) { kfree(field); return -ENOMEM; } validator->flags = validator_flags; validator->offset = offset; /* Want sequential access when validating */ list_add_tail(&validator->user_event_link, &user->validators); add_field: field->type = type; field->name = name; field->offset = offset; field->size = size; field->is_signed = is_signed; field->filter_type = filter_type; if (filter_type == FILTER_OTHER) field->filter_type = filter_assign_type(type); list_add(&field->link, &user->fields); /* * Min size from user writes that are required, this does not include * the size of trace_entry (common fields). */ user->min_size = (offset + size) - sizeof(struct trace_entry); return 0; } /* * Parses the values of a field within the description * Format: type name [size] */ static int user_event_parse_field(char *field, struct user_event *user, u32 *offset) { char *part, *type, *name; u32 depth = 0, saved_offset = *offset; int len, size = -EINVAL; bool is_struct = false; field = skip_spaces(field); if (*field == '\0') return 0; /* Handle types that have a space within */ len = str_has_prefix(field, "unsigned "); if (len) goto skip_next; len = str_has_prefix(field, "struct "); if (len) { is_struct = true; goto skip_next; } len = str_has_prefix(field, "__data_loc unsigned "); if (len) goto skip_next; len = str_has_prefix(field, "__data_loc "); if (len) goto skip_next; len = str_has_prefix(field, "__rel_loc unsigned "); if (len) goto skip_next; len = str_has_prefix(field, "__rel_loc "); if (len) goto skip_next; goto parse; skip_next: type = field; field = strpbrk(field + len, " "); if (field == NULL) return -EINVAL; *field++ = '\0'; depth++; parse: name = NULL; while ((part = strsep(&field, " ")) != NULL) { switch (depth++) { case FIELD_DEPTH_TYPE: type = part; break; case FIELD_DEPTH_NAME: name = part; break; case FIELD_DEPTH_SIZE: if (!is_struct) return -EINVAL; if (kstrtou32(part, 10, &size)) return -EINVAL; break; default: return -EINVAL; } } if (depth < FIELD_DEPTH_SIZE || !name) return -EINVAL; if (depth == FIELD_DEPTH_SIZE) size = user_field_size(type); if (size == 0) return -EINVAL; if (size < 0) return size; *offset = saved_offset + size; return user_event_add_field(user, type, name, saved_offset, size, type[0] != 'u', FILTER_OTHER); } static int user_event_parse_fields(struct user_event *user, char *args) { char *field; u32 offset = sizeof(struct trace_entry); int ret = -EINVAL; if (args == NULL) return 0; while ((field = strsep(&args, ";")) != NULL) { ret = user_event_parse_field(field, user, &offset); if (ret) break; } return ret; } static struct trace_event_fields user_event_fields_array[1]; static const char *user_field_format(const char *type) { if (strcmp(type, "s64") == 0) return "%lld"; if (strcmp(type, "u64") == 0) return "%llu"; if (strcmp(type, "s32") == 0) return "%d"; if (strcmp(type, "u32") == 0) return "%u"; if (strcmp(type, "int") == 0) return "%d"; if (strcmp(type, "unsigned int") == 0) return "%u"; if (strcmp(type, "s16") == 0) return "%d"; if (strcmp(type, "u16") == 0) return "%u"; if (strcmp(type, "short") == 0) return "%d"; if (strcmp(type, "unsigned short") == 0) return "%u"; if (strcmp(type, "s8") == 0) return "%d"; if (strcmp(type, "u8") == 0) return "%u"; if (strcmp(type, "char") == 0) return "%d"; if (strcmp(type, "unsigned char") == 0) return "%u"; if (strstr(type, "char[") != NULL) return "%s"; /* Unknown, likely struct, allowed treat as 64-bit */ return "%llu"; } static bool user_field_is_dyn_string(const char *type, const char **str_func) { if (str_has_prefix(type, "__data_loc ")) { *str_func = "__get_str"; goto check; } if (str_has_prefix(type, "__rel_loc ")) { *str_func = "__get_rel_str"; goto check; } return false; check: return strstr(type, "char") != NULL; } #define LEN_OR_ZERO (len ? len - pos : 0) static int user_dyn_field_set_string(int argc, const char **argv, int *iout, char *buf, int len, bool *colon) { int pos = 0, i = *iout; *colon = false; for (; i < argc; ++i) { if (i != *iout) pos += snprintf(buf + pos, LEN_OR_ZERO, " "); pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]); if (strchr(argv[i], ';')) { ++i; *colon = true; break; } } /* Actual set, advance i */ if (len != 0) *iout = i; return pos + 1; } static int user_field_set_string(struct ftrace_event_field *field, char *buf, int len, bool colon) { int pos = 0; pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type); pos += snprintf(buf + pos, LEN_OR_ZERO, " "); pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name); if (str_has_prefix(field->type, "struct ")) pos += snprintf(buf + pos, LEN_OR_ZERO, " %d", field->size); if (colon) pos += snprintf(buf + pos, LEN_OR_ZERO, ";"); return pos + 1; } static int user_event_set_print_fmt(struct user_event *user, char *buf, int len) { struct ftrace_event_field *field; struct list_head *head = &user->fields; int pos = 0, depth = 0; const char *str_func; pos += snprintf(buf + pos, LEN_OR_ZERO, "\""); list_for_each_entry_reverse(field, head, link) { if (depth != 0) pos += snprintf(buf + pos, LEN_OR_ZERO, " "); pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s", field->name, user_field_format(field->type)); depth++; } pos += snprintf(buf + pos, LEN_OR_ZERO, "\""); list_for_each_entry_reverse(field, head, link) { if (user_field_is_dyn_string(field->type, &str_func)) pos += snprintf(buf + pos, LEN_OR_ZERO, ", %s(%s)", str_func, field->name); else pos += snprintf(buf + pos, LEN_OR_ZERO, ", REC->%s", field->name); } return pos + 1; } #undef LEN_OR_ZERO static int user_event_create_print_fmt(struct user_event *user) { char *print_fmt; int len; len = user_event_set_print_fmt(user, NULL, 0); print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT); if (!print_fmt) return -ENOMEM; user_event_set_print_fmt(user, print_fmt, len); user->call.print_fmt = print_fmt; return 0; } static enum print_line_t user_event_print_trace(struct trace_iterator *iter, int flags, struct trace_event *event) { return print_event_fields(iter, event); } static struct trace_event_functions user_event_funcs = { .trace = user_event_print_trace, }; static int user_event_set_call_visible(struct user_event *user, bool visible) { int ret; const struct cred *old_cred; struct cred *cred; cred = prepare_creds(); if (!cred) return -ENOMEM; /* * While by default tracefs is locked down, systems can be configured * to allow user_event files to be less locked down. The extreme case * being "other" has read/write access to user_events_data/status. * * When not locked down, processes may not have permissions to * add/remove calls themselves to tracefs. We need to temporarily * switch to root file permission to allow for this scenario. */ cred->fsuid = GLOBAL_ROOT_UID; old_cred = override_creds(cred); if (visible) ret = trace_add_event_call(&user->call); else ret = trace_remove_event_call(&user->call); revert_creds(old_cred); put_cred(cred); return ret; } static int destroy_user_event(struct user_event *user) { int ret = 0; lockdep_assert_held(&event_mutex); /* Must destroy fields before call removal */ user_event_destroy_fields(user); ret = user_event_set_call_visible(user, false); if (ret) return ret; dyn_event_remove(&user->devent); hash_del(&user->node); user_event_destroy_validators(user); /* If we have different names, both must be freed */ if (EVENT_NAME(user) != EVENT_TP_NAME(user)) kfree(EVENT_TP_NAME(user)); kfree(user->call.print_fmt); kfree(EVENT_NAME(user)); kfree(user); if (current_user_events > 0) current_user_events--; else pr_alert("BUG: Bad current_user_events\n"); return ret; } static struct user_event *find_user_event(struct user_event_group *group, char *name, int argc, const char **argv, u32 flags, u32 *outkey) { struct user_event *user; u32 key = user_event_key(name); *outkey = key; hash_for_each_possible(group->register_table, user, node, key) { /* * Single-format events shouldn't return multi-format * events. Callers expect the underlying tracepoint to match * the name exactly in these cases. Only check like-formats. */ if (EVENT_MULTI_FORMAT(flags) != EVENT_MULTI_FORMAT(user->reg_flags)) continue; if (strcmp(EVENT_NAME(user), name)) continue; if (user_fields_match(user, argc, argv)) return user_event_get(user); /* Scan others if this is a multi-format event */ if (EVENT_MULTI_FORMAT(flags)) continue; return ERR_PTR(-EADDRINUSE); } return NULL; } static int user_event_validate(struct user_event *user, void *data, int len) { struct list_head *head = &user->validators; struct user_event_validator *validator; void *pos, *end = data + len; u32 loc, offset, size; list_for_each_entry(validator, head, user_event_link) { pos = data + validator->offset; /* Already done min_size check, no bounds check here */ loc = *(u32 *)pos; offset = loc & 0xffff; size = loc >> 16; if (likely(validator->flags & VALIDATOR_REL)) pos += offset + sizeof(loc); else pos = data + offset; pos += size; if (unlikely(pos > end)) return -EFAULT; if (likely(validator->flags & VALIDATOR_ENSURE_NULL)) if (unlikely(*(char *)(pos - 1) != '\0')) return -EFAULT; } return 0; } /* * Writes the user supplied payload out to a trace file. */ static void user_event_ftrace(struct user_event *user, struct iov_iter *i, void *tpdata, bool *faulted) { struct trace_event_file *file; struct trace_entry *entry; struct trace_event_buffer event_buffer; size_t size = sizeof(*entry) + i->count; file = (struct trace_event_file *)tpdata; if (!file || !(file->flags & EVENT_FILE_FL_ENABLED) || trace_trigger_soft_disabled(file)) return; /* Allocates and fills trace_entry, + 1 of this is data payload */ entry = trace_event_buffer_reserve(&event_buffer, file, size); if (unlikely(!entry)) return; if (unlikely(i->count != 0 && !copy_nofault(entry + 1, i->count, i))) goto discard; if (!list_empty(&user->validators) && unlikely(user_event_validate(user, entry, size))) goto discard; trace_event_buffer_commit(&event_buffer); return; discard: *faulted = true; __trace_event_discard_commit(event_buffer.buffer, event_buffer.event); } #ifdef CONFIG_PERF_EVENTS /* * Writes the user supplied payload out to perf ring buffer. */ static void user_event_perf(struct user_event *user, struct iov_iter *i, void *tpdata, bool *faulted) { struct hlist_head *perf_head; perf_head = this_cpu_ptr(user->call.perf_events); if (perf_head && !hlist_empty(perf_head)) { struct trace_entry *perf_entry; struct pt_regs *regs; size_t size = sizeof(*perf_entry) + i->count; int context; perf_entry = perf_trace_buf_alloc(ALIGN(size, 8), ®s, &context); if (unlikely(!perf_entry)) return; perf_fetch_caller_regs(regs); if (unlikely(i->count != 0 && !copy_nofault(perf_entry + 1, i->count, i))) goto discard; if (!list_empty(&user->validators) && unlikely(user_event_validate(user, perf_entry, size))) goto discard; perf_trace_buf_submit(perf_entry, size, context, user->call.event.type, 1, regs, perf_head, NULL); return; discard: *faulted = true; perf_swevent_put_recursion_context(context); } } #endif /* * Update the enabled bit among all user processes. */ static void update_enable_bit_for(struct user_event *user) { struct tracepoint *tp = &user->tracepoint; char status = 0; if (atomic_read(&tp->key.enabled) > 0) { struct tracepoint_func *probe_func_ptr; user_event_func_t probe_func; rcu_read_lock_sched(); probe_func_ptr = rcu_dereference_sched(tp->funcs); if (probe_func_ptr) { do { probe_func = probe_func_ptr->func; if (probe_func == user_event_ftrace) status |= EVENT_STATUS_FTRACE; #ifdef CONFIG_PERF_EVENTS else if (probe_func == user_event_perf) status |= EVENT_STATUS_PERF; #endif else status |= EVENT_STATUS_OTHER; } while ((++probe_func_ptr)->func); } rcu_read_unlock_sched(); } user->status = status; user_event_enabler_update(user); } /* * Register callback for our events from tracing sub-systems. */ static int user_event_reg(struct trace_event_call *call, enum trace_reg type, void *data) { struct user_event *user = (struct user_event *)call->data; int ret = 0; if (!user) return -ENOENT; switch (type) { case TRACE_REG_REGISTER: ret = tracepoint_probe_register(call->tp, call->class->probe, data); if (!ret) goto inc; break; case TRACE_REG_UNREGISTER: tracepoint_probe_unregister(call->tp, call->class->probe, data); goto dec; #ifdef CONFIG_PERF_EVENTS case TRACE_REG_PERF_REGISTER: ret = tracepoint_probe_register(call->tp, call->class->perf_probe, data); if (!ret) goto inc; break; case TRACE_REG_PERF_UNREGISTER: tracepoint_probe_unregister(call->tp, call->class->perf_probe, data); goto dec; case TRACE_REG_PERF_OPEN: case TRACE_REG_PERF_CLOSE: case TRACE_REG_PERF_ADD: case TRACE_REG_PERF_DEL: break; #endif } return ret; inc: user_event_get(user); update_enable_bit_for(user); return 0; dec: update_enable_bit_for(user); user_event_put(user, true); return 0; } static int user_event_create(const char *raw_command) { struct user_event_group *group; struct user_event *user; char *name; int ret; if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX)) return -ECANCELED; raw_command += USER_EVENTS_PREFIX_LEN; raw_command = skip_spaces(raw_command); name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT); if (!name) return -ENOMEM; group = current_user_event_group(); if (!group) { kfree(name); return -ENOENT; } mutex_lock(&group->reg_mutex); /* Dyn events persist, otherwise they would cleanup immediately */ ret = user_event_parse_cmd(group, name, &user, USER_EVENT_REG_PERSIST); if (!ret) user_event_put(user, false); mutex_unlock(&group->reg_mutex); if (ret) kfree(name); return ret; } static int user_event_show(struct seq_file *m, struct dyn_event *ev) { struct user_event *user = container_of(ev, struct user_event, devent); struct ftrace_event_field *field; struct list_head *head; int depth = 0; seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user)); head = trace_get_fields(&user->call); list_for_each_entry_reverse(field, head, link) { if (depth == 0) seq_puts(m, " "); else seq_puts(m, "; "); seq_printf(m, "%s %s", field->type, field->name); if (str_has_prefix(field->type, "struct ")) seq_printf(m, " %d", field->size); depth++; } seq_puts(m, "\n"); return 0; } static bool user_event_is_busy(struct dyn_event *ev) { struct user_event *user = container_of(ev, struct user_event, devent); return !user_event_last_ref(user); } static int user_event_free(struct dyn_event *ev) { struct user_event *user = container_of(ev, struct user_event, devent); if (!user_event_last_ref(user)) return -EBUSY; if (!user_event_capable(user->reg_flags)) return -EPERM; return destroy_user_event(user); } static bool user_field_match(struct ftrace_event_field *field, int argc, const char **argv, int *iout) { char *field_name = NULL, *dyn_field_name = NULL; bool colon = false, match = false; int dyn_len, len; if (*iout >= argc) return false; dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name, 0, &colon); len = user_field_set_string(field, field_name, 0, colon); if (dyn_len != len) return false; dyn_field_name = kmalloc(dyn_len, GFP_KERNEL); field_name = kmalloc(len, GFP_KERNEL); if (!dyn_field_name || !field_name) goto out; user_dyn_field_set_string(argc, argv, iout, dyn_field_name, dyn_len, &colon); user_field_set_string(field, field_name, len, colon); match = strcmp(dyn_field_name, field_name) == 0; out: kfree(dyn_field_name); kfree(field_name); return match; } static bool user_fields_match(struct user_event *user, int argc, const char **argv) { struct ftrace_event_field *field; struct list_head *head = &user->fields; int i = 0; if (argc == 0) return list_empty(head); list_for_each_entry_reverse(field, head, link) { if (!user_field_match(field, argc, argv, &i)) return false; } if (i != argc) return false; return true; } static bool user_event_match(const char *system, const char *event, int argc, const char **argv, struct dyn_event *ev) { struct user_event *user = container_of(ev, struct user_event, devent); bool match; match = strcmp(EVENT_NAME(user), event) == 0; if (match && system) { match = strcmp(system, user->group->system_name) == 0 || strcmp(system, user->group->system_multi_name) == 0; } if (match) match = user_fields_match(user, argc, argv); return match; } static struct dyn_event_operations user_event_dops = { .create = user_event_create, .show = user_event_show, .is_busy = user_event_is_busy, .free = user_event_free, .match = user_event_match, }; static int user_event_trace_register(struct user_event *user) { int ret; ret = register_trace_event(&user->call.event); if (!ret) return -ENODEV; ret = user_event_set_call_visible(user, true); if (ret) unregister_trace_event(&user->call.event); return ret; } static int user_event_set_tp_name(struct user_event *user) { lockdep_assert_held(&user->group->reg_mutex); if (EVENT_MULTI_FORMAT(user->reg_flags)) { char *multi_name; multi_name = kasprintf(GFP_KERNEL_ACCOUNT, "%s.%llx", user->reg_name, user->group->multi_id); if (!multi_name) return -ENOMEM; user->call.name = multi_name; user->tracepoint.name = multi_name; /* Inc to ensure unique multi-event name next time */ user->group->multi_id++; } else { /* Non Multi-format uses register name */ user->call.name = user->reg_name; user->tracepoint.name = user->reg_name; } return 0; } /* * Parses the event name, arguments and flags then registers if successful. * The name buffer lifetime is owned by this method for success cases only. * Upon success the returned user_event has its ref count increased by 1. */ static int user_event_parse(struct user_event_group *group, char *name, char *args, char *flags, struct user_event **newuser, int reg_flags) { struct user_event *user; char **argv = NULL; int argc = 0; int ret; u32 key; /* Currently don't support any text based flags */ if (flags != NULL) return -EINVAL; if (!user_event_capable(reg_flags)) return -EPERM; if (args) { argv = argv_split(GFP_KERNEL, args, &argc); if (!argv) return -ENOMEM; } /* Prevent dyn_event from racing */ mutex_lock(&event_mutex); user = find_user_event(group, name, argc, (const char **)argv, reg_flags, &key); mutex_unlock(&event_mutex); if (argv) argv_free(argv); if (IS_ERR(user)) return PTR_ERR(user); if (user) { *newuser = user; /* * Name is allocated by caller, free it since it already exists. * Caller only worries about failure cases for freeing. */ kfree(name); return 0; } user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT); if (!user) return -ENOMEM; INIT_LIST_HEAD(&user->class.fields); INIT_LIST_HEAD(&user->fields); INIT_LIST_HEAD(&user->validators); user->group = group; user->reg_name = name; user->reg_flags = reg_flags; ret = user_event_set_tp_name(user); if (ret) goto put_user; ret = user_event_parse_fields(user, args); if (ret) goto put_user; ret = user_event_create_print_fmt(user); if (ret) goto put_user; user->call.data = user; user->call.class = &user->class; user->call.flags = TRACE_EVENT_FL_TRACEPOINT; user->call.tp = &user->tracepoint; user->call.event.funcs = &user_event_funcs; if (EVENT_MULTI_FORMAT(user->reg_flags)) user->class.system = group->system_multi_name; else user->class.system = group->system_name; user->class.fields_array = user_event_fields_array; user->class.get_fields = user_event_get_fields; user->class.reg = user_event_reg; user->class.probe = user_event_ftrace; #ifdef CONFIG_PERF_EVENTS user->class.perf_probe = user_event_perf; #endif mutex_lock(&event_mutex); if (current_user_events >= max_user_events) { ret = -EMFILE; goto put_user_lock; } ret = user_event_trace_register(user); if (ret) goto put_user_lock; if (user->reg_flags & USER_EVENT_REG_PERSIST) { /* Ensure we track self ref and caller ref (2) */ refcount_set(&user->refcnt, 2); } else { /* Ensure we track only caller ref (1) */ refcount_set(&user->refcnt, 1); } dyn_event_init(&user->devent, &user_event_dops); dyn_event_add(&user->devent, &user->call); hash_add(group->register_table, &user->node, key); current_user_events++; mutex_unlock(&event_mutex); *newuser = user; return 0; put_user_lock: mutex_unlock(&event_mutex); put_user: user_event_destroy_fields(user); user_event_destroy_validators(user); kfree(user->call.print_fmt); /* Caller frees reg_name on error, but not multi-name */ if (EVENT_NAME(user) != EVENT_TP_NAME(user)) kfree(EVENT_TP_NAME(user)); kfree(user); return ret; } /* * Deletes previously created events if they are no longer being used. */ static int delete_user_event(struct user_event_group *group, char *name) { struct user_event *user; struct hlist_node *tmp; u32 key = user_event_key(name); int ret = -ENOENT; /* Attempt to delete all event(s) with the name passed in */ hash_for_each_possible_safe(group->register_table, user, tmp, node, key) { if (strcmp(EVENT_NAME(user), name)) continue; if (!user_event_last_ref(user)) return -EBUSY; if (!user_event_capable(user->reg_flags)) return -EPERM; ret = destroy_user_event(user); if (ret) goto out; } out: return ret; } /* * Validates the user payload and writes via iterator. */ static ssize_t user_events_write_core(struct file *file, struct iov_iter *i) { struct user_event_file_info *info = file->private_data; struct user_event_refs *refs; struct user_event *user = NULL; struct tracepoint *tp; ssize_t ret = i->count; int idx; if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx))) return -EFAULT; if (idx < 0) return -EINVAL; rcu_read_lock_sched(); refs = rcu_dereference_sched(info->refs); /* * The refs->events array is protected by RCU, and new items may be * added. But the user retrieved from indexing into the events array * shall be immutable while the file is opened. */ if (likely(refs && idx < refs->count)) user = refs->events[idx]; rcu_read_unlock_sched(); if (unlikely(user == NULL)) return -ENOENT; if (unlikely(i->count < user->min_size)) return -EINVAL; tp = &user->tracepoint; /* * It's possible key.enabled disables after this check, however * we don't mind if a few events are included in this condition. */ if (likely(atomic_read(&tp->key.enabled) > 0)) { struct tracepoint_func *probe_func_ptr; user_event_func_t probe_func; struct iov_iter copy; void *tpdata; bool faulted; if (unlikely(fault_in_iov_iter_readable(i, i->count))) return -EFAULT; faulted = false; rcu_read_lock_sched(); probe_func_ptr = rcu_dereference_sched(tp->funcs); if (probe_func_ptr) { do { copy = *i; probe_func = probe_func_ptr->func; tpdata = probe_func_ptr->data; probe_func(user, ©, tpdata, &faulted); } while ((++probe_func_ptr)->func); } rcu_read_unlock_sched(); if (unlikely(faulted)) return -EFAULT; } else return -EBADF; return ret; } static int user_events_open(struct inode *node, struct file *file) { struct user_event_group *group; struct user_event_file_info *info; group = current_user_event_group(); if (!group) return -ENOENT; info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT); if (!info) return -ENOMEM; info->group = group; file->private_data = info; return 0; } static ssize_t user_events_write(struct file *file, const char __user *ubuf, size_t count, loff_t *ppos) { struct iov_iter i; if (unlikely(*ppos != 0)) return -EFAULT; if (unlikely(import_ubuf(ITER_SOURCE, (char __user *)ubuf, count, &i))) return -EFAULT; return user_events_write_core(file, &i); } static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i) { return user_events_write_core(kp->ki_filp, i); } static int user_events_ref_add(struct user_event_file_info *info, struct user_event *user) { struct user_event_group *group = info->group; struct user_event_refs *refs, *new_refs; int i, size, count = 0; refs = rcu_dereference_protected(info->refs, lockdep_is_held(&group->reg_mutex)); if (refs) { count = refs->count; for (i = 0; i < count; ++i) if (refs->events[i] == user) return i; } size = struct_size(refs, events, count + 1); new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT); if (!new_refs) return -ENOMEM; new_refs->count = count + 1; for (i = 0; i < count; ++i) new_refs->events[i] = refs->events[i]; new_refs->events[i] = user_event_get(user); rcu_assign_pointer(info->refs, new_refs); if (refs) kfree_rcu(refs, rcu); return i; } static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg) { u32 size; long ret; ret = get_user(size, &ureg->size); if (ret) return ret; if (size > PAGE_SIZE) return -E2BIG; if (size < offsetofend(struct user_reg, write_index)) return -EINVAL; ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size); if (ret) return ret; /* Ensure only valid flags */ if (kreg->flags & ~(USER_EVENT_REG_MAX-1)) return -EINVAL; /* Ensure supported size */ switch (kreg->enable_size) { case 4: /* 32-bit */ break; #if BITS_PER_LONG >= 64 case 8: /* 64-bit */ break; #endif default: return -EINVAL; } /* Ensure natural alignment */ if (kreg->enable_addr % kreg->enable_size) return -EINVAL; /* Ensure bit range for size */ if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1) return -EINVAL; /* Ensure accessible */ if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr, kreg->enable_size)) return -EFAULT; kreg->size = size; return 0; } /* * Registers a user_event on behalf of a user process. */ static long user_events_ioctl_reg(struct user_event_file_info *info, unsigned long uarg) { struct user_reg __user *ureg = (struct user_reg __user *)uarg; struct user_reg reg; struct user_event *user; struct user_event_enabler *enabler; char *name; long ret; int write_result; ret = user_reg_get(ureg, ®); if (ret) return ret; /* * Prevent users from using the same address and bit multiple times * within the same mm address space. This can cause unexpected behavior * for user processes that is far easier to debug if this is explictly * an error upon registering. */ if (current_user_event_enabler_exists((unsigned long)reg.enable_addr, reg.enable_bit)) return -EADDRINUSE; name = strndup_user((const char __user *)(uintptr_t)reg.name_args, MAX_EVENT_DESC); if (IS_ERR(name)) { ret = PTR_ERR(name); return ret; } ret = user_event_parse_cmd(info->group, name, &user, reg.flags); if (ret) { kfree(name); return ret; } ret = user_events_ref_add(info, user); /* No longer need parse ref, ref_add either worked or not */ user_event_put(user, false); /* Positive number is index and valid */ if (ret < 0) return ret; /* * user_events_ref_add succeeded: * At this point we have a user_event, it's lifetime is bound by the * reference count, not this file. If anything fails, the user_event * still has a reference until the file is released. During release * any remaining references (from user_events_ref_add) are decremented. * * Attempt to create an enabler, which too has a lifetime tied in the * same way for the event. Once the task that caused the enabler to be * created exits or issues exec() then the enablers it has created * will be destroyed and the ref to the event will be decremented. */ enabler = user_event_enabler_create(®, user, &write_result); if (!enabler) return -ENOMEM; /* Write failed/faulted, give error back to caller */ if (write_result) return write_result; put_user((u32)ret, &ureg->write_index); return 0; } /* * Deletes a user_event on behalf of a user process. */ static long user_events_ioctl_del(struct user_event_file_info *info, unsigned long uarg) { void __user *ubuf = (void __user *)uarg; char *name; long ret; name = strndup_user(ubuf, MAX_EVENT_DESC); if (IS_ERR(name)) return PTR_ERR(name); /* event_mutex prevents dyn_event from racing */ mutex_lock(&event_mutex); ret = delete_user_event(info->group, name); mutex_unlock(&event_mutex); kfree(name); return ret; } static long user_unreg_get(struct user_unreg __user *ureg, struct user_unreg *kreg) { u32 size; long ret; ret = get_user(size, &ureg->size); if (ret) return ret; if (size > PAGE_SIZE) return -E2BIG; if (size < offsetofend(struct user_unreg, disable_addr)) return -EINVAL; ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size); /* Ensure no reserved values, since we don't support any yet */ if (kreg->__reserved || kreg->__reserved2) return -EINVAL; return ret; } static int user_event_mm_clear_bit(struct user_event_mm *user_mm, unsigned long uaddr, unsigned char bit, unsigned long flags) { struct user_event_enabler enabler; int result; int attempt = 0; memset(&enabler, 0, sizeof(enabler)); enabler.addr = uaddr; enabler.values = bit | flags; retry: /* Prevents state changes from racing with new enablers */ mutex_lock(&event_mutex); /* Force the bit to be cleared, since no event is attached */ mmap_read_lock(user_mm->mm); result = user_event_enabler_write(user_mm, &enabler, false, &attempt); mmap_read_unlock(user_mm->mm); mutex_unlock(&event_mutex); if (result) { /* Attempt to fault-in and retry if it worked */ if (!user_event_mm_fault_in(user_mm, uaddr, attempt)) goto retry; } return result; } /* * Unregisters an enablement address/bit within a task/user mm. */ static long user_events_ioctl_unreg(unsigned long uarg) { struct user_unreg __user *ureg = (struct user_unreg __user *)uarg; struct user_event_mm *mm = current->user_event_mm; struct user_event_enabler *enabler, *next; struct user_unreg reg; unsigned long flags; long ret; ret = user_unreg_get(ureg, ®); if (ret) return ret; if (!mm) return -ENOENT; flags = 0; ret = -ENOENT; /* * Flags freeing and faulting are used to indicate if the enabler is in * use at all. When faulting is set a page-fault is occurring asyncly. * During async fault if freeing is set, the enabler will be destroyed. * If no async fault is happening, we can destroy it now since we hold * the event_mutex during these checks. */ mutex_lock(&event_mutex); list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) { if (enabler->addr == reg.disable_addr && ENABLE_BIT(enabler) == reg.disable_bit) { set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler)); /* We must keep compat flags for the clear */ flags |= enabler->values & ENABLE_VAL_COMPAT_MASK; if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler))) user_event_enabler_destroy(enabler, true); /* Removed at least one */ ret = 0; } } mutex_unlock(&event_mutex); /* Ensure bit is now cleared for user, regardless of event status */ if (!ret) ret = user_event_mm_clear_bit(mm, reg.disable_addr, reg.disable_bit, flags); return ret; } /* * Handles the ioctl from user mode to register or alter operations. */ static long user_events_ioctl(struct file *file, unsigned int cmd, unsigned long uarg) { struct user_event_file_info *info = file->private_data; struct user_event_group *group = info->group; long ret = -ENOTTY; switch (cmd) { case DIAG_IOCSREG: mutex_lock(&group->reg_mutex); ret = user_events_ioctl_reg(info, uarg); mutex_unlock(&group->reg_mutex); break; case DIAG_IOCSDEL: mutex_lock(&group->reg_mutex); ret = user_events_ioctl_del(info, uarg); mutex_unlock(&group->reg_mutex); break; case DIAG_IOCSUNREG: mutex_lock(&group->reg_mutex); ret = user_events_ioctl_unreg(uarg); mutex_unlock(&group->reg_mutex); break; } return ret; } /* * Handles the final close of the file from user mode. */ static int user_events_release(struct inode *node, struct file *file) { struct user_event_file_info *info = file->private_data; struct user_event_group *group; struct user_event_refs *refs; int i; if (!info) return -EINVAL; group = info->group; /* * Ensure refs cannot change under any situation by taking the * register mutex during the final freeing of the references. */ mutex_lock(&group->reg_mutex); refs = info->refs; if (!refs) goto out; /* * The lifetime of refs has reached an end, it's tied to this file. * The underlying user_events are ref counted, and cannot be freed. * After this decrement, the user_events may be freed elsewhere. */ for (i = 0; i < refs->count; ++i) user_event_put(refs->events[i], false); out: file->private_data = NULL; mutex_unlock(&group->reg_mutex); kfree(refs); kfree(info); return 0; } static const struct file_operations user_data_fops = { .open = user_events_open, .write = user_events_write, .write_iter = user_events_write_iter, .unlocked_ioctl = user_events_ioctl, .release = user_events_release, }; static void *user_seq_start(struct seq_file *m, loff_t *pos) { if (*pos) return NULL; return (void *)1; } static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos) { ++*pos; return NULL; } static void user_seq_stop(struct seq_file *m, void *p) { } static int user_seq_show(struct seq_file *m, void *p) { struct user_event_group *group = m->private; struct user_event *user; char status; int i, active = 0, busy = 0; if (!group) return -EINVAL; mutex_lock(&group->reg_mutex); hash_for_each(group->register_table, i, user, node) { status = user->status; seq_printf(m, "%s", EVENT_TP_NAME(user)); if (status != 0) seq_puts(m, " #"); if (status != 0) { seq_puts(m, " Used by"); if (status & EVENT_STATUS_FTRACE) seq_puts(m, " ftrace"); if (status & EVENT_STATUS_PERF) seq_puts(m, " perf"); if (status & EVENT_STATUS_OTHER) seq_puts(m, " other"); busy++; } seq_puts(m, "\n"); active++; } mutex_unlock(&group->reg_mutex); seq_puts(m, "\n"); seq_printf(m, "Active: %d\n", active); seq_printf(m, "Busy: %d\n", busy); return 0; } static const struct seq_operations user_seq_ops = { .start = user_seq_start, .next = user_seq_next, .stop = user_seq_stop, .show = user_seq_show, }; static int user_status_open(struct inode *node, struct file *file) { struct user_event_group *group; int ret; group = current_user_event_group(); if (!group) return -ENOENT; ret = seq_open(file, &user_seq_ops); if (!ret) { /* Chain group to seq_file */ struct seq_file *m = file->private_data; m->private = group; } return ret; } static const struct file_operations user_status_fops = { .open = user_status_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; /* * Creates a set of tracefs files to allow user mode interactions. */ static int create_user_tracefs(void) { struct dentry *edata, *emmap; edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE, NULL, NULL, &user_data_fops); if (!edata) { pr_warn("Could not create tracefs 'user_events_data' entry\n"); goto err; } emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ, NULL, NULL, &user_status_fops); if (!emmap) { tracefs_remove(edata); pr_warn("Could not create tracefs 'user_events_mmap' entry\n"); goto err; } return 0; err: return -ENODEV; } static int set_max_user_events_sysctl(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret; mutex_lock(&event_mutex); ret = proc_douintvec(table, write, buffer, lenp, ppos); mutex_unlock(&event_mutex); return ret; } static struct ctl_table user_event_sysctls[] = { { .procname = "user_events_max", .data = &max_user_events, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = set_max_user_events_sysctl, }, {} }; static int __init trace_events_user_init(void) { int ret; fault_cache = KMEM_CACHE(user_event_enabler_fault, 0); if (!fault_cache) return -ENOMEM; init_group = user_event_group_create(); if (!init_group) { kmem_cache_destroy(fault_cache); return -ENOMEM; } ret = create_user_tracefs(); if (ret) { pr_warn("user_events could not register with tracefs\n"); user_event_group_destroy(init_group); kmem_cache_destroy(fault_cache); init_group = NULL; return ret; } if (dyn_event_register(&user_event_dops)) pr_warn("user_events could not register with dyn_events\n"); register_sysctl_init("kernel", user_event_sysctls); return 0; } fs_initcall(trace_events_user_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1