Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vladimir Oltean | 3153 | 97.05% | 62 | 88.57% |
Linus Torvalds (pre-git) | 61 | 1.88% | 3 | 4.29% |
Florian Fainelli | 17 | 0.52% | 2 | 2.86% |
Brandon Streiff | 7 | 0.22% | 1 | 1.43% |
Artem Chernyshev | 6 | 0.18% | 1 | 1.43% |
Jakub Kiciński | 5 | 0.15% | 1 | 1.43% |
Total | 3249 | 70 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com> */ #include <linux/if_vlan.h> #include <linux/dsa/sja1105.h> #include <linux/dsa/8021q.h> #include <linux/packing.h> #include "tag.h" #include "tag_8021q.h" #define SJA1105_NAME "sja1105" #define SJA1110_NAME "sja1110" /* Is this a TX or an RX header? */ #define SJA1110_HEADER_HOST_TO_SWITCH BIT(15) /* RX header */ #define SJA1110_RX_HEADER_IS_METADATA BIT(14) #define SJA1110_RX_HEADER_HOST_ONLY BIT(13) #define SJA1110_RX_HEADER_HAS_TRAILER BIT(12) /* Trap-to-host format (no trailer present) */ #define SJA1110_RX_HEADER_SRC_PORT(x) (((x) & GENMASK(7, 4)) >> 4) #define SJA1110_RX_HEADER_SWITCH_ID(x) ((x) & GENMASK(3, 0)) /* Timestamp format (trailer present) */ #define SJA1110_RX_HEADER_TRAILER_POS(x) ((x) & GENMASK(11, 0)) #define SJA1110_RX_TRAILER_SWITCH_ID(x) (((x) & GENMASK(7, 4)) >> 4) #define SJA1110_RX_TRAILER_SRC_PORT(x) ((x) & GENMASK(3, 0)) /* Meta frame format (for 2-step TX timestamps) */ #define SJA1110_RX_HEADER_N_TS(x) (((x) & GENMASK(8, 4)) >> 4) /* TX header */ #define SJA1110_TX_HEADER_UPDATE_TC BIT(14) #define SJA1110_TX_HEADER_TAKE_TS BIT(13) #define SJA1110_TX_HEADER_TAKE_TS_CASC BIT(12) #define SJA1110_TX_HEADER_HAS_TRAILER BIT(11) /* Only valid if SJA1110_TX_HEADER_HAS_TRAILER is false */ #define SJA1110_TX_HEADER_PRIO(x) (((x) << 7) & GENMASK(10, 7)) #define SJA1110_TX_HEADER_TSTAMP_ID(x) ((x) & GENMASK(7, 0)) /* Only valid if SJA1110_TX_HEADER_HAS_TRAILER is true */ #define SJA1110_TX_HEADER_TRAILER_POS(x) ((x) & GENMASK(10, 0)) #define SJA1110_TX_TRAILER_TSTAMP_ID(x) (((x) << 24) & GENMASK(31, 24)) #define SJA1110_TX_TRAILER_PRIO(x) (((x) << 21) & GENMASK(23, 21)) #define SJA1110_TX_TRAILER_SWITCHID(x) (((x) << 12) & GENMASK(15, 12)) #define SJA1110_TX_TRAILER_DESTPORTS(x) (((x) << 1) & GENMASK(11, 1)) #define SJA1110_META_TSTAMP_SIZE 10 #define SJA1110_HEADER_LEN 4 #define SJA1110_RX_TRAILER_LEN 13 #define SJA1110_TX_TRAILER_LEN 4 #define SJA1110_MAX_PADDING_LEN 15 struct sja1105_tagger_private { struct sja1105_tagger_data data; /* Must be first */ /* Protects concurrent access to the meta state machine * from taggers running on multiple ports on SMP systems */ spinlock_t meta_lock; struct sk_buff *stampable_skb; struct kthread_worker *xmit_worker; }; static struct sja1105_tagger_private * sja1105_tagger_private(struct dsa_switch *ds) { return ds->tagger_data; } /* Similar to is_link_local_ether_addr(hdr->h_dest) but also covers PTP */ static bool sja1105_is_link_local(const struct sk_buff *skb) { const struct ethhdr *hdr = eth_hdr(skb); u64 dmac = ether_addr_to_u64(hdr->h_dest); if (ntohs(hdr->h_proto) == ETH_P_SJA1105_META) return false; if ((dmac & SJA1105_LINKLOCAL_FILTER_A_MASK) == SJA1105_LINKLOCAL_FILTER_A) return true; if ((dmac & SJA1105_LINKLOCAL_FILTER_B_MASK) == SJA1105_LINKLOCAL_FILTER_B) return true; return false; } struct sja1105_meta { u64 tstamp; u64 dmac_byte_4; u64 dmac_byte_3; u64 source_port; u64 switch_id; }; static void sja1105_meta_unpack(const struct sk_buff *skb, struct sja1105_meta *meta) { u8 *buf = skb_mac_header(skb) + ETH_HLEN; /* UM10944.pdf section 4.2.17 AVB Parameters: * Structure of the meta-data follow-up frame. * It is in network byte order, so there are no quirks * while unpacking the meta frame. * * Also SJA1105 E/T only populates bits 23:0 of the timestamp * whereas P/Q/R/S does 32 bits. Since the structure is the * same and the E/T puts zeroes in the high-order byte, use * a unified unpacking command for both device series. */ packing(buf, &meta->tstamp, 31, 0, 4, UNPACK, 0); packing(buf + 4, &meta->dmac_byte_3, 7, 0, 1, UNPACK, 0); packing(buf + 5, &meta->dmac_byte_4, 7, 0, 1, UNPACK, 0); packing(buf + 6, &meta->source_port, 7, 0, 1, UNPACK, 0); packing(buf + 7, &meta->switch_id, 7, 0, 1, UNPACK, 0); } static bool sja1105_is_meta_frame(const struct sk_buff *skb) { const struct ethhdr *hdr = eth_hdr(skb); u64 smac = ether_addr_to_u64(hdr->h_source); u64 dmac = ether_addr_to_u64(hdr->h_dest); if (smac != SJA1105_META_SMAC) return false; if (dmac != SJA1105_META_DMAC) return false; if (ntohs(hdr->h_proto) != ETH_P_SJA1105_META) return false; return true; } /* Calls sja1105_port_deferred_xmit in sja1105_main.c */ static struct sk_buff *sja1105_defer_xmit(struct dsa_port *dp, struct sk_buff *skb) { struct sja1105_tagger_data *tagger_data = sja1105_tagger_data(dp->ds); struct sja1105_tagger_private *priv = sja1105_tagger_private(dp->ds); void (*xmit_work_fn)(struct kthread_work *work); struct sja1105_deferred_xmit_work *xmit_work; struct kthread_worker *xmit_worker; xmit_work_fn = tagger_data->xmit_work_fn; xmit_worker = priv->xmit_worker; if (!xmit_work_fn || !xmit_worker) return NULL; xmit_work = kzalloc(sizeof(*xmit_work), GFP_ATOMIC); if (!xmit_work) return NULL; kthread_init_work(&xmit_work->work, xmit_work_fn); /* Increase refcount so the kfree_skb in dsa_user_xmit * won't really free the packet. */ xmit_work->dp = dp; xmit_work->skb = skb_get(skb); kthread_queue_work(xmit_worker, &xmit_work->work); return NULL; } /* Send VLAN tags with a TPID that blends in with whatever VLAN protocol a * bridge spanning ports of this switch might have. */ static u16 sja1105_xmit_tpid(struct dsa_port *dp) { struct dsa_switch *ds = dp->ds; struct dsa_port *other_dp; u16 proto; /* Since VLAN awareness is global, then if this port is VLAN-unaware, * all ports are. Use the VLAN-unaware TPID used for tag_8021q. */ if (!dsa_port_is_vlan_filtering(dp)) return ETH_P_SJA1105; /* Port is VLAN-aware, so there is a bridge somewhere (a single one, * we're sure about that). It may not be on this port though, so we * need to find it. */ dsa_switch_for_each_port(other_dp, ds) { struct net_device *br = dsa_port_bridge_dev_get(other_dp); if (!br) continue; /* Error is returned only if CONFIG_BRIDGE_VLAN_FILTERING, * which seems pointless to handle, as our port cannot become * VLAN-aware in that case. */ br_vlan_get_proto(br, &proto); return proto; } WARN_ONCE(1, "Port is VLAN-aware but cannot find associated bridge!\n"); return ETH_P_SJA1105; } static struct sk_buff *sja1105_imprecise_xmit(struct sk_buff *skb, struct net_device *netdev) { struct dsa_port *dp = dsa_user_to_port(netdev); unsigned int bridge_num = dsa_port_bridge_num_get(dp); struct net_device *br = dsa_port_bridge_dev_get(dp); u16 tx_vid; /* If the port is under a VLAN-aware bridge, just slide the * VLAN-tagged packet into the FDB and hope for the best. * This works because we support a single VLAN-aware bridge * across the entire dst, and its VLANs cannot be shared with * any standalone port. */ if (br_vlan_enabled(br)) return skb; /* If the port is under a VLAN-unaware bridge, use an imprecise * TX VLAN that targets the bridge's entire broadcast domain, * instead of just the specific port. */ tx_vid = dsa_tag_8021q_bridge_vid(bridge_num); return dsa_8021q_xmit(skb, netdev, sja1105_xmit_tpid(dp), tx_vid); } /* Transform untagged control packets into pvid-tagged control packets so that * all packets sent by this tagger are VLAN-tagged and we can configure the * switch to drop untagged packets coming from the DSA conduit. */ static struct sk_buff *sja1105_pvid_tag_control_pkt(struct dsa_port *dp, struct sk_buff *skb, u8 pcp) { __be16 xmit_tpid = htons(sja1105_xmit_tpid(dp)); struct vlan_ethhdr *hdr; /* If VLAN tag is in hwaccel area, move it to the payload * to deal with both cases uniformly and to ensure that * the VLANs are added in the right order. */ if (unlikely(skb_vlan_tag_present(skb))) { skb = __vlan_hwaccel_push_inside(skb); if (!skb) return NULL; } hdr = skb_vlan_eth_hdr(skb); /* If skb is already VLAN-tagged, leave that VLAN ID in place */ if (hdr->h_vlan_proto == xmit_tpid) return skb; return vlan_insert_tag(skb, xmit_tpid, (pcp << VLAN_PRIO_SHIFT) | SJA1105_DEFAULT_VLAN); } static struct sk_buff *sja1105_xmit(struct sk_buff *skb, struct net_device *netdev) { struct dsa_port *dp = dsa_user_to_port(netdev); u16 queue_mapping = skb_get_queue_mapping(skb); u8 pcp = netdev_txq_to_tc(netdev, queue_mapping); u16 tx_vid = dsa_tag_8021q_standalone_vid(dp); if (skb->offload_fwd_mark) return sja1105_imprecise_xmit(skb, netdev); /* Transmitting management traffic does not rely upon switch tagging, * but instead SPI-installed management routes. Part 2 of this * is the .port_deferred_xmit driver callback. */ if (unlikely(sja1105_is_link_local(skb))) { skb = sja1105_pvid_tag_control_pkt(dp, skb, pcp); if (!skb) return NULL; return sja1105_defer_xmit(dp, skb); } return dsa_8021q_xmit(skb, netdev, sja1105_xmit_tpid(dp), ((pcp << VLAN_PRIO_SHIFT) | tx_vid)); } static struct sk_buff *sja1110_xmit(struct sk_buff *skb, struct net_device *netdev) { struct sk_buff *clone = SJA1105_SKB_CB(skb)->clone; struct dsa_port *dp = dsa_user_to_port(netdev); u16 queue_mapping = skb_get_queue_mapping(skb); u8 pcp = netdev_txq_to_tc(netdev, queue_mapping); u16 tx_vid = dsa_tag_8021q_standalone_vid(dp); __be32 *tx_trailer; __be16 *tx_header; int trailer_pos; if (skb->offload_fwd_mark) return sja1105_imprecise_xmit(skb, netdev); /* Transmitting control packets is done using in-band control * extensions, while data packets are transmitted using * tag_8021q TX VLANs. */ if (likely(!sja1105_is_link_local(skb))) return dsa_8021q_xmit(skb, netdev, sja1105_xmit_tpid(dp), ((pcp << VLAN_PRIO_SHIFT) | tx_vid)); skb = sja1105_pvid_tag_control_pkt(dp, skb, pcp); if (!skb) return NULL; skb_push(skb, SJA1110_HEADER_LEN); dsa_alloc_etype_header(skb, SJA1110_HEADER_LEN); trailer_pos = skb->len; tx_header = dsa_etype_header_pos_tx(skb); tx_trailer = skb_put(skb, SJA1110_TX_TRAILER_LEN); tx_header[0] = htons(ETH_P_SJA1110); tx_header[1] = htons(SJA1110_HEADER_HOST_TO_SWITCH | SJA1110_TX_HEADER_HAS_TRAILER | SJA1110_TX_HEADER_TRAILER_POS(trailer_pos)); *tx_trailer = cpu_to_be32(SJA1110_TX_TRAILER_PRIO(pcp) | SJA1110_TX_TRAILER_SWITCHID(dp->ds->index) | SJA1110_TX_TRAILER_DESTPORTS(BIT(dp->index))); if (clone) { u8 ts_id = SJA1105_SKB_CB(clone)->ts_id; tx_header[1] |= htons(SJA1110_TX_HEADER_TAKE_TS); *tx_trailer |= cpu_to_be32(SJA1110_TX_TRAILER_TSTAMP_ID(ts_id)); } return skb; } static void sja1105_transfer_meta(struct sk_buff *skb, const struct sja1105_meta *meta) { struct ethhdr *hdr = eth_hdr(skb); hdr->h_dest[3] = meta->dmac_byte_3; hdr->h_dest[4] = meta->dmac_byte_4; SJA1105_SKB_CB(skb)->tstamp = meta->tstamp; } /* This is a simple state machine which follows the hardware mechanism of * generating RX timestamps: * * After each timestampable skb (all traffic for which send_meta1 and * send_meta0 is true, aka all MAC-filtered link-local traffic) a meta frame * containing a partial timestamp is immediately generated by the switch and * sent as a follow-up to the link-local frame on the CPU port. * * The meta frames have no unique identifier (such as sequence number) by which * one may pair them to the correct timestampable frame. * Instead, the switch has internal logic that ensures no frames are sent on * the CPU port between a link-local timestampable frame and its corresponding * meta follow-up. It also ensures strict ordering between ports (lower ports * have higher priority towards the CPU port). For this reason, a per-port * data structure is not needed/desirable. * * This function pairs the link-local frame with its partial timestamp from the * meta follow-up frame. The full timestamp will be reconstructed later in a * work queue. */ static struct sk_buff *sja1105_rcv_meta_state_machine(struct sk_buff *skb, struct sja1105_meta *meta, bool is_link_local, bool is_meta) { /* Step 1: A timestampable frame was received. * Buffer it until we get its meta frame. */ if (is_link_local) { struct dsa_port *dp = dsa_user_to_port(skb->dev); struct sja1105_tagger_private *priv; struct dsa_switch *ds = dp->ds; priv = sja1105_tagger_private(ds); spin_lock(&priv->meta_lock); /* Was this a link-local frame instead of the meta * that we were expecting? */ if (priv->stampable_skb) { dev_err_ratelimited(ds->dev, "Expected meta frame, is %12llx " "in the DSA conduit multicast filter?\n", SJA1105_META_DMAC); kfree_skb(priv->stampable_skb); } /* Hold a reference to avoid dsa_switch_rcv * from freeing the skb. */ priv->stampable_skb = skb_get(skb); spin_unlock(&priv->meta_lock); /* Tell DSA we got nothing */ return NULL; /* Step 2: The meta frame arrived. * Time to take the stampable skb out of the closet, annotate it * with the partial timestamp, and pretend that we received it * just now (basically masquerade the buffered frame as the meta * frame, which serves no further purpose). */ } else if (is_meta) { struct dsa_port *dp = dsa_user_to_port(skb->dev); struct sja1105_tagger_private *priv; struct dsa_switch *ds = dp->ds; struct sk_buff *stampable_skb; priv = sja1105_tagger_private(ds); spin_lock(&priv->meta_lock); stampable_skb = priv->stampable_skb; priv->stampable_skb = NULL; /* Was this a meta frame instead of the link-local * that we were expecting? */ if (!stampable_skb) { dev_err_ratelimited(ds->dev, "Unexpected meta frame\n"); spin_unlock(&priv->meta_lock); return NULL; } if (stampable_skb->dev != skb->dev) { dev_err_ratelimited(ds->dev, "Meta frame on wrong port\n"); spin_unlock(&priv->meta_lock); return NULL; } /* Free the meta frame and give DSA the buffered stampable_skb * for further processing up the network stack. */ kfree_skb(skb); skb = stampable_skb; sja1105_transfer_meta(skb, meta); spin_unlock(&priv->meta_lock); } return skb; } static bool sja1105_skb_has_tag_8021q(const struct sk_buff *skb) { u16 tpid = ntohs(eth_hdr(skb)->h_proto); return tpid == ETH_P_SJA1105 || tpid == ETH_P_8021Q || skb_vlan_tag_present(skb); } static bool sja1110_skb_has_inband_control_extension(const struct sk_buff *skb) { return ntohs(eth_hdr(skb)->h_proto) == ETH_P_SJA1110; } /* If the VLAN in the packet is a tag_8021q one, set @source_port and * @switch_id and strip the header. Otherwise set @vid and keep it in the * packet. */ static void sja1105_vlan_rcv(struct sk_buff *skb, int *source_port, int *switch_id, int *vbid, u16 *vid) { struct vlan_ethhdr *hdr = vlan_eth_hdr(skb); u16 vlan_tci; if (skb_vlan_tag_present(skb)) vlan_tci = skb_vlan_tag_get(skb); else vlan_tci = ntohs(hdr->h_vlan_TCI); if (vid_is_dsa_8021q(vlan_tci & VLAN_VID_MASK)) return dsa_8021q_rcv(skb, source_port, switch_id, vbid); /* Try our best with imprecise RX */ *vid = vlan_tci & VLAN_VID_MASK; } static struct sk_buff *sja1105_rcv(struct sk_buff *skb, struct net_device *netdev) { int source_port = -1, switch_id = -1, vbid = -1; struct sja1105_meta meta = {0}; struct ethhdr *hdr; bool is_link_local; bool is_meta; u16 vid; hdr = eth_hdr(skb); is_link_local = sja1105_is_link_local(skb); is_meta = sja1105_is_meta_frame(skb); if (is_link_local) { /* Management traffic path. Switch embeds the switch ID and * port ID into bytes of the destination MAC, courtesy of * the incl_srcpt options. */ source_port = hdr->h_dest[3]; switch_id = hdr->h_dest[4]; } else if (is_meta) { sja1105_meta_unpack(skb, &meta); source_port = meta.source_port; switch_id = meta.switch_id; } /* Normal data plane traffic and link-local frames are tagged with * a tag_8021q VLAN which we have to strip */ if (sja1105_skb_has_tag_8021q(skb)) { int tmp_source_port = -1, tmp_switch_id = -1; sja1105_vlan_rcv(skb, &tmp_source_port, &tmp_switch_id, &vbid, &vid); /* Preserve the source information from the INCL_SRCPT option, * if available. This allows us to not overwrite a valid source * port and switch ID with zeroes when receiving link-local * frames from a VLAN-unaware bridged port (non-zero vbid) or a * VLAN-aware bridged port (non-zero vid). Furthermore, the * tag_8021q source port information is only of trust when the * vbid is 0 (precise port). Otherwise, tmp_source_port and * tmp_switch_id will be zeroes. */ if (vbid == 0 && source_port == -1) source_port = tmp_source_port; if (vbid == 0 && switch_id == -1) switch_id = tmp_switch_id; } else if (source_port == -1 && switch_id == -1) { /* Packets with no source information have no chance of * getting accepted, drop them straight away. */ return NULL; } if (source_port != -1 && switch_id != -1) skb->dev = dsa_conduit_find_user(netdev, switch_id, source_port); else if (vbid >= 1) skb->dev = dsa_tag_8021q_find_port_by_vbid(netdev, vbid); else skb->dev = dsa_find_designated_bridge_port_by_vid(netdev, vid); if (!skb->dev) { netdev_warn(netdev, "Couldn't decode source port\n"); return NULL; } if (!is_link_local) dsa_default_offload_fwd_mark(skb); return sja1105_rcv_meta_state_machine(skb, &meta, is_link_local, is_meta); } static struct sk_buff *sja1110_rcv_meta(struct sk_buff *skb, u16 rx_header) { u8 *buf = dsa_etype_header_pos_rx(skb) + SJA1110_HEADER_LEN; int switch_id = SJA1110_RX_HEADER_SWITCH_ID(rx_header); int n_ts = SJA1110_RX_HEADER_N_TS(rx_header); struct sja1105_tagger_data *tagger_data; struct net_device *conduit = skb->dev; struct dsa_port *cpu_dp; struct dsa_switch *ds; int i; cpu_dp = conduit->dsa_ptr; ds = dsa_switch_find(cpu_dp->dst->index, switch_id); if (!ds) { net_err_ratelimited("%s: cannot find switch id %d\n", conduit->name, switch_id); return NULL; } tagger_data = sja1105_tagger_data(ds); if (!tagger_data->meta_tstamp_handler) return NULL; for (i = 0; i <= n_ts; i++) { u8 ts_id, source_port, dir; u64 tstamp; ts_id = buf[0]; source_port = (buf[1] & GENMASK(7, 4)) >> 4; dir = (buf[1] & BIT(3)) >> 3; tstamp = be64_to_cpu(*(__be64 *)(buf + 2)); tagger_data->meta_tstamp_handler(ds, source_port, ts_id, dir, tstamp); buf += SJA1110_META_TSTAMP_SIZE; } /* Discard the meta frame, we've consumed the timestamps it contained */ return NULL; } static struct sk_buff *sja1110_rcv_inband_control_extension(struct sk_buff *skb, int *source_port, int *switch_id, bool *host_only) { u16 rx_header; if (unlikely(!pskb_may_pull(skb, SJA1110_HEADER_LEN))) return NULL; /* skb->data points to skb_mac_header(skb) + ETH_HLEN, which is exactly * what we need because the caller has checked the EtherType (which is * located 2 bytes back) and we just need a pointer to the header that * comes afterwards. */ rx_header = ntohs(*(__be16 *)skb->data); if (rx_header & SJA1110_RX_HEADER_HOST_ONLY) *host_only = true; if (rx_header & SJA1110_RX_HEADER_IS_METADATA) return sja1110_rcv_meta(skb, rx_header); /* Timestamp frame, we have a trailer */ if (rx_header & SJA1110_RX_HEADER_HAS_TRAILER) { int start_of_padding = SJA1110_RX_HEADER_TRAILER_POS(rx_header); u8 *rx_trailer = skb_tail_pointer(skb) - SJA1110_RX_TRAILER_LEN; u64 *tstamp = &SJA1105_SKB_CB(skb)->tstamp; u8 last_byte = rx_trailer[12]; /* The timestamp is unaligned, so we need to use packing() * to get it */ packing(rx_trailer, tstamp, 63, 0, 8, UNPACK, 0); *source_port = SJA1110_RX_TRAILER_SRC_PORT(last_byte); *switch_id = SJA1110_RX_TRAILER_SWITCH_ID(last_byte); /* skb->len counts from skb->data, while start_of_padding * counts from the destination MAC address. Right now skb->data * is still as set by the DSA conduit, so to trim away the * padding and trailer we need to account for the fact that * skb->data points to skb_mac_header(skb) + ETH_HLEN. */ if (pskb_trim_rcsum(skb, start_of_padding - ETH_HLEN)) return NULL; /* Trap-to-host frame, no timestamp trailer */ } else { *source_port = SJA1110_RX_HEADER_SRC_PORT(rx_header); *switch_id = SJA1110_RX_HEADER_SWITCH_ID(rx_header); } /* Advance skb->data past the DSA header */ skb_pull_rcsum(skb, SJA1110_HEADER_LEN); dsa_strip_etype_header(skb, SJA1110_HEADER_LEN); /* With skb->data in its final place, update the MAC header * so that eth_hdr() continues to works properly. */ skb_set_mac_header(skb, -ETH_HLEN); return skb; } static struct sk_buff *sja1110_rcv(struct sk_buff *skb, struct net_device *netdev) { int source_port = -1, switch_id = -1, vbid = -1; bool host_only = false; u16 vid = 0; if (sja1110_skb_has_inband_control_extension(skb)) { skb = sja1110_rcv_inband_control_extension(skb, &source_port, &switch_id, &host_only); if (!skb) return NULL; } /* Packets with in-band control extensions might still have RX VLANs */ if (likely(sja1105_skb_has_tag_8021q(skb))) sja1105_vlan_rcv(skb, &source_port, &switch_id, &vbid, &vid); if (vbid >= 1) skb->dev = dsa_tag_8021q_find_port_by_vbid(netdev, vbid); else if (source_port == -1 || switch_id == -1) skb->dev = dsa_find_designated_bridge_port_by_vid(netdev, vid); else skb->dev = dsa_conduit_find_user(netdev, switch_id, source_port); if (!skb->dev) { netdev_warn(netdev, "Couldn't decode source port\n"); return NULL; } if (!host_only) dsa_default_offload_fwd_mark(skb); return skb; } static void sja1105_flow_dissect(const struct sk_buff *skb, __be16 *proto, int *offset) { /* No tag added for management frames, all ok */ if (unlikely(sja1105_is_link_local(skb))) return; dsa_tag_generic_flow_dissect(skb, proto, offset); } static void sja1110_flow_dissect(const struct sk_buff *skb, __be16 *proto, int *offset) { /* Management frames have 2 DSA tags on RX, so the needed_headroom we * declared is fine for the generic dissector adjustment procedure. */ if (unlikely(sja1105_is_link_local(skb))) return dsa_tag_generic_flow_dissect(skb, proto, offset); /* For the rest, there is a single DSA tag, the tag_8021q one */ *offset = VLAN_HLEN; *proto = ((__be16 *)skb->data)[(VLAN_HLEN / 2) - 1]; } static void sja1105_disconnect(struct dsa_switch *ds) { struct sja1105_tagger_private *priv = ds->tagger_data; kthread_destroy_worker(priv->xmit_worker); kfree(priv); ds->tagger_data = NULL; } static int sja1105_connect(struct dsa_switch *ds) { struct sja1105_tagger_private *priv; struct kthread_worker *xmit_worker; int err; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; spin_lock_init(&priv->meta_lock); xmit_worker = kthread_create_worker(0, "dsa%d:%d_xmit", ds->dst->index, ds->index); if (IS_ERR(xmit_worker)) { err = PTR_ERR(xmit_worker); kfree(priv); return err; } priv->xmit_worker = xmit_worker; ds->tagger_data = priv; return 0; } static const struct dsa_device_ops sja1105_netdev_ops = { .name = SJA1105_NAME, .proto = DSA_TAG_PROTO_SJA1105, .xmit = sja1105_xmit, .rcv = sja1105_rcv, .connect = sja1105_connect, .disconnect = sja1105_disconnect, .needed_headroom = VLAN_HLEN, .flow_dissect = sja1105_flow_dissect, .promisc_on_conduit = true, }; DSA_TAG_DRIVER(sja1105_netdev_ops); MODULE_ALIAS_DSA_TAG_DRIVER(DSA_TAG_PROTO_SJA1105, SJA1105_NAME); static const struct dsa_device_ops sja1110_netdev_ops = { .name = SJA1110_NAME, .proto = DSA_TAG_PROTO_SJA1110, .xmit = sja1110_xmit, .rcv = sja1110_rcv, .connect = sja1105_connect, .disconnect = sja1105_disconnect, .flow_dissect = sja1110_flow_dissect, .needed_headroom = SJA1110_HEADER_LEN + VLAN_HLEN, .needed_tailroom = SJA1110_RX_TRAILER_LEN + SJA1110_MAX_PADDING_LEN, }; DSA_TAG_DRIVER(sja1110_netdev_ops); MODULE_ALIAS_DSA_TAG_DRIVER(DSA_TAG_PROTO_SJA1110, SJA1110_NAME); static struct dsa_tag_driver *sja1105_tag_driver_array[] = { &DSA_TAG_DRIVER_NAME(sja1105_netdev_ops), &DSA_TAG_DRIVER_NAME(sja1110_netdev_ops), }; module_dsa_tag_drivers(sja1105_tag_driver_array); MODULE_DESCRIPTION("DSA tag driver for NXP SJA1105 switches"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1