Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 2871 | 32.14% | 70 | 23.57% |
Eric Dumazet | 1549 | 17.34% | 53 | 17.85% |
Christoph Hellwig | 1096 | 12.27% | 14 | 4.71% |
Al Viro | 576 | 6.45% | 13 | 4.38% |
David L Stevens | 350 | 3.92% | 7 | 2.36% |
Willem de Bruijn | 246 | 2.75% | 13 | 4.38% |
Martin KaFai Lau | 188 | 2.10% | 4 | 1.35% |
Tom Herbert | 184 | 2.06% | 3 | 1.01% |
Dmitry Mishin | 133 | 1.49% | 1 | 0.34% |
Hannes Frederic Sowa | 130 | 1.46% | 5 | 1.68% |
Erich E. Hoover | 124 | 1.39% | 1 | 0.34% |
Francesco Fusco | 109 | 1.22% | 1 | 0.34% |
Arnaldo Carvalho de Melo | 107 | 1.20% | 14 | 4.71% |
Marcelo Ricardo Leitner | 93 | 1.04% | 2 | 0.67% |
Catherine Zhang | 89 | 1.00% | 2 | 0.67% |
Kirill V Tkhai | 87 | 0.97% | 4 | 1.35% |
David Ahern | 87 | 0.97% | 4 | 1.35% |
Balazs Scheidler | 85 | 0.95% | 1 | 0.34% |
David Laight | 75 | 0.84% | 1 | 0.34% |
Nicolas Dichtel | 68 | 0.76% | 2 | 0.67% |
David S. Miller | 52 | 0.58% | 7 | 2.36% |
Xi Wang | 45 | 0.50% | 1 | 0.34% |
Américo Wang | 43 | 0.48% | 1 | 0.34% |
Juntong Deng | 39 | 0.44% | 1 | 0.34% |
Julian Anastasov | 37 | 0.41% | 1 | 0.34% |
Jiri Pirko | 33 | 0.37% | 1 | 0.34% |
Alexey Kuznetsov | 33 | 0.37% | 3 | 1.01% |
Linus Torvalds | 32 | 0.36% | 5 | 1.68% |
Soheil Hassas Yeganeh | 27 | 0.30% | 1 | 0.34% |
Jiri Benc | 24 | 0.27% | 1 | 0.34% |
Paolo Abeni | 22 | 0.25% | 3 | 1.01% |
Zhang Wei | 18 | 0.20% | 1 | 0.34% |
Kuniyuki Iwashima | 18 | 0.20% | 2 | 0.67% |
Herbert Xu | 18 | 0.20% | 3 | 1.01% |
Gustavo A. R. Silva | 16 | 0.18% | 3 | 1.01% |
Denis V. Lunev | 16 | 0.18% | 5 | 1.68% |
Alexei Starovoitov | 15 | 0.17% | 1 | 0.34% |
Florian Westphal | 14 | 0.16% | 2 | 0.67% |
Shan Wei | 13 | 0.15% | 1 | 0.34% |
Pavel Emelyanov | 13 | 0.15% | 1 | 0.34% |
Flavio Leitner | 12 | 0.13% | 1 | 0.34% |
Matteo Croce | 12 | 0.13% | 1 | 0.34% |
Steffen Hurrle | 11 | 0.12% | 1 | 0.34% |
Gen Zhang | 11 | 0.12% | 1 | 0.34% |
Hideaki Yoshifuji / 吉藤英明 | 10 | 0.11% | 2 | 0.67% |
Shawn Bohrer | 10 | 0.11% | 1 | 0.34% |
Li Wei | 10 | 0.11% | 1 | 0.34% |
Eric W. Biedermann | 10 | 0.11% | 3 | 1.01% |
Kazunori Miyazawa | 8 | 0.09% | 1 | 0.34% |
Poorva Sonparote | 6 | 0.07% | 1 | 0.34% |
Brian Haley | 6 | 0.07% | 1 | 0.34% |
Chris Elston | 6 | 0.07% | 1 | 0.34% |
David Howells | 5 | 0.06% | 1 | 0.34% |
Masahide Nakamura | 5 | 0.06% | 1 | 0.34% |
Nikolay Borisov | 4 | 0.04% | 1 | 0.34% |
Jakub Sitnicki | 3 | 0.03% | 1 | 0.34% |
Gu Zheng | 3 | 0.03% | 1 | 0.34% |
Maciej Żenczykowski | 3 | 0.03% | 1 | 0.34% |
Harvey Harrison | 2 | 0.02% | 1 | 0.34% |
Andi Kleen | 2 | 0.02% | 1 | 0.34% |
Adrian Bunk | 2 | 0.02% | 2 | 0.67% |
Paul E. McKenney | 2 | 0.02% | 1 | 0.34% |
Yonghong Song | 2 | 0.02% | 1 | 0.34% |
Stephen Hemminger | 2 | 0.02% | 2 | 0.67% |
Ian Morris | 2 | 0.02% | 1 | 0.34% |
Paul Moore | 1 | 0.01% | 1 | 0.34% |
Stephen Rothwell | 1 | 0.01% | 1 | 0.34% |
Gerrit Renker | 1 | 0.01% | 1 | 0.34% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 0.34% |
KOVACS Krisztian | 1 | 0.01% | 1 | 0.34% |
Jiri Olsa | 1 | 0.01% | 1 | 0.34% |
Nivedita Singhvi | 1 | 0.01% | 1 | 0.34% |
Shirley Ma | 1 | 0.01% | 1 | 0.34% |
Total | 8932 | 297 |
// SPDX-License-Identifier: GPL-2.0 /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * The IP to API glue. * * Authors: see ip.c * * Fixes: * Many : Split from ip.c , see ip.c for history. * Martin Mares : TOS setting fixed. * Alan Cox : Fixed a couple of oopses in Martin's * TOS tweaks. * Mike McLagan : Routing by source */ #include <linux/module.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/skbuff.h> #include <linux/ip.h> #include <linux/icmp.h> #include <linux/inetdevice.h> #include <linux/netdevice.h> #include <linux/slab.h> #include <net/sock.h> #include <net/ip.h> #include <net/icmp.h> #include <net/tcp_states.h> #include <linux/udp.h> #include <linux/igmp.h> #include <linux/netfilter.h> #include <linux/route.h> #include <linux/mroute.h> #include <net/inet_ecn.h> #include <net/route.h> #include <net/xfrm.h> #include <net/compat.h> #include <net/checksum.h> #if IS_ENABLED(CONFIG_IPV6) #include <net/transp_v6.h> #endif #include <net/ip_fib.h> #include <linux/errqueue.h> #include <linux/uaccess.h> /* * SOL_IP control messages. */ static void ip_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) { struct in_pktinfo info = *PKTINFO_SKB_CB(skb); info.ipi_addr.s_addr = ip_hdr(skb)->daddr; put_cmsg(msg, SOL_IP, IP_PKTINFO, sizeof(info), &info); } static void ip_cmsg_recv_ttl(struct msghdr *msg, struct sk_buff *skb) { int ttl = ip_hdr(skb)->ttl; put_cmsg(msg, SOL_IP, IP_TTL, sizeof(int), &ttl); } static void ip_cmsg_recv_tos(struct msghdr *msg, struct sk_buff *skb) { put_cmsg(msg, SOL_IP, IP_TOS, 1, &ip_hdr(skb)->tos); } static void ip_cmsg_recv_opts(struct msghdr *msg, struct sk_buff *skb) { if (IPCB(skb)->opt.optlen == 0) return; put_cmsg(msg, SOL_IP, IP_RECVOPTS, IPCB(skb)->opt.optlen, ip_hdr(skb) + 1); } static void ip_cmsg_recv_retopts(struct net *net, struct msghdr *msg, struct sk_buff *skb) { unsigned char optbuf[sizeof(struct ip_options) + 40]; struct ip_options *opt = (struct ip_options *)optbuf; if (IPCB(skb)->opt.optlen == 0) return; if (ip_options_echo(net, opt, skb)) { msg->msg_flags |= MSG_CTRUNC; return; } ip_options_undo(opt); put_cmsg(msg, SOL_IP, IP_RETOPTS, opt->optlen, opt->__data); } static void ip_cmsg_recv_fragsize(struct msghdr *msg, struct sk_buff *skb) { int val; if (IPCB(skb)->frag_max_size == 0) return; val = IPCB(skb)->frag_max_size; put_cmsg(msg, SOL_IP, IP_RECVFRAGSIZE, sizeof(val), &val); } static void ip_cmsg_recv_checksum(struct msghdr *msg, struct sk_buff *skb, int tlen, int offset) { __wsum csum = skb->csum; if (skb->ip_summed != CHECKSUM_COMPLETE) return; if (offset != 0) { int tend_off = skb_transport_offset(skb) + tlen; csum = csum_sub(csum, skb_checksum(skb, tend_off, offset, 0)); } put_cmsg(msg, SOL_IP, IP_CHECKSUM, sizeof(__wsum), &csum); } static void ip_cmsg_recv_security(struct msghdr *msg, struct sk_buff *skb) { char *secdata; u32 seclen, secid; int err; err = security_socket_getpeersec_dgram(NULL, skb, &secid); if (err) return; err = security_secid_to_secctx(secid, &secdata, &seclen); if (err) return; put_cmsg(msg, SOL_IP, SCM_SECURITY, seclen, secdata); security_release_secctx(secdata, seclen); } static void ip_cmsg_recv_dstaddr(struct msghdr *msg, struct sk_buff *skb) { __be16 _ports[2], *ports; struct sockaddr_in sin; /* All current transport protocols have the port numbers in the * first four bytes of the transport header and this function is * written with this assumption in mind. */ ports = skb_header_pointer(skb, skb_transport_offset(skb), sizeof(_ports), &_ports); if (!ports) return; sin.sin_family = AF_INET; sin.sin_addr.s_addr = ip_hdr(skb)->daddr; sin.sin_port = ports[1]; memset(sin.sin_zero, 0, sizeof(sin.sin_zero)); put_cmsg(msg, SOL_IP, IP_ORIGDSTADDR, sizeof(sin), &sin); } void ip_cmsg_recv_offset(struct msghdr *msg, struct sock *sk, struct sk_buff *skb, int tlen, int offset) { unsigned long flags = inet_cmsg_flags(inet_sk(sk)); if (!flags) return; /* Ordered by supposed usage frequency */ if (flags & IP_CMSG_PKTINFO) { ip_cmsg_recv_pktinfo(msg, skb); flags &= ~IP_CMSG_PKTINFO; if (!flags) return; } if (flags & IP_CMSG_TTL) { ip_cmsg_recv_ttl(msg, skb); flags &= ~IP_CMSG_TTL; if (!flags) return; } if (flags & IP_CMSG_TOS) { ip_cmsg_recv_tos(msg, skb); flags &= ~IP_CMSG_TOS; if (!flags) return; } if (flags & IP_CMSG_RECVOPTS) { ip_cmsg_recv_opts(msg, skb); flags &= ~IP_CMSG_RECVOPTS; if (!flags) return; } if (flags & IP_CMSG_RETOPTS) { ip_cmsg_recv_retopts(sock_net(sk), msg, skb); flags &= ~IP_CMSG_RETOPTS; if (!flags) return; } if (flags & IP_CMSG_PASSSEC) { ip_cmsg_recv_security(msg, skb); flags &= ~IP_CMSG_PASSSEC; if (!flags) return; } if (flags & IP_CMSG_ORIGDSTADDR) { ip_cmsg_recv_dstaddr(msg, skb); flags &= ~IP_CMSG_ORIGDSTADDR; if (!flags) return; } if (flags & IP_CMSG_CHECKSUM) ip_cmsg_recv_checksum(msg, skb, tlen, offset); if (flags & IP_CMSG_RECVFRAGSIZE) ip_cmsg_recv_fragsize(msg, skb); } EXPORT_SYMBOL(ip_cmsg_recv_offset); int ip_cmsg_send(struct sock *sk, struct msghdr *msg, struct ipcm_cookie *ipc, bool allow_ipv6) { int err, val; struct cmsghdr *cmsg; struct net *net = sock_net(sk); for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; #if IS_ENABLED(CONFIG_IPV6) if (allow_ipv6 && cmsg->cmsg_level == SOL_IPV6 && cmsg->cmsg_type == IPV6_PKTINFO) { struct in6_pktinfo *src_info; if (cmsg->cmsg_len < CMSG_LEN(sizeof(*src_info))) return -EINVAL; src_info = (struct in6_pktinfo *)CMSG_DATA(cmsg); if (!ipv6_addr_v4mapped(&src_info->ipi6_addr)) return -EINVAL; if (src_info->ipi6_ifindex) ipc->oif = src_info->ipi6_ifindex; ipc->addr = src_info->ipi6_addr.s6_addr32[3]; continue; } #endif if (cmsg->cmsg_level == SOL_SOCKET) { err = __sock_cmsg_send(sk, cmsg, &ipc->sockc); if (err) return err; continue; } if (cmsg->cmsg_level != SOL_IP) continue; switch (cmsg->cmsg_type) { case IP_RETOPTS: err = cmsg->cmsg_len - sizeof(struct cmsghdr); /* Our caller is responsible for freeing ipc->opt */ err = ip_options_get(net, &ipc->opt, KERNEL_SOCKPTR(CMSG_DATA(cmsg)), err < 40 ? err : 40); if (err) return err; break; case IP_PKTINFO: { struct in_pktinfo *info; if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct in_pktinfo))) return -EINVAL; info = (struct in_pktinfo *)CMSG_DATA(cmsg); if (info->ipi_ifindex) ipc->oif = info->ipi_ifindex; ipc->addr = info->ipi_spec_dst.s_addr; break; } case IP_TTL: if (cmsg->cmsg_len != CMSG_LEN(sizeof(int))) return -EINVAL; val = *(int *)CMSG_DATA(cmsg); if (val < 1 || val > 255) return -EINVAL; ipc->ttl = val; break; case IP_TOS: if (cmsg->cmsg_len == CMSG_LEN(sizeof(int))) val = *(int *)CMSG_DATA(cmsg); else if (cmsg->cmsg_len == CMSG_LEN(sizeof(u8))) val = *(u8 *)CMSG_DATA(cmsg); else return -EINVAL; if (val < 0 || val > 255) return -EINVAL; ipc->tos = val; ipc->priority = rt_tos2priority(ipc->tos); break; case IP_PROTOCOL: if (cmsg->cmsg_len != CMSG_LEN(sizeof(int))) return -EINVAL; val = *(int *)CMSG_DATA(cmsg); if (val < 1 || val > 255) return -EINVAL; ipc->protocol = val; break; default: return -EINVAL; } } return 0; } static void ip_ra_destroy_rcu(struct rcu_head *head) { struct ip_ra_chain *ra = container_of(head, struct ip_ra_chain, rcu); sock_put(ra->saved_sk); kfree(ra); } int ip_ra_control(struct sock *sk, unsigned char on, void (*destructor)(struct sock *)) { struct ip_ra_chain *ra, *new_ra; struct ip_ra_chain __rcu **rap; struct net *net = sock_net(sk); if (sk->sk_type != SOCK_RAW || inet_sk(sk)->inet_num == IPPROTO_RAW) return -EINVAL; new_ra = on ? kmalloc(sizeof(*new_ra), GFP_KERNEL) : NULL; if (on && !new_ra) return -ENOMEM; mutex_lock(&net->ipv4.ra_mutex); for (rap = &net->ipv4.ra_chain; (ra = rcu_dereference_protected(*rap, lockdep_is_held(&net->ipv4.ra_mutex))) != NULL; rap = &ra->next) { if (ra->sk == sk) { if (on) { mutex_unlock(&net->ipv4.ra_mutex); kfree(new_ra); return -EADDRINUSE; } /* dont let ip_call_ra_chain() use sk again */ ra->sk = NULL; RCU_INIT_POINTER(*rap, ra->next); mutex_unlock(&net->ipv4.ra_mutex); if (ra->destructor) ra->destructor(sk); /* * Delay sock_put(sk) and kfree(ra) after one rcu grace * period. This guarantee ip_call_ra_chain() dont need * to mess with socket refcounts. */ ra->saved_sk = sk; call_rcu(&ra->rcu, ip_ra_destroy_rcu); return 0; } } if (!new_ra) { mutex_unlock(&net->ipv4.ra_mutex); return -ENOBUFS; } new_ra->sk = sk; new_ra->destructor = destructor; RCU_INIT_POINTER(new_ra->next, ra); rcu_assign_pointer(*rap, new_ra); sock_hold(sk); mutex_unlock(&net->ipv4.ra_mutex); return 0; } static void ipv4_icmp_error_rfc4884(const struct sk_buff *skb, struct sock_ee_data_rfc4884 *out) { switch (icmp_hdr(skb)->type) { case ICMP_DEST_UNREACH: case ICMP_TIME_EXCEEDED: case ICMP_PARAMETERPROB: ip_icmp_error_rfc4884(skb, out, sizeof(struct icmphdr), icmp_hdr(skb)->un.reserved[1] * 4); } } void ip_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, u32 info, u8 *payload) { struct sock_exterr_skb *serr; skb = skb_clone(skb, GFP_ATOMIC); if (!skb) return; serr = SKB_EXT_ERR(skb); serr->ee.ee_errno = err; serr->ee.ee_origin = SO_EE_ORIGIN_ICMP; serr->ee.ee_type = icmp_hdr(skb)->type; serr->ee.ee_code = icmp_hdr(skb)->code; serr->ee.ee_pad = 0; serr->ee.ee_info = info; serr->ee.ee_data = 0; serr->addr_offset = (u8 *)&(((struct iphdr *)(icmp_hdr(skb) + 1))->daddr) - skb_network_header(skb); serr->port = port; if (skb_pull(skb, payload - skb->data)) { if (inet_test_bit(RECVERR_RFC4884, sk)) ipv4_icmp_error_rfc4884(skb, &serr->ee.ee_rfc4884); skb_reset_transport_header(skb); if (sock_queue_err_skb(sk, skb) == 0) return; } kfree_skb(skb); } EXPORT_SYMBOL_GPL(ip_icmp_error); void ip_local_error(struct sock *sk, int err, __be32 daddr, __be16 port, u32 info) { struct sock_exterr_skb *serr; struct iphdr *iph; struct sk_buff *skb; if (!inet_test_bit(RECVERR, sk)) return; skb = alloc_skb(sizeof(struct iphdr), GFP_ATOMIC); if (!skb) return; skb_put(skb, sizeof(struct iphdr)); skb_reset_network_header(skb); iph = ip_hdr(skb); iph->daddr = daddr; serr = SKB_EXT_ERR(skb); serr->ee.ee_errno = err; serr->ee.ee_origin = SO_EE_ORIGIN_LOCAL; serr->ee.ee_type = 0; serr->ee.ee_code = 0; serr->ee.ee_pad = 0; serr->ee.ee_info = info; serr->ee.ee_data = 0; serr->addr_offset = (u8 *)&iph->daddr - skb_network_header(skb); serr->port = port; __skb_pull(skb, skb_tail_pointer(skb) - skb->data); skb_reset_transport_header(skb); if (sock_queue_err_skb(sk, skb)) kfree_skb(skb); } /* For some errors we have valid addr_offset even with zero payload and * zero port. Also, addr_offset should be supported if port is set. */ static inline bool ipv4_datagram_support_addr(struct sock_exterr_skb *serr) { return serr->ee.ee_origin == SO_EE_ORIGIN_ICMP || serr->ee.ee_origin == SO_EE_ORIGIN_LOCAL || serr->port; } /* IPv4 supports cmsg on all imcp errors and some timestamps * * Timestamp code paths do not initialize the fields expected by cmsg: * the PKTINFO fields in skb->cb[]. Fill those in here. */ static bool ipv4_datagram_support_cmsg(const struct sock *sk, struct sk_buff *skb, int ee_origin) { struct in_pktinfo *info; if (ee_origin == SO_EE_ORIGIN_ICMP) return true; if (ee_origin == SO_EE_ORIGIN_LOCAL) return false; /* Support IP_PKTINFO on tstamp packets if requested, to correlate * timestamp with egress dev. Not possible for packets without iif * or without payload (SOF_TIMESTAMPING_OPT_TSONLY). */ info = PKTINFO_SKB_CB(skb); if (!(READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_CMSG) || !info->ipi_ifindex) return false; info->ipi_spec_dst.s_addr = ip_hdr(skb)->saddr; return true; } /* * Handle MSG_ERRQUEUE */ int ip_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) { struct sock_exterr_skb *serr; struct sk_buff *skb; DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); struct { struct sock_extended_err ee; struct sockaddr_in offender; } errhdr; int err; int copied; err = -EAGAIN; skb = sock_dequeue_err_skb(sk); if (!skb) goto out; copied = skb->len; if (copied > len) { msg->msg_flags |= MSG_TRUNC; copied = len; } err = skb_copy_datagram_msg(skb, 0, msg, copied); if (unlikely(err)) { kfree_skb(skb); return err; } sock_recv_timestamp(msg, sk, skb); serr = SKB_EXT_ERR(skb); if (sin && ipv4_datagram_support_addr(serr)) { sin->sin_family = AF_INET; sin->sin_addr.s_addr = *(__be32 *)(skb_network_header(skb) + serr->addr_offset); sin->sin_port = serr->port; memset(&sin->sin_zero, 0, sizeof(sin->sin_zero)); *addr_len = sizeof(*sin); } memcpy(&errhdr.ee, &serr->ee, sizeof(struct sock_extended_err)); sin = &errhdr.offender; memset(sin, 0, sizeof(*sin)); if (ipv4_datagram_support_cmsg(sk, skb, serr->ee.ee_origin)) { sin->sin_family = AF_INET; sin->sin_addr.s_addr = ip_hdr(skb)->saddr; if (inet_cmsg_flags(inet_sk(sk))) ip_cmsg_recv(msg, skb); } put_cmsg(msg, SOL_IP, IP_RECVERR, sizeof(errhdr), &errhdr); /* Now we could try to dump offended packet options */ msg->msg_flags |= MSG_ERRQUEUE; err = copied; consume_skb(skb); out: return err; } void __ip_sock_set_tos(struct sock *sk, int val) { u8 old_tos = inet_sk(sk)->tos; if (sk->sk_type == SOCK_STREAM) { val &= ~INET_ECN_MASK; val |= old_tos & INET_ECN_MASK; } if (old_tos != val) { WRITE_ONCE(inet_sk(sk)->tos, val); WRITE_ONCE(sk->sk_priority, rt_tos2priority(val)); sk_dst_reset(sk); } } void ip_sock_set_tos(struct sock *sk, int val) { sockopt_lock_sock(sk); __ip_sock_set_tos(sk, val); sockopt_release_sock(sk); } EXPORT_SYMBOL(ip_sock_set_tos); void ip_sock_set_freebind(struct sock *sk) { inet_set_bit(FREEBIND, sk); } EXPORT_SYMBOL(ip_sock_set_freebind); void ip_sock_set_recverr(struct sock *sk) { inet_set_bit(RECVERR, sk); } EXPORT_SYMBOL(ip_sock_set_recverr); int ip_sock_set_mtu_discover(struct sock *sk, int val) { if (val < IP_PMTUDISC_DONT || val > IP_PMTUDISC_OMIT) return -EINVAL; WRITE_ONCE(inet_sk(sk)->pmtudisc, val); return 0; } EXPORT_SYMBOL(ip_sock_set_mtu_discover); void ip_sock_set_pktinfo(struct sock *sk) { inet_set_bit(PKTINFO, sk); } EXPORT_SYMBOL(ip_sock_set_pktinfo); /* * Socket option code for IP. This is the end of the line after any * TCP,UDP etc options on an IP socket. */ static bool setsockopt_needs_rtnl(int optname) { switch (optname) { case IP_ADD_MEMBERSHIP: case IP_ADD_SOURCE_MEMBERSHIP: case IP_BLOCK_SOURCE: case IP_DROP_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: case IP_MSFILTER: case IP_UNBLOCK_SOURCE: case MCAST_BLOCK_SOURCE: case MCAST_MSFILTER: case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: case MCAST_UNBLOCK_SOURCE: return true; } return false; } static int set_mcast_msfilter(struct sock *sk, int ifindex, int numsrc, int fmode, struct sockaddr_storage *group, struct sockaddr_storage *list) { struct ip_msfilter *msf; struct sockaddr_in *psin; int err, i; msf = kmalloc(IP_MSFILTER_SIZE(numsrc), GFP_KERNEL); if (!msf) return -ENOBUFS; psin = (struct sockaddr_in *)group; if (psin->sin_family != AF_INET) goto Eaddrnotavail; msf->imsf_multiaddr = psin->sin_addr.s_addr; msf->imsf_interface = 0; msf->imsf_fmode = fmode; msf->imsf_numsrc = numsrc; for (i = 0; i < numsrc; ++i) { psin = (struct sockaddr_in *)&list[i]; if (psin->sin_family != AF_INET) goto Eaddrnotavail; msf->imsf_slist_flex[i] = psin->sin_addr.s_addr; } err = ip_mc_msfilter(sk, msf, ifindex); kfree(msf); return err; Eaddrnotavail: kfree(msf); return -EADDRNOTAVAIL; } static int copy_group_source_from_sockptr(struct group_source_req *greqs, sockptr_t optval, int optlen) { if (in_compat_syscall()) { struct compat_group_source_req gr32; if (optlen != sizeof(gr32)) return -EINVAL; if (copy_from_sockptr(&gr32, optval, sizeof(gr32))) return -EFAULT; greqs->gsr_interface = gr32.gsr_interface; greqs->gsr_group = gr32.gsr_group; greqs->gsr_source = gr32.gsr_source; } else { if (optlen != sizeof(*greqs)) return -EINVAL; if (copy_from_sockptr(greqs, optval, sizeof(*greqs))) return -EFAULT; } return 0; } static int do_mcast_group_source(struct sock *sk, int optname, sockptr_t optval, int optlen) { struct group_source_req greqs; struct ip_mreq_source mreqs; struct sockaddr_in *psin; int omode, add, err; err = copy_group_source_from_sockptr(&greqs, optval, optlen); if (err) return err; if (greqs.gsr_group.ss_family != AF_INET || greqs.gsr_source.ss_family != AF_INET) return -EADDRNOTAVAIL; psin = (struct sockaddr_in *)&greqs.gsr_group; mreqs.imr_multiaddr = psin->sin_addr.s_addr; psin = (struct sockaddr_in *)&greqs.gsr_source; mreqs.imr_sourceaddr = psin->sin_addr.s_addr; mreqs.imr_interface = 0; /* use index for mc_source */ if (optname == MCAST_BLOCK_SOURCE) { omode = MCAST_EXCLUDE; add = 1; } else if (optname == MCAST_UNBLOCK_SOURCE) { omode = MCAST_EXCLUDE; add = 0; } else if (optname == MCAST_JOIN_SOURCE_GROUP) { struct ip_mreqn mreq; psin = (struct sockaddr_in *)&greqs.gsr_group; mreq.imr_multiaddr = psin->sin_addr; mreq.imr_address.s_addr = 0; mreq.imr_ifindex = greqs.gsr_interface; err = ip_mc_join_group_ssm(sk, &mreq, MCAST_INCLUDE); if (err && err != -EADDRINUSE) return err; greqs.gsr_interface = mreq.imr_ifindex; omode = MCAST_INCLUDE; add = 1; } else /* MCAST_LEAVE_SOURCE_GROUP */ { omode = MCAST_INCLUDE; add = 0; } return ip_mc_source(add, omode, sk, &mreqs, greqs.gsr_interface); } static int ip_set_mcast_msfilter(struct sock *sk, sockptr_t optval, int optlen) { struct group_filter *gsf = NULL; int err; if (optlen < GROUP_FILTER_SIZE(0)) return -EINVAL; if (optlen > READ_ONCE(sock_net(sk)->core.sysctl_optmem_max)) return -ENOBUFS; gsf = memdup_sockptr(optval, optlen); if (IS_ERR(gsf)) return PTR_ERR(gsf); /* numsrc >= (4G-140)/128 overflow in 32 bits */ err = -ENOBUFS; if (gsf->gf_numsrc >= 0x1ffffff || gsf->gf_numsrc > READ_ONCE(sock_net(sk)->ipv4.sysctl_igmp_max_msf)) goto out_free_gsf; err = -EINVAL; if (GROUP_FILTER_SIZE(gsf->gf_numsrc) > optlen) goto out_free_gsf; err = set_mcast_msfilter(sk, gsf->gf_interface, gsf->gf_numsrc, gsf->gf_fmode, &gsf->gf_group, gsf->gf_slist_flex); out_free_gsf: kfree(gsf); return err; } static int compat_ip_set_mcast_msfilter(struct sock *sk, sockptr_t optval, int optlen) { const int size0 = offsetof(struct compat_group_filter, gf_slist_flex); struct compat_group_filter *gf32; unsigned int n; void *p; int err; if (optlen < size0) return -EINVAL; if (optlen > READ_ONCE(sock_net(sk)->core.sysctl_optmem_max) - 4) return -ENOBUFS; p = kmalloc(optlen + 4, GFP_KERNEL); if (!p) return -ENOMEM; gf32 = p + 4; /* we want ->gf_group and ->gf_slist_flex aligned */ err = -EFAULT; if (copy_from_sockptr(gf32, optval, optlen)) goto out_free_gsf; /* numsrc >= (4G-140)/128 overflow in 32 bits */ n = gf32->gf_numsrc; err = -ENOBUFS; if (n >= 0x1ffffff) goto out_free_gsf; err = -EINVAL; if (offsetof(struct compat_group_filter, gf_slist_flex[n]) > optlen) goto out_free_gsf; /* numsrc >= (4G-140)/128 overflow in 32 bits */ err = -ENOBUFS; if (n > READ_ONCE(sock_net(sk)->ipv4.sysctl_igmp_max_msf)) goto out_free_gsf; err = set_mcast_msfilter(sk, gf32->gf_interface, n, gf32->gf_fmode, &gf32->gf_group, gf32->gf_slist_flex); out_free_gsf: kfree(p); return err; } static int ip_mcast_join_leave(struct sock *sk, int optname, sockptr_t optval, int optlen) { struct ip_mreqn mreq = { }; struct sockaddr_in *psin; struct group_req greq; if (optlen < sizeof(struct group_req)) return -EINVAL; if (copy_from_sockptr(&greq, optval, sizeof(greq))) return -EFAULT; psin = (struct sockaddr_in *)&greq.gr_group; if (psin->sin_family != AF_INET) return -EINVAL; mreq.imr_multiaddr = psin->sin_addr; mreq.imr_ifindex = greq.gr_interface; if (optname == MCAST_JOIN_GROUP) return ip_mc_join_group(sk, &mreq); return ip_mc_leave_group(sk, &mreq); } static int compat_ip_mcast_join_leave(struct sock *sk, int optname, sockptr_t optval, int optlen) { struct compat_group_req greq; struct ip_mreqn mreq = { }; struct sockaddr_in *psin; if (optlen < sizeof(struct compat_group_req)) return -EINVAL; if (copy_from_sockptr(&greq, optval, sizeof(greq))) return -EFAULT; psin = (struct sockaddr_in *)&greq.gr_group; if (psin->sin_family != AF_INET) return -EINVAL; mreq.imr_multiaddr = psin->sin_addr; mreq.imr_ifindex = greq.gr_interface; if (optname == MCAST_JOIN_GROUP) return ip_mc_join_group(sk, &mreq); return ip_mc_leave_group(sk, &mreq); } DEFINE_STATIC_KEY_FALSE(ip4_min_ttl); int do_ip_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { struct inet_sock *inet = inet_sk(sk); struct net *net = sock_net(sk); int val = 0, err, retv; bool needs_rtnl = setsockopt_needs_rtnl(optname); switch (optname) { case IP_PKTINFO: case IP_RECVTTL: case IP_RECVOPTS: case IP_RECVTOS: case IP_RETOPTS: case IP_TOS: case IP_TTL: case IP_HDRINCL: case IP_MTU_DISCOVER: case IP_RECVERR: case IP_ROUTER_ALERT: case IP_FREEBIND: case IP_PASSSEC: case IP_TRANSPARENT: case IP_MINTTL: case IP_NODEFRAG: case IP_BIND_ADDRESS_NO_PORT: case IP_UNICAST_IF: case IP_MULTICAST_TTL: case IP_MULTICAST_ALL: case IP_MULTICAST_LOOP: case IP_RECVORIGDSTADDR: case IP_CHECKSUM: case IP_RECVFRAGSIZE: case IP_RECVERR_RFC4884: case IP_LOCAL_PORT_RANGE: if (optlen >= sizeof(int)) { if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; } else if (optlen >= sizeof(char)) { unsigned char ucval; if (copy_from_sockptr(&ucval, optval, sizeof(ucval))) return -EFAULT; val = (int) ucval; } } /* If optlen==0, it is equivalent to val == 0 */ if (optname == IP_ROUTER_ALERT) { retv = ip_ra_control(sk, val ? 1 : 0, NULL); if (retv == 0) inet_assign_bit(RTALERT, sk, val); return retv; } if (ip_mroute_opt(optname)) return ip_mroute_setsockopt(sk, optname, optval, optlen); /* Handle options that can be set without locking the socket. */ switch (optname) { case IP_PKTINFO: inet_assign_bit(PKTINFO, sk, val); return 0; case IP_RECVTTL: inet_assign_bit(TTL, sk, val); return 0; case IP_RECVTOS: inet_assign_bit(TOS, sk, val); return 0; case IP_RECVOPTS: inet_assign_bit(RECVOPTS, sk, val); return 0; case IP_RETOPTS: inet_assign_bit(RETOPTS, sk, val); return 0; case IP_PASSSEC: inet_assign_bit(PASSSEC, sk, val); return 0; case IP_RECVORIGDSTADDR: inet_assign_bit(ORIGDSTADDR, sk, val); return 0; case IP_RECVFRAGSIZE: if (sk->sk_type != SOCK_RAW && sk->sk_type != SOCK_DGRAM) return -EINVAL; inet_assign_bit(RECVFRAGSIZE, sk, val); return 0; case IP_RECVERR: inet_assign_bit(RECVERR, sk, val); if (!val) skb_errqueue_purge(&sk->sk_error_queue); return 0; case IP_RECVERR_RFC4884: if (val < 0 || val > 1) return -EINVAL; inet_assign_bit(RECVERR_RFC4884, sk, val); return 0; case IP_FREEBIND: if (optlen < 1) return -EINVAL; inet_assign_bit(FREEBIND, sk, val); return 0; case IP_HDRINCL: if (sk->sk_type != SOCK_RAW) return -ENOPROTOOPT; inet_assign_bit(HDRINCL, sk, val); return 0; case IP_MULTICAST_LOOP: if (optlen < 1) return -EINVAL; inet_assign_bit(MC_LOOP, sk, val); return 0; case IP_MULTICAST_ALL: if (optlen < 1) return -EINVAL; if (val != 0 && val != 1) return -EINVAL; inet_assign_bit(MC_ALL, sk, val); return 0; case IP_TRANSPARENT: if (!!val && !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) return -EPERM; if (optlen < 1) return -EINVAL; inet_assign_bit(TRANSPARENT, sk, val); return 0; case IP_NODEFRAG: if (sk->sk_type != SOCK_RAW) return -ENOPROTOOPT; inet_assign_bit(NODEFRAG, sk, val); return 0; case IP_BIND_ADDRESS_NO_PORT: inet_assign_bit(BIND_ADDRESS_NO_PORT, sk, val); return 0; case IP_TTL: if (optlen < 1) return -EINVAL; if (val != -1 && (val < 1 || val > 255)) return -EINVAL; WRITE_ONCE(inet->uc_ttl, val); return 0; case IP_MINTTL: if (optlen < 1) return -EINVAL; if (val < 0 || val > 255) return -EINVAL; if (val) static_branch_enable(&ip4_min_ttl); WRITE_ONCE(inet->min_ttl, val); return 0; case IP_MULTICAST_TTL: if (sk->sk_type == SOCK_STREAM) return -EINVAL; if (optlen < 1) return -EINVAL; if (val == -1) val = 1; if (val < 0 || val > 255) return -EINVAL; WRITE_ONCE(inet->mc_ttl, val); return 0; case IP_MTU_DISCOVER: return ip_sock_set_mtu_discover(sk, val); case IP_TOS: /* This sets both TOS and Precedence */ ip_sock_set_tos(sk, val); return 0; case IP_LOCAL_PORT_RANGE: { u16 lo = val; u16 hi = val >> 16; if (optlen != sizeof(u32)) return -EINVAL; if (lo != 0 && hi != 0 && lo > hi) return -EINVAL; WRITE_ONCE(inet->local_port_range, val); return 0; } } err = 0; if (needs_rtnl) rtnl_lock(); sockopt_lock_sock(sk); switch (optname) { case IP_OPTIONS: { struct ip_options_rcu *old, *opt = NULL; if (optlen > 40) goto e_inval; err = ip_options_get(sock_net(sk), &opt, optval, optlen); if (err) break; old = rcu_dereference_protected(inet->inet_opt, lockdep_sock_is_held(sk)); if (inet_test_bit(IS_ICSK, sk)) { struct inet_connection_sock *icsk = inet_csk(sk); #if IS_ENABLED(CONFIG_IPV6) if (sk->sk_family == PF_INET || (!((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) && inet->inet_daddr != LOOPBACK4_IPV6)) { #endif if (old) icsk->icsk_ext_hdr_len -= old->opt.optlen; if (opt) icsk->icsk_ext_hdr_len += opt->opt.optlen; icsk->icsk_sync_mss(sk, icsk->icsk_pmtu_cookie); #if IS_ENABLED(CONFIG_IPV6) } #endif } rcu_assign_pointer(inet->inet_opt, opt); if (old) kfree_rcu(old, rcu); break; } case IP_CHECKSUM: if (val) { if (!(inet_test_bit(CHECKSUM, sk))) { inet_inc_convert_csum(sk); inet_set_bit(CHECKSUM, sk); } } else { if (inet_test_bit(CHECKSUM, sk)) { inet_dec_convert_csum(sk); inet_clear_bit(CHECKSUM, sk); } } break; case IP_UNICAST_IF: { struct net_device *dev = NULL; int ifindex; int midx; if (optlen != sizeof(int)) goto e_inval; ifindex = (__force int)ntohl((__force __be32)val); if (ifindex == 0) { WRITE_ONCE(inet->uc_index, 0); err = 0; break; } dev = dev_get_by_index(sock_net(sk), ifindex); err = -EADDRNOTAVAIL; if (!dev) break; midx = l3mdev_master_ifindex(dev); dev_put(dev); err = -EINVAL; if (sk->sk_bound_dev_if && midx != sk->sk_bound_dev_if) break; WRITE_ONCE(inet->uc_index, ifindex); err = 0; break; } case IP_MULTICAST_IF: { struct ip_mreqn mreq; struct net_device *dev = NULL; int midx; if (sk->sk_type == SOCK_STREAM) goto e_inval; /* * Check the arguments are allowable */ if (optlen < sizeof(struct in_addr)) goto e_inval; err = -EFAULT; if (optlen >= sizeof(struct ip_mreqn)) { if (copy_from_sockptr(&mreq, optval, sizeof(mreq))) break; } else { memset(&mreq, 0, sizeof(mreq)); if (optlen >= sizeof(struct ip_mreq)) { if (copy_from_sockptr(&mreq, optval, sizeof(struct ip_mreq))) break; } else if (optlen >= sizeof(struct in_addr)) { if (copy_from_sockptr(&mreq.imr_address, optval, sizeof(struct in_addr))) break; } } if (!mreq.imr_ifindex) { if (mreq.imr_address.s_addr == htonl(INADDR_ANY)) { WRITE_ONCE(inet->mc_index, 0); WRITE_ONCE(inet->mc_addr, 0); err = 0; break; } dev = ip_dev_find(sock_net(sk), mreq.imr_address.s_addr); if (dev) mreq.imr_ifindex = dev->ifindex; } else dev = dev_get_by_index(sock_net(sk), mreq.imr_ifindex); err = -EADDRNOTAVAIL; if (!dev) break; midx = l3mdev_master_ifindex(dev); dev_put(dev); err = -EINVAL; if (sk->sk_bound_dev_if && mreq.imr_ifindex != sk->sk_bound_dev_if && midx != sk->sk_bound_dev_if) break; WRITE_ONCE(inet->mc_index, mreq.imr_ifindex); WRITE_ONCE(inet->mc_addr, mreq.imr_address.s_addr); err = 0; break; } case IP_ADD_MEMBERSHIP: case IP_DROP_MEMBERSHIP: { struct ip_mreqn mreq; err = -EPROTO; if (inet_test_bit(IS_ICSK, sk)) break; if (optlen < sizeof(struct ip_mreq)) goto e_inval; err = -EFAULT; if (optlen >= sizeof(struct ip_mreqn)) { if (copy_from_sockptr(&mreq, optval, sizeof(mreq))) break; } else { memset(&mreq, 0, sizeof(mreq)); if (copy_from_sockptr(&mreq, optval, sizeof(struct ip_mreq))) break; } if (optname == IP_ADD_MEMBERSHIP) err = ip_mc_join_group(sk, &mreq); else err = ip_mc_leave_group(sk, &mreq); break; } case IP_MSFILTER: { struct ip_msfilter *msf; if (optlen < IP_MSFILTER_SIZE(0)) goto e_inval; if (optlen > READ_ONCE(net->core.sysctl_optmem_max)) { err = -ENOBUFS; break; } msf = memdup_sockptr(optval, optlen); if (IS_ERR(msf)) { err = PTR_ERR(msf); break; } /* numsrc >= (1G-4) overflow in 32 bits */ if (msf->imsf_numsrc >= 0x3ffffffcU || msf->imsf_numsrc > READ_ONCE(net->ipv4.sysctl_igmp_max_msf)) { kfree(msf); err = -ENOBUFS; break; } if (IP_MSFILTER_SIZE(msf->imsf_numsrc) > optlen) { kfree(msf); err = -EINVAL; break; } err = ip_mc_msfilter(sk, msf, 0); kfree(msf); break; } case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: case IP_ADD_SOURCE_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: { struct ip_mreq_source mreqs; int omode, add; if (optlen != sizeof(struct ip_mreq_source)) goto e_inval; if (copy_from_sockptr(&mreqs, optval, sizeof(mreqs))) { err = -EFAULT; break; } if (optname == IP_BLOCK_SOURCE) { omode = MCAST_EXCLUDE; add = 1; } else if (optname == IP_UNBLOCK_SOURCE) { omode = MCAST_EXCLUDE; add = 0; } else if (optname == IP_ADD_SOURCE_MEMBERSHIP) { struct ip_mreqn mreq; mreq.imr_multiaddr.s_addr = mreqs.imr_multiaddr; mreq.imr_address.s_addr = mreqs.imr_interface; mreq.imr_ifindex = 0; err = ip_mc_join_group_ssm(sk, &mreq, MCAST_INCLUDE); if (err && err != -EADDRINUSE) break; omode = MCAST_INCLUDE; add = 1; } else /* IP_DROP_SOURCE_MEMBERSHIP */ { omode = MCAST_INCLUDE; add = 0; } err = ip_mc_source(add, omode, sk, &mreqs, 0); break; } case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: if (in_compat_syscall()) err = compat_ip_mcast_join_leave(sk, optname, optval, optlen); else err = ip_mcast_join_leave(sk, optname, optval, optlen); break; case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: err = do_mcast_group_source(sk, optname, optval, optlen); break; case MCAST_MSFILTER: if (in_compat_syscall()) err = compat_ip_set_mcast_msfilter(sk, optval, optlen); else err = ip_set_mcast_msfilter(sk, optval, optlen); break; case IP_IPSEC_POLICY: case IP_XFRM_POLICY: err = -EPERM; if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) break; err = xfrm_user_policy(sk, optname, optval, optlen); break; default: err = -ENOPROTOOPT; break; } sockopt_release_sock(sk); if (needs_rtnl) rtnl_unlock(); return err; e_inval: sockopt_release_sock(sk); if (needs_rtnl) rtnl_unlock(); return -EINVAL; } /** * ipv4_pktinfo_prepare - transfer some info from rtable to skb * @sk: socket * @skb: buffer * @drop_dst: if true, drops skb dst * * To support IP_CMSG_PKTINFO option, we store rt_iif and specific * destination in skb->cb[] before dst drop. * This way, receiver doesn't make cache line misses to read rtable. */ void ipv4_pktinfo_prepare(const struct sock *sk, struct sk_buff *skb, bool drop_dst) { struct in_pktinfo *pktinfo = PKTINFO_SKB_CB(skb); bool prepare = inet_test_bit(PKTINFO, sk) || ipv6_sk_rxinfo(sk); if (prepare && skb_rtable(skb)) { /* skb->cb is overloaded: prior to this point it is IP{6}CB * which has interface index (iif) as the first member of the * underlying inet{6}_skb_parm struct. This code then overlays * PKTINFO_SKB_CB and in_pktinfo also has iif as the first * element so the iif is picked up from the prior IPCB. If iif * is the loopback interface, then return the sending interface * (e.g., process binds socket to eth0 for Tx which is * redirected to loopback in the rtable/dst). */ struct rtable *rt = skb_rtable(skb); bool l3slave = ipv4_l3mdev_skb(IPCB(skb)->flags); if (pktinfo->ipi_ifindex == LOOPBACK_IFINDEX) pktinfo->ipi_ifindex = inet_iif(skb); else if (l3slave && rt && rt->rt_iif) pktinfo->ipi_ifindex = rt->rt_iif; pktinfo->ipi_spec_dst.s_addr = fib_compute_spec_dst(skb); } else { pktinfo->ipi_ifindex = 0; pktinfo->ipi_spec_dst.s_addr = 0; } if (drop_dst) skb_dst_drop(skb); } int ip_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { int err; if (level != SOL_IP) return -ENOPROTOOPT; err = do_ip_setsockopt(sk, level, optname, optval, optlen); #ifdef CONFIG_NETFILTER /* we need to exclude all possible ENOPROTOOPTs except default case */ if (err == -ENOPROTOOPT && optname != IP_HDRINCL && optname != IP_IPSEC_POLICY && optname != IP_XFRM_POLICY && !ip_mroute_opt(optname)) err = nf_setsockopt(sk, PF_INET, optname, optval, optlen); #endif return err; } EXPORT_SYMBOL(ip_setsockopt); /* * Get the options. Note for future reference. The GET of IP options gets * the _received_ ones. The set sets the _sent_ ones. */ static bool getsockopt_needs_rtnl(int optname) { switch (optname) { case IP_MSFILTER: case MCAST_MSFILTER: return true; } return false; } static int ip_get_mcast_msfilter(struct sock *sk, sockptr_t optval, sockptr_t optlen, int len) { const int size0 = offsetof(struct group_filter, gf_slist_flex); struct group_filter gsf; int num, gsf_size; int err; if (len < size0) return -EINVAL; if (copy_from_sockptr(&gsf, optval, size0)) return -EFAULT; num = gsf.gf_numsrc; err = ip_mc_gsfget(sk, &gsf, optval, offsetof(struct group_filter, gf_slist_flex)); if (err) return err; if (gsf.gf_numsrc < num) num = gsf.gf_numsrc; gsf_size = GROUP_FILTER_SIZE(num); if (copy_to_sockptr(optlen, &gsf_size, sizeof(int)) || copy_to_sockptr(optval, &gsf, size0)) return -EFAULT; return 0; } static int compat_ip_get_mcast_msfilter(struct sock *sk, sockptr_t optval, sockptr_t optlen, int len) { const int size0 = offsetof(struct compat_group_filter, gf_slist_flex); struct compat_group_filter gf32; struct group_filter gf; int num; int err; if (len < size0) return -EINVAL; if (copy_from_sockptr(&gf32, optval, size0)) return -EFAULT; gf.gf_interface = gf32.gf_interface; gf.gf_fmode = gf32.gf_fmode; num = gf.gf_numsrc = gf32.gf_numsrc; gf.gf_group = gf32.gf_group; err = ip_mc_gsfget(sk, &gf, optval, offsetof(struct compat_group_filter, gf_slist_flex)); if (err) return err; if (gf.gf_numsrc < num) num = gf.gf_numsrc; len = GROUP_FILTER_SIZE(num) - (sizeof(gf) - sizeof(gf32)); if (copy_to_sockptr(optlen, &len, sizeof(int)) || copy_to_sockptr_offset(optval, offsetof(struct compat_group_filter, gf_fmode), &gf.gf_fmode, sizeof(gf.gf_fmode)) || copy_to_sockptr_offset(optval, offsetof(struct compat_group_filter, gf_numsrc), &gf.gf_numsrc, sizeof(gf.gf_numsrc))) return -EFAULT; return 0; } int do_ip_getsockopt(struct sock *sk, int level, int optname, sockptr_t optval, sockptr_t optlen) { struct inet_sock *inet = inet_sk(sk); bool needs_rtnl = getsockopt_needs_rtnl(optname); int val, err = 0; int len; if (level != SOL_IP) return -EOPNOTSUPP; if (ip_mroute_opt(optname)) return ip_mroute_getsockopt(sk, optname, optval, optlen); if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; if (len < 0) return -EINVAL; /* Handle options that can be read without locking the socket. */ switch (optname) { case IP_PKTINFO: val = inet_test_bit(PKTINFO, sk); goto copyval; case IP_RECVTTL: val = inet_test_bit(TTL, sk); goto copyval; case IP_RECVTOS: val = inet_test_bit(TOS, sk); goto copyval; case IP_RECVOPTS: val = inet_test_bit(RECVOPTS, sk); goto copyval; case IP_RETOPTS: val = inet_test_bit(RETOPTS, sk); goto copyval; case IP_PASSSEC: val = inet_test_bit(PASSSEC, sk); goto copyval; case IP_RECVORIGDSTADDR: val = inet_test_bit(ORIGDSTADDR, sk); goto copyval; case IP_CHECKSUM: val = inet_test_bit(CHECKSUM, sk); goto copyval; case IP_RECVFRAGSIZE: val = inet_test_bit(RECVFRAGSIZE, sk); goto copyval; case IP_RECVERR: val = inet_test_bit(RECVERR, sk); goto copyval; case IP_RECVERR_RFC4884: val = inet_test_bit(RECVERR_RFC4884, sk); goto copyval; case IP_FREEBIND: val = inet_test_bit(FREEBIND, sk); goto copyval; case IP_HDRINCL: val = inet_test_bit(HDRINCL, sk); goto copyval; case IP_MULTICAST_LOOP: val = inet_test_bit(MC_LOOP, sk); goto copyval; case IP_MULTICAST_ALL: val = inet_test_bit(MC_ALL, sk); goto copyval; case IP_TRANSPARENT: val = inet_test_bit(TRANSPARENT, sk); goto copyval; case IP_NODEFRAG: val = inet_test_bit(NODEFRAG, sk); goto copyval; case IP_BIND_ADDRESS_NO_PORT: val = inet_test_bit(BIND_ADDRESS_NO_PORT, sk); goto copyval; case IP_ROUTER_ALERT: val = inet_test_bit(RTALERT, sk); goto copyval; case IP_TTL: val = READ_ONCE(inet->uc_ttl); if (val < 0) val = READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_default_ttl); goto copyval; case IP_MINTTL: val = READ_ONCE(inet->min_ttl); goto copyval; case IP_MULTICAST_TTL: val = READ_ONCE(inet->mc_ttl); goto copyval; case IP_MTU_DISCOVER: val = READ_ONCE(inet->pmtudisc); goto copyval; case IP_TOS: val = READ_ONCE(inet->tos); goto copyval; case IP_OPTIONS: { unsigned char optbuf[sizeof(struct ip_options)+40]; struct ip_options *opt = (struct ip_options *)optbuf; struct ip_options_rcu *inet_opt; rcu_read_lock(); inet_opt = rcu_dereference(inet->inet_opt); opt->optlen = 0; if (inet_opt) memcpy(optbuf, &inet_opt->opt, sizeof(struct ip_options) + inet_opt->opt.optlen); rcu_read_unlock(); if (opt->optlen == 0) { len = 0; return copy_to_sockptr(optlen, &len, sizeof(int)); } ip_options_undo(opt); len = min_t(unsigned int, len, opt->optlen); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, opt->__data, len)) return -EFAULT; return 0; } case IP_MTU: { struct dst_entry *dst; val = 0; dst = sk_dst_get(sk); if (dst) { val = dst_mtu(dst); dst_release(dst); } if (!val) return -ENOTCONN; goto copyval; } case IP_PKTOPTIONS: { struct msghdr msg; if (sk->sk_type != SOCK_STREAM) return -ENOPROTOOPT; if (optval.is_kernel) { msg.msg_control_is_user = false; msg.msg_control = optval.kernel; } else { msg.msg_control_is_user = true; msg.msg_control_user = optval.user; } msg.msg_controllen = len; msg.msg_flags = in_compat_syscall() ? MSG_CMSG_COMPAT : 0; if (inet_test_bit(PKTINFO, sk)) { struct in_pktinfo info; info.ipi_addr.s_addr = READ_ONCE(inet->inet_rcv_saddr); info.ipi_spec_dst.s_addr = READ_ONCE(inet->inet_rcv_saddr); info.ipi_ifindex = READ_ONCE(inet->mc_index); put_cmsg(&msg, SOL_IP, IP_PKTINFO, sizeof(info), &info); } if (inet_test_bit(TTL, sk)) { int hlim = READ_ONCE(inet->mc_ttl); put_cmsg(&msg, SOL_IP, IP_TTL, sizeof(hlim), &hlim); } if (inet_test_bit(TOS, sk)) { int tos = READ_ONCE(inet->rcv_tos); put_cmsg(&msg, SOL_IP, IP_TOS, sizeof(tos), &tos); } len -= msg.msg_controllen; return copy_to_sockptr(optlen, &len, sizeof(int)); } case IP_UNICAST_IF: val = (__force int)htonl((__u32) READ_ONCE(inet->uc_index)); goto copyval; case IP_MULTICAST_IF: { struct in_addr addr; len = min_t(unsigned int, len, sizeof(struct in_addr)); addr.s_addr = READ_ONCE(inet->mc_addr); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &addr, len)) return -EFAULT; return 0; } case IP_LOCAL_PORT_RANGE: val = READ_ONCE(inet->local_port_range); goto copyval; } if (needs_rtnl) rtnl_lock(); sockopt_lock_sock(sk); switch (optname) { case IP_MSFILTER: { struct ip_msfilter msf; if (len < IP_MSFILTER_SIZE(0)) { err = -EINVAL; goto out; } if (copy_from_sockptr(&msf, optval, IP_MSFILTER_SIZE(0))) { err = -EFAULT; goto out; } err = ip_mc_msfget(sk, &msf, optval, optlen); goto out; } case MCAST_MSFILTER: if (in_compat_syscall()) err = compat_ip_get_mcast_msfilter(sk, optval, optlen, len); else err = ip_get_mcast_msfilter(sk, optval, optlen, len); goto out; case IP_PROTOCOL: val = inet_sk(sk)->inet_num; break; default: sockopt_release_sock(sk); return -ENOPROTOOPT; } sockopt_release_sock(sk); copyval: if (len < sizeof(int) && len > 0 && val >= 0 && val <= 255) { unsigned char ucval = (unsigned char)val; len = 1; if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &ucval, 1)) return -EFAULT; } else { len = min_t(unsigned int, sizeof(int), len); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &val, len)) return -EFAULT; } return 0; out: sockopt_release_sock(sk); if (needs_rtnl) rtnl_unlock(); return err; } int ip_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { int err; err = do_ip_getsockopt(sk, level, optname, USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); #ifdef CONFIG_NETFILTER /* we need to exclude all possible ENOPROTOOPTs except default case */ if (err == -ENOPROTOOPT && optname != IP_PKTOPTIONS && !ip_mroute_opt(optname)) { int len; if (get_user(len, optlen)) return -EFAULT; err = nf_getsockopt(sk, PF_INET, optname, optval, &len); if (err >= 0) err = put_user(len, optlen); return err; } #endif return err; } EXPORT_SYMBOL(ip_getsockopt);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1