Contributors: 17
Author Tokens Token Proportion Commits Commit Proportion
Daniel Borkmann 687 55.40% 1 3.03%
Eric Dumazet 140 11.29% 6 18.18%
Mubashir Adnan Qureshi 95 7.66% 1 3.03%
Linus Torvalds (pre-git) 57 4.60% 4 12.12%
Florian Westphal 52 4.19% 3 9.09%
Kumar Kartikeya Dwivedi 51 4.11% 3 9.09%
Martin KaFai Lau 45 3.63% 4 12.12%
Koen De Schepper 44 3.55% 1 3.03%
Yuchung Cheng 16 1.29% 1 3.03%
David S. Miller 15 1.21% 1 3.03%
Arnaldo Carvalho de Melo 13 1.05% 2 6.06%
Neal Cardwell 8 0.65% 1 3.03%
David Vernet 6 0.48% 1 3.03%
Andrew Shewmaker 5 0.40% 1 3.03%
Ilpo Järvinen 2 0.16% 1 3.03%
Thomas Gleixner 2 0.16% 1 3.03%
Daniel Xu 2 0.16% 1 3.03%
Total 1240 33


// SPDX-License-Identifier: GPL-2.0-or-later
/* DataCenter TCP (DCTCP) congestion control.
 *
 * http://simula.stanford.edu/~alizade/Site/DCTCP.html
 *
 * This is an implementation of DCTCP over Reno, an enhancement to the
 * TCP congestion control algorithm designed for data centers. DCTCP
 * leverages Explicit Congestion Notification (ECN) in the network to
 * provide multi-bit feedback to the end hosts. DCTCP's goal is to meet
 * the following three data center transport requirements:
 *
 *  - High burst tolerance (incast due to partition/aggregate)
 *  - Low latency (short flows, queries)
 *  - High throughput (continuous data updates, large file transfers)
 *    with commodity shallow buffered switches
 *
 * The algorithm is described in detail in the following two papers:
 *
 * 1) Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
 *    Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan:
 *      "Data Center TCP (DCTCP)", Data Center Networks session
 *      Proc. ACM SIGCOMM, New Delhi, 2010.
 *   http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp-final.pdf
 *
 * 2) Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar:
 *      "Analysis of DCTCP: Stability, Convergence, and Fairness"
 *      Proc. ACM SIGMETRICS, San Jose, 2011.
 *   http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp_analysis-full.pdf
 *
 * Initial prototype from Abdul Kabbani, Masato Yasuda and Mohammad Alizadeh.
 *
 * Authors:
 *
 *	Daniel Borkmann <dborkman@redhat.com>
 *	Florian Westphal <fw@strlen.de>
 *	Glenn Judd <glenn.judd@morganstanley.com>
 */

#include <linux/btf.h>
#include <linux/btf_ids.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <net/tcp.h>
#include <linux/inet_diag.h>
#include "tcp_dctcp.h"

#define DCTCP_MAX_ALPHA	1024U

struct dctcp {
	u32 old_delivered;
	u32 old_delivered_ce;
	u32 prior_rcv_nxt;
	u32 dctcp_alpha;
	u32 next_seq;
	u32 ce_state;
	u32 loss_cwnd;
	struct tcp_plb_state plb;
};

static unsigned int dctcp_shift_g __read_mostly = 4; /* g = 1/2^4 */
module_param(dctcp_shift_g, uint, 0644);
MODULE_PARM_DESC(dctcp_shift_g, "parameter g for updating dctcp_alpha");

static unsigned int dctcp_alpha_on_init __read_mostly = DCTCP_MAX_ALPHA;
module_param(dctcp_alpha_on_init, uint, 0644);
MODULE_PARM_DESC(dctcp_alpha_on_init, "parameter for initial alpha value");

static struct tcp_congestion_ops dctcp_reno;

static void dctcp_reset(const struct tcp_sock *tp, struct dctcp *ca)
{
	ca->next_seq = tp->snd_nxt;

	ca->old_delivered = tp->delivered;
	ca->old_delivered_ce = tp->delivered_ce;
}

__bpf_kfunc static void dctcp_init(struct sock *sk)
{
	const struct tcp_sock *tp = tcp_sk(sk);

	if ((tp->ecn_flags & TCP_ECN_OK) ||
	    (sk->sk_state == TCP_LISTEN ||
	     sk->sk_state == TCP_CLOSE)) {
		struct dctcp *ca = inet_csk_ca(sk);

		ca->prior_rcv_nxt = tp->rcv_nxt;

		ca->dctcp_alpha = min(dctcp_alpha_on_init, DCTCP_MAX_ALPHA);

		ca->loss_cwnd = 0;
		ca->ce_state = 0;

		dctcp_reset(tp, ca);
		tcp_plb_init(sk, &ca->plb);

		return;
	}

	/* No ECN support? Fall back to Reno. Also need to clear
	 * ECT from sk since it is set during 3WHS for DCTCP.
	 */
	inet_csk(sk)->icsk_ca_ops = &dctcp_reno;
	INET_ECN_dontxmit(sk);
}

__bpf_kfunc static u32 dctcp_ssthresh(struct sock *sk)
{
	struct dctcp *ca = inet_csk_ca(sk);
	struct tcp_sock *tp = tcp_sk(sk);

	ca->loss_cwnd = tcp_snd_cwnd(tp);
	return max(tcp_snd_cwnd(tp) - ((tcp_snd_cwnd(tp) * ca->dctcp_alpha) >> 11U), 2U);
}

__bpf_kfunc static void dctcp_update_alpha(struct sock *sk, u32 flags)
{
	const struct tcp_sock *tp = tcp_sk(sk);
	struct dctcp *ca = inet_csk_ca(sk);

	/* Expired RTT */
	if (!before(tp->snd_una, ca->next_seq)) {
		u32 delivered = tp->delivered - ca->old_delivered;
		u32 delivered_ce = tp->delivered_ce - ca->old_delivered_ce;
		u32 alpha = ca->dctcp_alpha;
		u32 ce_ratio = 0;

		if (delivered > 0) {
			/* dctcp_alpha keeps EWMA of fraction of ECN marked
			 * packets. Because of EWMA smoothing, PLB reaction can
			 * be slow so we use ce_ratio which is an instantaneous
			 * measure of congestion. ce_ratio is the fraction of
			 * ECN marked packets in the previous RTT.
			 */
			if (delivered_ce > 0)
				ce_ratio = (delivered_ce << TCP_PLB_SCALE) / delivered;
			tcp_plb_update_state(sk, &ca->plb, (int)ce_ratio);
			tcp_plb_check_rehash(sk, &ca->plb);
		}

		/* alpha = (1 - g) * alpha + g * F */

		alpha -= min_not_zero(alpha, alpha >> dctcp_shift_g);
		if (delivered_ce) {

			/* If dctcp_shift_g == 1, a 32bit value would overflow
			 * after 8 M packets.
			 */
			delivered_ce <<= (10 - dctcp_shift_g);
			delivered_ce /= max(1U, delivered);

			alpha = min(alpha + delivered_ce, DCTCP_MAX_ALPHA);
		}
		/* dctcp_alpha can be read from dctcp_get_info() without
		 * synchro, so we ask compiler to not use dctcp_alpha
		 * as a temporary variable in prior operations.
		 */
		WRITE_ONCE(ca->dctcp_alpha, alpha);
		dctcp_reset(tp, ca);
	}
}

static void dctcp_react_to_loss(struct sock *sk)
{
	struct dctcp *ca = inet_csk_ca(sk);
	struct tcp_sock *tp = tcp_sk(sk);

	ca->loss_cwnd = tcp_snd_cwnd(tp);
	tp->snd_ssthresh = max(tcp_snd_cwnd(tp) >> 1U, 2U);
}

__bpf_kfunc static void dctcp_state(struct sock *sk, u8 new_state)
{
	if (new_state == TCP_CA_Recovery &&
	    new_state != inet_csk(sk)->icsk_ca_state)
		dctcp_react_to_loss(sk);
	/* We handle RTO in dctcp_cwnd_event to ensure that we perform only
	 * one loss-adjustment per RTT.
	 */
}

__bpf_kfunc static void dctcp_cwnd_event(struct sock *sk, enum tcp_ca_event ev)
{
	struct dctcp *ca = inet_csk_ca(sk);

	switch (ev) {
	case CA_EVENT_ECN_IS_CE:
	case CA_EVENT_ECN_NO_CE:
		dctcp_ece_ack_update(sk, ev, &ca->prior_rcv_nxt, &ca->ce_state);
		break;
	case CA_EVENT_LOSS:
		tcp_plb_update_state_upon_rto(sk, &ca->plb);
		dctcp_react_to_loss(sk);
		break;
	case CA_EVENT_TX_START:
		tcp_plb_check_rehash(sk, &ca->plb); /* Maybe rehash when inflight is 0 */
		break;
	default:
		/* Don't care for the rest. */
		break;
	}
}

static size_t dctcp_get_info(struct sock *sk, u32 ext, int *attr,
			     union tcp_cc_info *info)
{
	const struct dctcp *ca = inet_csk_ca(sk);
	const struct tcp_sock *tp = tcp_sk(sk);

	/* Fill it also in case of VEGASINFO due to req struct limits.
	 * We can still correctly retrieve it later.
	 */
	if (ext & (1 << (INET_DIAG_DCTCPINFO - 1)) ||
	    ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
		memset(&info->dctcp, 0, sizeof(info->dctcp));
		if (inet_csk(sk)->icsk_ca_ops != &dctcp_reno) {
			info->dctcp.dctcp_enabled = 1;
			info->dctcp.dctcp_ce_state = (u16) ca->ce_state;
			info->dctcp.dctcp_alpha = ca->dctcp_alpha;
			info->dctcp.dctcp_ab_ecn = tp->mss_cache *
						   (tp->delivered_ce - ca->old_delivered_ce);
			info->dctcp.dctcp_ab_tot = tp->mss_cache *
						   (tp->delivered - ca->old_delivered);
		}

		*attr = INET_DIAG_DCTCPINFO;
		return sizeof(info->dctcp);
	}
	return 0;
}

__bpf_kfunc static u32 dctcp_cwnd_undo(struct sock *sk)
{
	const struct dctcp *ca = inet_csk_ca(sk);
	struct tcp_sock *tp = tcp_sk(sk);

	return max(tcp_snd_cwnd(tp), ca->loss_cwnd);
}

static struct tcp_congestion_ops dctcp __read_mostly = {
	.init		= dctcp_init,
	.in_ack_event   = dctcp_update_alpha,
	.cwnd_event	= dctcp_cwnd_event,
	.ssthresh	= dctcp_ssthresh,
	.cong_avoid	= tcp_reno_cong_avoid,
	.undo_cwnd	= dctcp_cwnd_undo,
	.set_state	= dctcp_state,
	.get_info	= dctcp_get_info,
	.flags		= TCP_CONG_NEEDS_ECN,
	.owner		= THIS_MODULE,
	.name		= "dctcp",
};

static struct tcp_congestion_ops dctcp_reno __read_mostly = {
	.ssthresh	= tcp_reno_ssthresh,
	.cong_avoid	= tcp_reno_cong_avoid,
	.undo_cwnd	= tcp_reno_undo_cwnd,
	.get_info	= dctcp_get_info,
	.owner		= THIS_MODULE,
	.name		= "dctcp-reno",
};

BTF_KFUNCS_START(tcp_dctcp_check_kfunc_ids)
#ifdef CONFIG_X86
#ifdef CONFIG_DYNAMIC_FTRACE
BTF_ID_FLAGS(func, dctcp_init)
BTF_ID_FLAGS(func, dctcp_update_alpha)
BTF_ID_FLAGS(func, dctcp_cwnd_event)
BTF_ID_FLAGS(func, dctcp_ssthresh)
BTF_ID_FLAGS(func, dctcp_cwnd_undo)
BTF_ID_FLAGS(func, dctcp_state)
#endif
#endif
BTF_KFUNCS_END(tcp_dctcp_check_kfunc_ids)

static const struct btf_kfunc_id_set tcp_dctcp_kfunc_set = {
	.owner = THIS_MODULE,
	.set   = &tcp_dctcp_check_kfunc_ids,
};

static int __init dctcp_register(void)
{
	int ret;

	BUILD_BUG_ON(sizeof(struct dctcp) > ICSK_CA_PRIV_SIZE);

	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &tcp_dctcp_kfunc_set);
	if (ret < 0)
		return ret;
	return tcp_register_congestion_control(&dctcp);
}

static void __exit dctcp_unregister(void)
{
	tcp_unregister_congestion_control(&dctcp);
}

module_init(dctcp_register);
module_exit(dctcp_unregister);

MODULE_AUTHOR("Daniel Borkmann <dborkman@redhat.com>");
MODULE_AUTHOR("Florian Westphal <fw@strlen.de>");
MODULE_AUTHOR("Glenn Judd <glenn.judd@morganstanley.com>");

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("DataCenter TCP (DCTCP)");