Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexander Aring | 4193 | 77.59% | 34 | 75.56% |
Jukka Rissanen | 815 | 15.08% | 1 | 2.22% |
Alexander Smirnov | 264 | 4.89% | 1 | 2.22% |
Luiz Augusto von Dentz | 86 | 1.59% | 1 | 2.22% |
Alan Ott | 12 | 0.22% | 1 | 2.22% |
Dan Carpenter | 9 | 0.17% | 1 | 2.22% |
Simon Vincent | 8 | 0.15% | 1 | 2.22% |
Martin Townsend | 7 | 0.13% | 1 | 2.22% |
Michael Scott | 5 | 0.09% | 1 | 2.22% |
Varka Bhadram | 3 | 0.06% | 1 | 2.22% |
Tony Cheneau | 1 | 0.02% | 1 | 2.22% |
Stefan Schmidt | 1 | 0.02% | 1 | 2.22% |
Total | 5404 | 45 |
/* * Copyright 2011, Siemens AG * written by Alexander Smirnov <alex.bluesman.smirnov@gmail.com> */ /* Based on patches from Jon Smirl <jonsmirl@gmail.com> * Copyright (c) 2011 Jon Smirl <jonsmirl@gmail.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ /* Jon's code is based on 6lowpan implementation for Contiki which is: * Copyright (c) 2008, Swedish Institute of Computer Science. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <linux/bitops.h> #include <linux/if_arp.h> #include <linux/netdevice.h> #include <net/6lowpan.h> #include <net/ipv6.h> #include "6lowpan_i.h" #include "nhc.h" /* Values of fields within the IPHC encoding first byte */ #define LOWPAN_IPHC_TF_MASK 0x18 #define LOWPAN_IPHC_TF_00 0x00 #define LOWPAN_IPHC_TF_01 0x08 #define LOWPAN_IPHC_TF_10 0x10 #define LOWPAN_IPHC_TF_11 0x18 #define LOWPAN_IPHC_NH 0x04 #define LOWPAN_IPHC_HLIM_MASK 0x03 #define LOWPAN_IPHC_HLIM_00 0x00 #define LOWPAN_IPHC_HLIM_01 0x01 #define LOWPAN_IPHC_HLIM_10 0x02 #define LOWPAN_IPHC_HLIM_11 0x03 /* Values of fields within the IPHC encoding second byte */ #define LOWPAN_IPHC_CID 0x80 #define LOWPAN_IPHC_SAC 0x40 #define LOWPAN_IPHC_SAM_MASK 0x30 #define LOWPAN_IPHC_SAM_00 0x00 #define LOWPAN_IPHC_SAM_01 0x10 #define LOWPAN_IPHC_SAM_10 0x20 #define LOWPAN_IPHC_SAM_11 0x30 #define LOWPAN_IPHC_M 0x08 #define LOWPAN_IPHC_DAC 0x04 #define LOWPAN_IPHC_DAM_MASK 0x03 #define LOWPAN_IPHC_DAM_00 0x00 #define LOWPAN_IPHC_DAM_01 0x01 #define LOWPAN_IPHC_DAM_10 0x02 #define LOWPAN_IPHC_DAM_11 0x03 /* ipv6 address based on mac * second bit-flip (Universe/Local) is done according RFC2464 */ #define is_addr_mac_addr_based(a, m) \ ((((a)->s6_addr[8]) == (((m)[0]) ^ 0x02)) && \ (((a)->s6_addr[9]) == (m)[1]) && \ (((a)->s6_addr[10]) == (m)[2]) && \ (((a)->s6_addr[11]) == (m)[3]) && \ (((a)->s6_addr[12]) == (m)[4]) && \ (((a)->s6_addr[13]) == (m)[5]) && \ (((a)->s6_addr[14]) == (m)[6]) && \ (((a)->s6_addr[15]) == (m)[7])) /* check whether we can compress the IID to 16 bits, * it's possible for unicast addresses with first 49 bits are zero only. */ #define lowpan_is_iid_16_bit_compressable(a) \ ((((a)->s6_addr16[4]) == 0) && \ (((a)->s6_addr[10]) == 0) && \ (((a)->s6_addr[11]) == 0xff) && \ (((a)->s6_addr[12]) == 0xfe) && \ (((a)->s6_addr[13]) == 0)) /* check whether the 112-bit gid of the multicast address is mappable to: */ /* 48 bits, FFXX::00XX:XXXX:XXXX */ #define lowpan_is_mcast_addr_compressable48(a) \ ((((a)->s6_addr16[1]) == 0) && \ (((a)->s6_addr16[2]) == 0) && \ (((a)->s6_addr16[3]) == 0) && \ (((a)->s6_addr16[4]) == 0) && \ (((a)->s6_addr[10]) == 0)) /* 32 bits, FFXX::00XX:XXXX */ #define lowpan_is_mcast_addr_compressable32(a) \ ((((a)->s6_addr16[1]) == 0) && \ (((a)->s6_addr16[2]) == 0) && \ (((a)->s6_addr16[3]) == 0) && \ (((a)->s6_addr16[4]) == 0) && \ (((a)->s6_addr16[5]) == 0) && \ (((a)->s6_addr[12]) == 0)) /* 8 bits, FF02::00XX */ #define lowpan_is_mcast_addr_compressable8(a) \ ((((a)->s6_addr[1]) == 2) && \ (((a)->s6_addr16[1]) == 0) && \ (((a)->s6_addr16[2]) == 0) && \ (((a)->s6_addr16[3]) == 0) && \ (((a)->s6_addr16[4]) == 0) && \ (((a)->s6_addr16[5]) == 0) && \ (((a)->s6_addr16[6]) == 0) && \ (((a)->s6_addr[14]) == 0)) #define lowpan_is_linklocal_zero_padded(a) \ (!(hdr->saddr.s6_addr[1] & 0x3f) && \ !hdr->saddr.s6_addr16[1] && \ !hdr->saddr.s6_addr32[1]) #define LOWPAN_IPHC_CID_DCI(cid) (cid & 0x0f) #define LOWPAN_IPHC_CID_SCI(cid) ((cid & 0xf0) >> 4) static inline void lowpan_iphc_uncompress_802154_lladdr(struct in6_addr *ipaddr, const void *lladdr) { const struct ieee802154_addr *addr = lladdr; u8 eui64[EUI64_ADDR_LEN]; switch (addr->mode) { case IEEE802154_ADDR_LONG: ieee802154_le64_to_be64(eui64, &addr->extended_addr); lowpan_iphc_uncompress_eui64_lladdr(ipaddr, eui64); break; case IEEE802154_ADDR_SHORT: /* fe:80::ff:fe00:XXXX * \__/ * short_addr * * Universe/Local bit is zero. */ ipaddr->s6_addr[0] = 0xFE; ipaddr->s6_addr[1] = 0x80; ipaddr->s6_addr[11] = 0xFF; ipaddr->s6_addr[12] = 0xFE; ieee802154_le16_to_be16(&ipaddr->s6_addr16[7], &addr->short_addr); break; default: /* should never handled and filtered by 802154 6lowpan */ WARN_ON_ONCE(1); break; } } static struct lowpan_iphc_ctx * lowpan_iphc_ctx_get_by_id(const struct net_device *dev, u8 id) { struct lowpan_iphc_ctx *ret = &lowpan_dev(dev)->ctx.table[id]; if (!lowpan_iphc_ctx_is_active(ret)) return NULL; return ret; } static struct lowpan_iphc_ctx * lowpan_iphc_ctx_get_by_addr(const struct net_device *dev, const struct in6_addr *addr) { struct lowpan_iphc_ctx *table = lowpan_dev(dev)->ctx.table; struct lowpan_iphc_ctx *ret = NULL; struct in6_addr addr_pfx; u8 addr_plen; int i; for (i = 0; i < LOWPAN_IPHC_CTX_TABLE_SIZE; i++) { /* Check if context is valid. A context that is not valid * MUST NOT be used for compression. */ if (!lowpan_iphc_ctx_is_active(&table[i]) || !lowpan_iphc_ctx_is_compression(&table[i])) continue; ipv6_addr_prefix(&addr_pfx, addr, table[i].plen); /* if prefix len < 64, the remaining bits until 64th bit is * zero. Otherwise we use table[i]->plen. */ if (table[i].plen < 64) addr_plen = 64; else addr_plen = table[i].plen; if (ipv6_prefix_equal(&addr_pfx, &table[i].pfx, addr_plen)) { /* remember first match */ if (!ret) { ret = &table[i]; continue; } /* get the context with longest prefix len */ if (table[i].plen > ret->plen) ret = &table[i]; } } return ret; } static struct lowpan_iphc_ctx * lowpan_iphc_ctx_get_by_mcast_addr(const struct net_device *dev, const struct in6_addr *addr) { struct lowpan_iphc_ctx *table = lowpan_dev(dev)->ctx.table; struct lowpan_iphc_ctx *ret = NULL; struct in6_addr addr_mcast, network_pfx = {}; int i; /* init mcast address with */ memcpy(&addr_mcast, addr, sizeof(*addr)); for (i = 0; i < LOWPAN_IPHC_CTX_TABLE_SIZE; i++) { /* Check if context is valid. A context that is not valid * MUST NOT be used for compression. */ if (!lowpan_iphc_ctx_is_active(&table[i]) || !lowpan_iphc_ctx_is_compression(&table[i])) continue; /* setting plen */ addr_mcast.s6_addr[3] = table[i].plen; /* get network prefix to copy into multicast address */ ipv6_addr_prefix(&network_pfx, &table[i].pfx, table[i].plen); /* setting network prefix */ memcpy(&addr_mcast.s6_addr[4], &network_pfx, 8); if (ipv6_addr_equal(addr, &addr_mcast)) { ret = &table[i]; break; } } return ret; } static void lowpan_iphc_uncompress_lladdr(const struct net_device *dev, struct in6_addr *ipaddr, const void *lladdr) { switch (dev->addr_len) { case ETH_ALEN: lowpan_iphc_uncompress_eui48_lladdr(ipaddr, lladdr); break; case EUI64_ADDR_LEN: lowpan_iphc_uncompress_eui64_lladdr(ipaddr, lladdr); break; default: WARN_ON_ONCE(1); break; } } /* Uncompress address function for source and * destination address(non-multicast). * * address_mode is the masked value for sam or dam value */ static int lowpan_iphc_uncompress_addr(struct sk_buff *skb, const struct net_device *dev, struct in6_addr *ipaddr, u8 address_mode, const void *lladdr) { bool fail; switch (address_mode) { /* SAM and DAM are the same here */ case LOWPAN_IPHC_DAM_00: /* for global link addresses */ fail = lowpan_fetch_skb(skb, ipaddr->s6_addr, 16); break; case LOWPAN_IPHC_SAM_01: case LOWPAN_IPHC_DAM_01: /* fe:80::XXXX:XXXX:XXXX:XXXX */ ipaddr->s6_addr[0] = 0xFE; ipaddr->s6_addr[1] = 0x80; fail = lowpan_fetch_skb(skb, &ipaddr->s6_addr[8], 8); break; case LOWPAN_IPHC_SAM_10: case LOWPAN_IPHC_DAM_10: /* fe:80::ff:fe00:XXXX */ ipaddr->s6_addr[0] = 0xFE; ipaddr->s6_addr[1] = 0x80; ipaddr->s6_addr[11] = 0xFF; ipaddr->s6_addr[12] = 0xFE; fail = lowpan_fetch_skb(skb, &ipaddr->s6_addr[14], 2); break; case LOWPAN_IPHC_SAM_11: case LOWPAN_IPHC_DAM_11: fail = false; switch (lowpan_dev(dev)->lltype) { case LOWPAN_LLTYPE_IEEE802154: lowpan_iphc_uncompress_802154_lladdr(ipaddr, lladdr); break; default: lowpan_iphc_uncompress_lladdr(dev, ipaddr, lladdr); break; } break; default: pr_debug("Invalid address mode value: 0x%x\n", address_mode); return -EINVAL; } if (fail) { pr_debug("Failed to fetch skb data\n"); return -EIO; } raw_dump_inline(NULL, "Reconstructed ipv6 addr is", ipaddr->s6_addr, 16); return 0; } /* Uncompress address function for source context * based address(non-multicast). */ static int lowpan_iphc_uncompress_ctx_addr(struct sk_buff *skb, const struct net_device *dev, const struct lowpan_iphc_ctx *ctx, struct in6_addr *ipaddr, u8 address_mode, const void *lladdr) { bool fail; switch (address_mode) { /* SAM and DAM are the same here */ case LOWPAN_IPHC_DAM_00: fail = false; /* SAM_00 -> unspec address :: * Do nothing, address is already :: * * DAM 00 -> reserved should never occur. */ break; case LOWPAN_IPHC_SAM_01: case LOWPAN_IPHC_DAM_01: fail = lowpan_fetch_skb(skb, &ipaddr->s6_addr[8], 8); ipv6_addr_prefix_copy(ipaddr, &ctx->pfx, ctx->plen); break; case LOWPAN_IPHC_SAM_10: case LOWPAN_IPHC_DAM_10: ipaddr->s6_addr[11] = 0xFF; ipaddr->s6_addr[12] = 0xFE; fail = lowpan_fetch_skb(skb, &ipaddr->s6_addr[14], 2); ipv6_addr_prefix_copy(ipaddr, &ctx->pfx, ctx->plen); break; case LOWPAN_IPHC_SAM_11: case LOWPAN_IPHC_DAM_11: fail = false; switch (lowpan_dev(dev)->lltype) { case LOWPAN_LLTYPE_IEEE802154: lowpan_iphc_uncompress_802154_lladdr(ipaddr, lladdr); break; default: lowpan_iphc_uncompress_lladdr(dev, ipaddr, lladdr); break; } ipv6_addr_prefix_copy(ipaddr, &ctx->pfx, ctx->plen); break; default: pr_debug("Invalid sam value: 0x%x\n", address_mode); return -EINVAL; } if (fail) { pr_debug("Failed to fetch skb data\n"); return -EIO; } raw_dump_inline(NULL, "Reconstructed context based ipv6 src addr is", ipaddr->s6_addr, 16); return 0; } /* Uncompress function for multicast destination address, * when M bit is set. */ static int lowpan_uncompress_multicast_daddr(struct sk_buff *skb, struct in6_addr *ipaddr, u8 address_mode) { bool fail; switch (address_mode) { case LOWPAN_IPHC_DAM_00: /* 00: 128 bits. The full address * is carried in-line. */ fail = lowpan_fetch_skb(skb, ipaddr->s6_addr, 16); break; case LOWPAN_IPHC_DAM_01: /* 01: 48 bits. The address takes * the form ffXX::00XX:XXXX:XXXX. */ ipaddr->s6_addr[0] = 0xFF; fail = lowpan_fetch_skb(skb, &ipaddr->s6_addr[1], 1); fail |= lowpan_fetch_skb(skb, &ipaddr->s6_addr[11], 5); break; case LOWPAN_IPHC_DAM_10: /* 10: 32 bits. The address takes * the form ffXX::00XX:XXXX. */ ipaddr->s6_addr[0] = 0xFF; fail = lowpan_fetch_skb(skb, &ipaddr->s6_addr[1], 1); fail |= lowpan_fetch_skb(skb, &ipaddr->s6_addr[13], 3); break; case LOWPAN_IPHC_DAM_11: /* 11: 8 bits. The address takes * the form ff02::00XX. */ ipaddr->s6_addr[0] = 0xFF; ipaddr->s6_addr[1] = 0x02; fail = lowpan_fetch_skb(skb, &ipaddr->s6_addr[15], 1); break; default: pr_debug("DAM value has a wrong value: 0x%x\n", address_mode); return -EINVAL; } if (fail) { pr_debug("Failed to fetch skb data\n"); return -EIO; } raw_dump_inline(NULL, "Reconstructed ipv6 multicast addr is", ipaddr->s6_addr, 16); return 0; } static int lowpan_uncompress_multicast_ctx_daddr(struct sk_buff *skb, struct lowpan_iphc_ctx *ctx, struct in6_addr *ipaddr, u8 address_mode) { struct in6_addr network_pfx = {}; bool fail; ipaddr->s6_addr[0] = 0xFF; fail = lowpan_fetch_skb(skb, &ipaddr->s6_addr[1], 2); fail |= lowpan_fetch_skb(skb, &ipaddr->s6_addr[12], 4); if (fail) return -EIO; /* take prefix_len and network prefix from the context */ ipaddr->s6_addr[3] = ctx->plen; /* get network prefix to copy into multicast address */ ipv6_addr_prefix(&network_pfx, &ctx->pfx, ctx->plen); /* setting network prefix */ memcpy(&ipaddr->s6_addr[4], &network_pfx, 8); return 0; } /* get the ecn values from iphc tf format and set it to ipv6hdr */ static inline void lowpan_iphc_tf_set_ecn(struct ipv6hdr *hdr, const u8 *tf) { /* get the two higher bits which is ecn */ u8 ecn = tf[0] & 0xc0; /* ECN takes 0x30 in hdr->flow_lbl[0] */ hdr->flow_lbl[0] |= (ecn >> 2); } /* get the dscp values from iphc tf format and set it to ipv6hdr */ static inline void lowpan_iphc_tf_set_dscp(struct ipv6hdr *hdr, const u8 *tf) { /* DSCP is at place after ECN */ u8 dscp = tf[0] & 0x3f; /* The four highest bits need to be set at hdr->priority */ hdr->priority |= ((dscp & 0x3c) >> 2); /* The two lower bits is part of hdr->flow_lbl[0] */ hdr->flow_lbl[0] |= ((dscp & 0x03) << 6); } /* get the flow label values from iphc tf format and set it to ipv6hdr */ static inline void lowpan_iphc_tf_set_lbl(struct ipv6hdr *hdr, const u8 *lbl) { /* flow label is always some array started with lower nibble of * flow_lbl[0] and followed with two bytes afterwards. Inside inline * data the flow_lbl position can be different, which will be handled * by lbl pointer. E.g. case "01" vs "00" the traffic class is 8 bit * shifted, the different lbl pointer will handle that. * * The flow label will started at lower nibble of flow_lbl[0], the * higher nibbles are part of DSCP + ECN. */ hdr->flow_lbl[0] |= lbl[0] & 0x0f; memcpy(&hdr->flow_lbl[1], &lbl[1], 2); } /* lowpan_iphc_tf_decompress - decompress the traffic class. * This function will return zero on success, a value lower than zero if * failed. */ static int lowpan_iphc_tf_decompress(struct sk_buff *skb, struct ipv6hdr *hdr, u8 val) { u8 tf[4]; /* Traffic Class and Flow Label */ switch (val) { case LOWPAN_IPHC_TF_00: /* ECN + DSCP + 4-bit Pad + Flow Label (4 bytes) */ if (lowpan_fetch_skb(skb, tf, 4)) return -EINVAL; /* 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |ECN| DSCP | rsv | Flow Label | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ */ lowpan_iphc_tf_set_ecn(hdr, tf); lowpan_iphc_tf_set_dscp(hdr, tf); lowpan_iphc_tf_set_lbl(hdr, &tf[1]); break; case LOWPAN_IPHC_TF_01: /* ECN + 2-bit Pad + Flow Label (3 bytes), DSCP is elided. */ if (lowpan_fetch_skb(skb, tf, 3)) return -EINVAL; /* 1 2 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |ECN|rsv| Flow Label | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ */ lowpan_iphc_tf_set_ecn(hdr, tf); lowpan_iphc_tf_set_lbl(hdr, &tf[0]); break; case LOWPAN_IPHC_TF_10: /* ECN + DSCP (1 byte), Flow Label is elided. */ if (lowpan_fetch_skb(skb, tf, 1)) return -EINVAL; /* 0 1 2 3 4 5 6 7 * +-+-+-+-+-+-+-+-+ * |ECN| DSCP | * +-+-+-+-+-+-+-+-+ */ lowpan_iphc_tf_set_ecn(hdr, tf); lowpan_iphc_tf_set_dscp(hdr, tf); break; case LOWPAN_IPHC_TF_11: /* Traffic Class and Flow Label are elided */ break; default: WARN_ON_ONCE(1); return -EINVAL; } return 0; } /* TTL uncompression values */ static const u8 lowpan_ttl_values[] = { [LOWPAN_IPHC_HLIM_01] = 1, [LOWPAN_IPHC_HLIM_10] = 64, [LOWPAN_IPHC_HLIM_11] = 255, }; int lowpan_header_decompress(struct sk_buff *skb, const struct net_device *dev, const void *daddr, const void *saddr) { struct ipv6hdr hdr = {}; struct lowpan_iphc_ctx *ci; u8 iphc0, iphc1, cid = 0; int err; raw_dump_table(__func__, "raw skb data dump uncompressed", skb->data, skb->len); if (lowpan_fetch_skb(skb, &iphc0, sizeof(iphc0)) || lowpan_fetch_skb(skb, &iphc1, sizeof(iphc1))) return -EINVAL; hdr.version = 6; /* default CID = 0, another if the CID flag is set */ if (iphc1 & LOWPAN_IPHC_CID) { if (lowpan_fetch_skb(skb, &cid, sizeof(cid))) return -EINVAL; } err = lowpan_iphc_tf_decompress(skb, &hdr, iphc0 & LOWPAN_IPHC_TF_MASK); if (err < 0) return err; /* Next Header */ if (!(iphc0 & LOWPAN_IPHC_NH)) { /* Next header is carried inline */ if (lowpan_fetch_skb(skb, &hdr.nexthdr, sizeof(hdr.nexthdr))) return -EINVAL; pr_debug("NH flag is set, next header carried inline: %02x\n", hdr.nexthdr); } /* Hop Limit */ if ((iphc0 & LOWPAN_IPHC_HLIM_MASK) != LOWPAN_IPHC_HLIM_00) { hdr.hop_limit = lowpan_ttl_values[iphc0 & LOWPAN_IPHC_HLIM_MASK]; } else { if (lowpan_fetch_skb(skb, &hdr.hop_limit, sizeof(hdr.hop_limit))) return -EINVAL; } if (iphc1 & LOWPAN_IPHC_SAC) { spin_lock_bh(&lowpan_dev(dev)->ctx.lock); ci = lowpan_iphc_ctx_get_by_id(dev, LOWPAN_IPHC_CID_SCI(cid)); if (!ci) { spin_unlock_bh(&lowpan_dev(dev)->ctx.lock); return -EINVAL; } pr_debug("SAC bit is set. Handle context based source address.\n"); err = lowpan_iphc_uncompress_ctx_addr(skb, dev, ci, &hdr.saddr, iphc1 & LOWPAN_IPHC_SAM_MASK, saddr); spin_unlock_bh(&lowpan_dev(dev)->ctx.lock); } else { /* Source address uncompression */ pr_debug("source address stateless compression\n"); err = lowpan_iphc_uncompress_addr(skb, dev, &hdr.saddr, iphc1 & LOWPAN_IPHC_SAM_MASK, saddr); } /* Check on error of previous branch */ if (err) return -EINVAL; switch (iphc1 & (LOWPAN_IPHC_M | LOWPAN_IPHC_DAC)) { case LOWPAN_IPHC_M | LOWPAN_IPHC_DAC: skb->pkt_type = PACKET_BROADCAST; spin_lock_bh(&lowpan_dev(dev)->ctx.lock); ci = lowpan_iphc_ctx_get_by_id(dev, LOWPAN_IPHC_CID_DCI(cid)); if (!ci) { spin_unlock_bh(&lowpan_dev(dev)->ctx.lock); return -EINVAL; } /* multicast with context */ pr_debug("dest: context-based mcast compression\n"); err = lowpan_uncompress_multicast_ctx_daddr(skb, ci, &hdr.daddr, iphc1 & LOWPAN_IPHC_DAM_MASK); spin_unlock_bh(&lowpan_dev(dev)->ctx.lock); break; case LOWPAN_IPHC_M: skb->pkt_type = PACKET_BROADCAST; /* multicast */ err = lowpan_uncompress_multicast_daddr(skb, &hdr.daddr, iphc1 & LOWPAN_IPHC_DAM_MASK); break; case LOWPAN_IPHC_DAC: skb->pkt_type = PACKET_HOST; spin_lock_bh(&lowpan_dev(dev)->ctx.lock); ci = lowpan_iphc_ctx_get_by_id(dev, LOWPAN_IPHC_CID_DCI(cid)); if (!ci) { spin_unlock_bh(&lowpan_dev(dev)->ctx.lock); return -EINVAL; } /* Destination address context based uncompression */ pr_debug("DAC bit is set. Handle context based destination address.\n"); err = lowpan_iphc_uncompress_ctx_addr(skb, dev, ci, &hdr.daddr, iphc1 & LOWPAN_IPHC_DAM_MASK, daddr); spin_unlock_bh(&lowpan_dev(dev)->ctx.lock); break; default: skb->pkt_type = PACKET_HOST; err = lowpan_iphc_uncompress_addr(skb, dev, &hdr.daddr, iphc1 & LOWPAN_IPHC_DAM_MASK, daddr); pr_debug("dest: stateless compression mode %d dest %pI6c\n", iphc1 & LOWPAN_IPHC_DAM_MASK, &hdr.daddr); break; } if (err) return -EINVAL; /* Next header data uncompression */ if (iphc0 & LOWPAN_IPHC_NH) { err = lowpan_nhc_do_uncompression(skb, dev, &hdr); if (err < 0) return err; } else { err = skb_cow(skb, sizeof(hdr)); if (unlikely(err)) return err; } switch (lowpan_dev(dev)->lltype) { case LOWPAN_LLTYPE_IEEE802154: if (lowpan_802154_cb(skb)->d_size) hdr.payload_len = htons(lowpan_802154_cb(skb)->d_size - sizeof(struct ipv6hdr)); else hdr.payload_len = htons(skb->len); break; default: hdr.payload_len = htons(skb->len); break; } pr_debug("skb headroom size = %d, data length = %d\n", skb_headroom(skb), skb->len); pr_debug("IPv6 header dump:\n\tversion = %d\n\tlength = %d\n\t" "nexthdr = 0x%02x\n\thop_lim = %d\n\tdest = %pI6c\n", hdr.version, ntohs(hdr.payload_len), hdr.nexthdr, hdr.hop_limit, &hdr.daddr); skb_push(skb, sizeof(hdr)); skb_reset_mac_header(skb); skb_reset_network_header(skb); skb_copy_to_linear_data(skb, &hdr, sizeof(hdr)); raw_dump_table(__func__, "raw header dump", (u8 *)&hdr, sizeof(hdr)); return 0; } EXPORT_SYMBOL_GPL(lowpan_header_decompress); static const u8 lowpan_iphc_dam_to_sam_value[] = { [LOWPAN_IPHC_DAM_00] = LOWPAN_IPHC_SAM_00, [LOWPAN_IPHC_DAM_01] = LOWPAN_IPHC_SAM_01, [LOWPAN_IPHC_DAM_10] = LOWPAN_IPHC_SAM_10, [LOWPAN_IPHC_DAM_11] = LOWPAN_IPHC_SAM_11, }; static inline bool lowpan_iphc_compress_ctx_802154_lladdr(const struct in6_addr *ipaddr, const struct lowpan_iphc_ctx *ctx, const void *lladdr) { const struct ieee802154_addr *addr = lladdr; unsigned char extended_addr[EUI64_ADDR_LEN]; bool lladdr_compress = false; struct in6_addr tmp = {}; switch (addr->mode) { case IEEE802154_ADDR_LONG: ieee802154_le64_to_be64(&extended_addr, &addr->extended_addr); /* check for SAM/DAM = 11 */ memcpy(&tmp.s6_addr[8], &extended_addr, EUI64_ADDR_LEN); /* second bit-flip (Universe/Local) is done according RFC2464 */ tmp.s6_addr[8] ^= 0x02; /* context information are always used */ ipv6_addr_prefix_copy(&tmp, &ctx->pfx, ctx->plen); if (ipv6_addr_equal(&tmp, ipaddr)) lladdr_compress = true; break; case IEEE802154_ADDR_SHORT: tmp.s6_addr[11] = 0xFF; tmp.s6_addr[12] = 0xFE; ieee802154_le16_to_be16(&tmp.s6_addr16[7], &addr->short_addr); /* context information are always used */ ipv6_addr_prefix_copy(&tmp, &ctx->pfx, ctx->plen); if (ipv6_addr_equal(&tmp, ipaddr)) lladdr_compress = true; break; default: /* should never handled and filtered by 802154 6lowpan */ WARN_ON_ONCE(1); break; } return lladdr_compress; } static bool lowpan_iphc_addr_equal(const struct net_device *dev, const struct lowpan_iphc_ctx *ctx, const struct in6_addr *ipaddr, const void *lladdr) { struct in6_addr tmp = {}; lowpan_iphc_uncompress_lladdr(dev, &tmp, lladdr); if (ctx) ipv6_addr_prefix_copy(&tmp, &ctx->pfx, ctx->plen); return ipv6_addr_equal(&tmp, ipaddr); } static u8 lowpan_compress_ctx_addr(u8 **hc_ptr, const struct net_device *dev, const struct in6_addr *ipaddr, const struct lowpan_iphc_ctx *ctx, const unsigned char *lladdr, bool sam) { struct in6_addr tmp; u8 dam; switch (lowpan_dev(dev)->lltype) { case LOWPAN_LLTYPE_IEEE802154: if (lowpan_iphc_compress_ctx_802154_lladdr(ipaddr, ctx, lladdr)) { dam = LOWPAN_IPHC_DAM_11; goto out; } break; default: if (lowpan_iphc_addr_equal(dev, ctx, ipaddr, lladdr)) { dam = LOWPAN_IPHC_DAM_11; goto out; } break; } memset(&tmp, 0, sizeof(tmp)); /* check for SAM/DAM = 10 */ tmp.s6_addr[11] = 0xFF; tmp.s6_addr[12] = 0xFE; memcpy(&tmp.s6_addr[14], &ipaddr->s6_addr[14], 2); /* context information are always used */ ipv6_addr_prefix_copy(&tmp, &ctx->pfx, ctx->plen); if (ipv6_addr_equal(&tmp, ipaddr)) { lowpan_push_hc_data(hc_ptr, &ipaddr->s6_addr[14], 2); dam = LOWPAN_IPHC_DAM_10; goto out; } memset(&tmp, 0, sizeof(tmp)); /* check for SAM/DAM = 01, should always match */ memcpy(&tmp.s6_addr[8], &ipaddr->s6_addr[8], 8); /* context information are always used */ ipv6_addr_prefix_copy(&tmp, &ctx->pfx, ctx->plen); if (ipv6_addr_equal(&tmp, ipaddr)) { lowpan_push_hc_data(hc_ptr, &ipaddr->s6_addr[8], 8); dam = LOWPAN_IPHC_DAM_01; goto out; } WARN_ONCE(1, "context found but no address mode matched\n"); return LOWPAN_IPHC_DAM_00; out: if (sam) return lowpan_iphc_dam_to_sam_value[dam]; else return dam; } static inline bool lowpan_iphc_compress_802154_lladdr(const struct in6_addr *ipaddr, const void *lladdr) { const struct ieee802154_addr *addr = lladdr; unsigned char extended_addr[EUI64_ADDR_LEN]; bool lladdr_compress = false; struct in6_addr tmp = {}; switch (addr->mode) { case IEEE802154_ADDR_LONG: ieee802154_le64_to_be64(&extended_addr, &addr->extended_addr); if (is_addr_mac_addr_based(ipaddr, extended_addr)) lladdr_compress = true; break; case IEEE802154_ADDR_SHORT: /* fe:80::ff:fe00:XXXX * \__/ * short_addr * * Universe/Local bit is zero. */ tmp.s6_addr[0] = 0xFE; tmp.s6_addr[1] = 0x80; tmp.s6_addr[11] = 0xFF; tmp.s6_addr[12] = 0xFE; ieee802154_le16_to_be16(&tmp.s6_addr16[7], &addr->short_addr); if (ipv6_addr_equal(&tmp, ipaddr)) lladdr_compress = true; break; default: /* should never handled and filtered by 802154 6lowpan */ WARN_ON_ONCE(1); break; } return lladdr_compress; } static u8 lowpan_compress_addr_64(u8 **hc_ptr, const struct net_device *dev, const struct in6_addr *ipaddr, const unsigned char *lladdr, bool sam) { u8 dam = LOWPAN_IPHC_DAM_01; switch (lowpan_dev(dev)->lltype) { case LOWPAN_LLTYPE_IEEE802154: if (lowpan_iphc_compress_802154_lladdr(ipaddr, lladdr)) { dam = LOWPAN_IPHC_DAM_11; /* 0-bits */ pr_debug("address compression 0 bits\n"); goto out; } break; default: if (lowpan_iphc_addr_equal(dev, NULL, ipaddr, lladdr)) { dam = LOWPAN_IPHC_DAM_11; pr_debug("address compression 0 bits\n"); goto out; } break; } if (lowpan_is_iid_16_bit_compressable(ipaddr)) { /* compress IID to 16 bits xxxx::XXXX */ lowpan_push_hc_data(hc_ptr, &ipaddr->s6_addr16[7], 2); dam = LOWPAN_IPHC_DAM_10; /* 16-bits */ raw_dump_inline(NULL, "Compressed ipv6 addr is (16 bits)", *hc_ptr - 2, 2); goto out; } /* do not compress IID => xxxx::IID */ lowpan_push_hc_data(hc_ptr, &ipaddr->s6_addr16[4], 8); raw_dump_inline(NULL, "Compressed ipv6 addr is (64 bits)", *hc_ptr - 8, 8); out: if (sam) return lowpan_iphc_dam_to_sam_value[dam]; else return dam; } /* lowpan_iphc_get_tc - get the ECN + DCSP fields in hc format */ static inline u8 lowpan_iphc_get_tc(const struct ipv6hdr *hdr) { u8 dscp, ecn; /* hdr->priority contains the higher bits of dscp, lower are part of * flow_lbl[0]. Note ECN, DCSP is swapped in ipv6 hdr. */ dscp = (hdr->priority << 2) | ((hdr->flow_lbl[0] & 0xc0) >> 6); /* ECN is at the two lower bits from first nibble of flow_lbl[0] */ ecn = (hdr->flow_lbl[0] & 0x30); /* for pretty debug output, also shift ecn to get the ecn value */ pr_debug("ecn 0x%02x dscp 0x%02x\n", ecn >> 4, dscp); /* ECN is at 0x30 now, shift it to have ECN + DCSP */ return (ecn << 2) | dscp; } /* lowpan_iphc_is_flow_lbl_zero - check if flow label is zero */ static inline bool lowpan_iphc_is_flow_lbl_zero(const struct ipv6hdr *hdr) { return ((!(hdr->flow_lbl[0] & 0x0f)) && !hdr->flow_lbl[1] && !hdr->flow_lbl[2]); } /* lowpan_iphc_tf_compress - compress the traffic class which is set by * ipv6hdr. Return the corresponding format identifier which is used. */ static u8 lowpan_iphc_tf_compress(u8 **hc_ptr, const struct ipv6hdr *hdr) { /* get ecn dscp data in a byteformat as: ECN(hi) + DSCP(lo) */ u8 tc = lowpan_iphc_get_tc(hdr), tf[4], val; /* printout the traffic class in hc format */ pr_debug("tc 0x%02x\n", tc); if (lowpan_iphc_is_flow_lbl_zero(hdr)) { if (!tc) { /* 11: Traffic Class and Flow Label are elided. */ val = LOWPAN_IPHC_TF_11; } else { /* 10: ECN + DSCP (1 byte), Flow Label is elided. * * 0 1 2 3 4 5 6 7 * +-+-+-+-+-+-+-+-+ * |ECN| DSCP | * +-+-+-+-+-+-+-+-+ */ lowpan_push_hc_data(hc_ptr, &tc, sizeof(tc)); val = LOWPAN_IPHC_TF_10; } } else { /* check if dscp is zero, it's after the first two bit */ if (!(tc & 0x3f)) { /* 01: ECN + 2-bit Pad + Flow Label (3 bytes), DSCP is elided * * 1 2 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |ECN|rsv| Flow Label | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ */ memcpy(&tf[0], &hdr->flow_lbl[0], 3); /* zero the highest 4-bits, contains DCSP + ECN */ tf[0] &= ~0xf0; /* set ECN */ tf[0] |= (tc & 0xc0); lowpan_push_hc_data(hc_ptr, tf, 3); val = LOWPAN_IPHC_TF_01; } else { /* 00: ECN + DSCP + 4-bit Pad + Flow Label (4 bytes) * * 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |ECN| DSCP | rsv | Flow Label | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ */ memcpy(&tf[0], &tc, sizeof(tc)); /* highest nibble of flow_lbl[0] is part of DSCP + ECN * which will be the 4-bit pad and will be filled with * zeros afterwards. */ memcpy(&tf[1], &hdr->flow_lbl[0], 3); /* zero the 4-bit pad, which is reserved */ tf[1] &= ~0xf0; lowpan_push_hc_data(hc_ptr, tf, 4); val = LOWPAN_IPHC_TF_00; } } return val; } static u8 lowpan_iphc_mcast_ctx_addr_compress(u8 **hc_ptr, const struct lowpan_iphc_ctx *ctx, const struct in6_addr *ipaddr) { u8 data[6]; /* flags/scope, reserved (RIID) */ memcpy(data, &ipaddr->s6_addr[1], 2); /* group ID */ memcpy(&data[1], &ipaddr->s6_addr[11], 4); lowpan_push_hc_data(hc_ptr, data, 6); return LOWPAN_IPHC_DAM_00; } static u8 lowpan_iphc_mcast_addr_compress(u8 **hc_ptr, const struct in6_addr *ipaddr) { u8 val; if (lowpan_is_mcast_addr_compressable8(ipaddr)) { pr_debug("compressed to 1 octet\n"); /* use last byte */ lowpan_push_hc_data(hc_ptr, &ipaddr->s6_addr[15], 1); val = LOWPAN_IPHC_DAM_11; } else if (lowpan_is_mcast_addr_compressable32(ipaddr)) { pr_debug("compressed to 4 octets\n"); /* second byte + the last three */ lowpan_push_hc_data(hc_ptr, &ipaddr->s6_addr[1], 1); lowpan_push_hc_data(hc_ptr, &ipaddr->s6_addr[13], 3); val = LOWPAN_IPHC_DAM_10; } else if (lowpan_is_mcast_addr_compressable48(ipaddr)) { pr_debug("compressed to 6 octets\n"); /* second byte + the last five */ lowpan_push_hc_data(hc_ptr, &ipaddr->s6_addr[1], 1); lowpan_push_hc_data(hc_ptr, &ipaddr->s6_addr[11], 5); val = LOWPAN_IPHC_DAM_01; } else { pr_debug("using full address\n"); lowpan_push_hc_data(hc_ptr, ipaddr->s6_addr, 16); val = LOWPAN_IPHC_DAM_00; } return val; } int lowpan_header_compress(struct sk_buff *skb, const struct net_device *dev, const void *daddr, const void *saddr) { u8 iphc0, iphc1, *hc_ptr, cid = 0; struct ipv6hdr *hdr; u8 head[LOWPAN_IPHC_MAX_HC_BUF_LEN] = {}; struct lowpan_iphc_ctx *dci, *sci, dci_entry, sci_entry; int ret, ipv6_daddr_type, ipv6_saddr_type; if (skb->protocol != htons(ETH_P_IPV6)) return -EINVAL; hdr = ipv6_hdr(skb); hc_ptr = head + 2; pr_debug("IPv6 header dump:\n\tversion = %d\n\tlength = %d\n" "\tnexthdr = 0x%02x\n\thop_lim = %d\n\tdest = %pI6c\n", hdr->version, ntohs(hdr->payload_len), hdr->nexthdr, hdr->hop_limit, &hdr->daddr); raw_dump_table(__func__, "raw skb network header dump", skb_network_header(skb), sizeof(struct ipv6hdr)); /* As we copy some bit-length fields, in the IPHC encoding bytes, * we sometimes use |= * If the field is 0, and the current bit value in memory is 1, * this does not work. We therefore reset the IPHC encoding here */ iphc0 = LOWPAN_DISPATCH_IPHC; iphc1 = 0; raw_dump_table(__func__, "sending raw skb network uncompressed packet", skb->data, skb->len); ipv6_daddr_type = ipv6_addr_type(&hdr->daddr); spin_lock_bh(&lowpan_dev(dev)->ctx.lock); if (ipv6_daddr_type & IPV6_ADDR_MULTICAST) dci = lowpan_iphc_ctx_get_by_mcast_addr(dev, &hdr->daddr); else dci = lowpan_iphc_ctx_get_by_addr(dev, &hdr->daddr); if (dci) { memcpy(&dci_entry, dci, sizeof(*dci)); cid |= dci->id; } spin_unlock_bh(&lowpan_dev(dev)->ctx.lock); spin_lock_bh(&lowpan_dev(dev)->ctx.lock); sci = lowpan_iphc_ctx_get_by_addr(dev, &hdr->saddr); if (sci) { memcpy(&sci_entry, sci, sizeof(*sci)); cid |= (sci->id << 4); } spin_unlock_bh(&lowpan_dev(dev)->ctx.lock); /* if cid is zero it will be compressed */ if (cid) { iphc1 |= LOWPAN_IPHC_CID; lowpan_push_hc_data(&hc_ptr, &cid, sizeof(cid)); } /* Traffic Class, Flow Label compression */ iphc0 |= lowpan_iphc_tf_compress(&hc_ptr, hdr); /* NOTE: payload length is always compressed */ /* Check if we provide the nhc format for nexthdr and compression * functionality. If not nexthdr is handled inline and not compressed. */ ret = lowpan_nhc_check_compression(skb, hdr, &hc_ptr); if (ret == -ENOENT) lowpan_push_hc_data(&hc_ptr, &hdr->nexthdr, sizeof(hdr->nexthdr)); else iphc0 |= LOWPAN_IPHC_NH; /* Hop limit * if 1: compress, encoding is 01 * if 64: compress, encoding is 10 * if 255: compress, encoding is 11 * else do not compress */ switch (hdr->hop_limit) { case 1: iphc0 |= LOWPAN_IPHC_HLIM_01; break; case 64: iphc0 |= LOWPAN_IPHC_HLIM_10; break; case 255: iphc0 |= LOWPAN_IPHC_HLIM_11; break; default: lowpan_push_hc_data(&hc_ptr, &hdr->hop_limit, sizeof(hdr->hop_limit)); } ipv6_saddr_type = ipv6_addr_type(&hdr->saddr); /* source address compression */ if (ipv6_saddr_type == IPV6_ADDR_ANY) { pr_debug("source address is unspecified, setting SAC\n"); iphc1 |= LOWPAN_IPHC_SAC; } else { if (sci) { iphc1 |= lowpan_compress_ctx_addr(&hc_ptr, dev, &hdr->saddr, &sci_entry, saddr, true); iphc1 |= LOWPAN_IPHC_SAC; } else { if (ipv6_saddr_type & IPV6_ADDR_LINKLOCAL && lowpan_is_linklocal_zero_padded(hdr->saddr)) { iphc1 |= lowpan_compress_addr_64(&hc_ptr, dev, &hdr->saddr, saddr, true); pr_debug("source address unicast link-local %pI6c iphc1 0x%02x\n", &hdr->saddr, iphc1); } else { pr_debug("send the full source address\n"); lowpan_push_hc_data(&hc_ptr, hdr->saddr.s6_addr, 16); } } } /* destination address compression */ if (ipv6_daddr_type & IPV6_ADDR_MULTICAST) { pr_debug("destination address is multicast: "); iphc1 |= LOWPAN_IPHC_M; if (dci) { iphc1 |= lowpan_iphc_mcast_ctx_addr_compress(&hc_ptr, &dci_entry, &hdr->daddr); iphc1 |= LOWPAN_IPHC_DAC; } else { iphc1 |= lowpan_iphc_mcast_addr_compress(&hc_ptr, &hdr->daddr); } } else { if (dci) { iphc1 |= lowpan_compress_ctx_addr(&hc_ptr, dev, &hdr->daddr, &dci_entry, daddr, false); iphc1 |= LOWPAN_IPHC_DAC; } else { if (ipv6_daddr_type & IPV6_ADDR_LINKLOCAL && lowpan_is_linklocal_zero_padded(hdr->daddr)) { iphc1 |= lowpan_compress_addr_64(&hc_ptr, dev, &hdr->daddr, daddr, false); pr_debug("dest address unicast link-local %pI6c iphc1 0x%02x\n", &hdr->daddr, iphc1); } else { pr_debug("dest address unicast %pI6c\n", &hdr->daddr); lowpan_push_hc_data(&hc_ptr, hdr->daddr.s6_addr, 16); } } } /* next header compression */ if (iphc0 & LOWPAN_IPHC_NH) { ret = lowpan_nhc_do_compression(skb, hdr, &hc_ptr); if (ret < 0) return ret; } head[0] = iphc0; head[1] = iphc1; skb_pull(skb, sizeof(struct ipv6hdr)); skb_reset_transport_header(skb); memcpy(skb_push(skb, hc_ptr - head), head, hc_ptr - head); skb_reset_network_header(skb); pr_debug("header len %d skb %u\n", (int)(hc_ptr - head), skb->len); raw_dump_table(__func__, "raw skb data dump compressed", skb->data, skb->len); return 0; } EXPORT_SYMBOL_GPL(lowpan_header_compress);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1