Contributors: 17
Author Tokens Token Proportion Commits Commit Proportion
Jiri Benc 855 60.17% 1 2.38%
Johannes Berg 387 27.23% 22 52.38%
Ard Biesheuvel 44 3.10% 1 2.38%
Harvey Harrison 43 3.03% 3 7.14%
Janusz Dziedzic 22 1.55% 1 2.38%
Ivan Kuten 18 1.27% 1 2.38%
Arik Nemtsov 16 1.13% 2 4.76%
Pavel Roskin 8 0.56% 1 2.38%
John W. Linville 7 0.49% 2 4.76%
Felix Fietkau 6 0.42% 1 2.38%
Yi Zhu 6 0.42% 1 2.38%
David Spinadel 3 0.21% 1 2.38%
Linus Torvalds (pre-git) 2 0.14% 1 2.38%
Ralf Baechle 1 0.07% 1 2.38%
Thomas Gleixner 1 0.07% 1 2.38%
Linus Torvalds 1 0.07% 1 2.38%
Luciano Coelho 1 0.07% 1 2.38%
Total 1421 42


// SPDX-License-Identifier: GPL-2.0-only
/*
 * Software WEP encryption implementation
 * Copyright 2002, Jouni Malinen <jkmaline@cc.hut.fi>
 * Copyright 2003, Instant802 Networks, Inc.
 * Copyright (C) 2023 Intel Corporation
 */

#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/crc32.h>
#include <linux/crypto.h>
#include <linux/err.h>
#include <linux/mm.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <asm/unaligned.h>

#include <net/mac80211.h>
#include "ieee80211_i.h"
#include "wep.h"


void ieee80211_wep_init(struct ieee80211_local *local)
{
	/* start WEP IV from a random value */
	get_random_bytes(&local->wep_iv, IEEE80211_WEP_IV_LEN);
}

static inline bool ieee80211_wep_weak_iv(u32 iv, int keylen)
{
	/*
	 * Fluhrer, Mantin, and Shamir have reported weaknesses in the
	 * key scheduling algorithm of RC4. At least IVs (KeyByte + 3,
	 * 0xff, N) can be used to speedup attacks, so avoid using them.
	 */
	if ((iv & 0xff00) == 0xff00) {
		u8 B = (iv >> 16) & 0xff;
		if (B >= 3 && B < 3 + keylen)
			return true;
	}
	return false;
}


static void ieee80211_wep_get_iv(struct ieee80211_local *local,
				 int keylen, int keyidx, u8 *iv)
{
	local->wep_iv++;
	if (ieee80211_wep_weak_iv(local->wep_iv, keylen))
		local->wep_iv += 0x0100;

	if (!iv)
		return;

	*iv++ = (local->wep_iv >> 16) & 0xff;
	*iv++ = (local->wep_iv >> 8) & 0xff;
	*iv++ = local->wep_iv & 0xff;
	*iv++ = keyidx << 6;
}


static u8 *ieee80211_wep_add_iv(struct ieee80211_local *local,
				struct sk_buff *skb,
				int keylen, int keyidx)
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
	unsigned int hdrlen;
	u8 *newhdr;

	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);

	if (WARN_ON(skb_headroom(skb) < IEEE80211_WEP_IV_LEN))
		return NULL;

	hdrlen = ieee80211_hdrlen(hdr->frame_control);
	newhdr = skb_push(skb, IEEE80211_WEP_IV_LEN);
	memmove(newhdr, newhdr + IEEE80211_WEP_IV_LEN, hdrlen);

	/* the HW only needs room for the IV, but not the actual IV */
	if (info->control.hw_key &&
	    (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE))
		return newhdr + hdrlen;

	ieee80211_wep_get_iv(local, keylen, keyidx, newhdr + hdrlen);
	return newhdr + hdrlen;
}


static void ieee80211_wep_remove_iv(struct ieee80211_local *local,
				    struct sk_buff *skb,
				    struct ieee80211_key *key)
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
	unsigned int hdrlen;

	hdrlen = ieee80211_hdrlen(hdr->frame_control);
	memmove(skb->data + IEEE80211_WEP_IV_LEN, skb->data, hdrlen);
	skb_pull(skb, IEEE80211_WEP_IV_LEN);
}


/* Perform WEP encryption using given key. data buffer must have tailroom
 * for 4-byte ICV. data_len must not include this ICV. Note: this function
 * does _not_ add IV. data = RC4(data | CRC32(data)) */
int ieee80211_wep_encrypt_data(struct arc4_ctx *ctx, u8 *rc4key,
			       size_t klen, u8 *data, size_t data_len)
{
	__le32 icv;

	icv = cpu_to_le32(~crc32_le(~0, data, data_len));
	put_unaligned(icv, (__le32 *)(data + data_len));

	arc4_setkey(ctx, rc4key, klen);
	arc4_crypt(ctx, data, data, data_len + IEEE80211_WEP_ICV_LEN);
	memzero_explicit(ctx, sizeof(*ctx));

	return 0;
}


/* Perform WEP encryption on given skb. 4 bytes of extra space (IV) in the
 * beginning of the buffer 4 bytes of extra space (ICV) in the end of the
 * buffer will be added. Both IV and ICV will be transmitted, so the
 * payload length increases with 8 bytes.
 *
 * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data))
 */
int ieee80211_wep_encrypt(struct ieee80211_local *local,
			  struct sk_buff *skb,
			  const u8 *key, int keylen, int keyidx)
{
	u8 *iv;
	size_t len;
	u8 rc4key[3 + WLAN_KEY_LEN_WEP104];

	if (WARN_ON(skb_tailroom(skb) < IEEE80211_WEP_ICV_LEN))
		return -1;

	iv = ieee80211_wep_add_iv(local, skb, keylen, keyidx);
	if (!iv)
		return -1;

	len = skb->len - (iv + IEEE80211_WEP_IV_LEN - skb->data);

	/* Prepend 24-bit IV to RC4 key */
	memcpy(rc4key, iv, 3);

	/* Copy rest of the WEP key (the secret part) */
	memcpy(rc4key + 3, key, keylen);

	/* Add room for ICV */
	skb_put(skb, IEEE80211_WEP_ICV_LEN);

	return ieee80211_wep_encrypt_data(&local->wep_tx_ctx, rc4key, keylen + 3,
					  iv + IEEE80211_WEP_IV_LEN, len);
}


/* Perform WEP decryption using given key. data buffer includes encrypted
 * payload, including 4-byte ICV, but _not_ IV. data_len must not include ICV.
 * Return 0 on success and -1 on ICV mismatch. */
int ieee80211_wep_decrypt_data(struct arc4_ctx *ctx, u8 *rc4key,
			       size_t klen, u8 *data, size_t data_len)
{
	__le32 crc;

	arc4_setkey(ctx, rc4key, klen);
	arc4_crypt(ctx, data, data, data_len + IEEE80211_WEP_ICV_LEN);
	memzero_explicit(ctx, sizeof(*ctx));

	crc = cpu_to_le32(~crc32_le(~0, data, data_len));
	if (memcmp(&crc, data + data_len, IEEE80211_WEP_ICV_LEN) != 0)
		/* ICV mismatch */
		return -1;

	return 0;
}


/* Perform WEP decryption on given skb. Buffer includes whole WEP part of
 * the frame: IV (4 bytes), encrypted payload (including SNAP header),
 * ICV (4 bytes). skb->len includes both IV and ICV.
 *
 * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on
 * failure. If frame is OK, IV and ICV will be removed, i.e., decrypted payload
 * is moved to the beginning of the skb and skb length will be reduced.
 */
static int ieee80211_wep_decrypt(struct ieee80211_local *local,
				 struct sk_buff *skb,
				 struct ieee80211_key *key)
{
	u32 klen;
	u8 rc4key[3 + WLAN_KEY_LEN_WEP104];
	u8 keyidx;
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
	unsigned int hdrlen;
	size_t len;
	int ret = 0;

	if (!ieee80211_has_protected(hdr->frame_control))
		return -1;

	hdrlen = ieee80211_hdrlen(hdr->frame_control);
	if (skb->len < hdrlen + IEEE80211_WEP_IV_LEN + IEEE80211_WEP_ICV_LEN)
		return -1;

	len = skb->len - hdrlen - IEEE80211_WEP_IV_LEN - IEEE80211_WEP_ICV_LEN;

	keyidx = skb->data[hdrlen + 3] >> 6;

	if (!key || keyidx != key->conf.keyidx)
		return -1;

	klen = 3 + key->conf.keylen;

	/* Prepend 24-bit IV to RC4 key */
	memcpy(rc4key, skb->data + hdrlen, 3);

	/* Copy rest of the WEP key (the secret part) */
	memcpy(rc4key + 3, key->conf.key, key->conf.keylen);

	if (ieee80211_wep_decrypt_data(&local->wep_rx_ctx, rc4key, klen,
				       skb->data + hdrlen +
				       IEEE80211_WEP_IV_LEN, len))
		ret = -1;

	/* Trim ICV */
	skb_trim(skb, skb->len - IEEE80211_WEP_ICV_LEN);

	/* Remove IV */
	memmove(skb->data + IEEE80211_WEP_IV_LEN, skb->data, hdrlen);
	skb_pull(skb, IEEE80211_WEP_IV_LEN);

	return ret;
}

ieee80211_rx_result
ieee80211_crypto_wep_decrypt(struct ieee80211_rx_data *rx)
{
	struct sk_buff *skb = rx->skb;
	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
	__le16 fc = hdr->frame_control;

	if (!ieee80211_is_data(fc) && !ieee80211_is_auth(fc))
		return RX_CONTINUE;

	if (!(status->flag & RX_FLAG_DECRYPTED)) {
		if (skb_linearize(rx->skb))
			return RX_DROP_U_OOM;
		if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key))
			return RX_DROP_U_WEP_DEC_FAIL;
	} else if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
		if (!pskb_may_pull(rx->skb, ieee80211_hdrlen(fc) +
					    IEEE80211_WEP_IV_LEN))
			return RX_DROP_U_NO_IV;
		ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key);
		/* remove ICV */
		if (!(status->flag & RX_FLAG_ICV_STRIPPED) &&
		    pskb_trim(rx->skb, rx->skb->len - IEEE80211_WEP_ICV_LEN))
			return RX_DROP_U_NO_ICV;
	}

	return RX_CONTINUE;
}

static int wep_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb)
{
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
	struct ieee80211_key_conf *hw_key = info->control.hw_key;

	if (!hw_key) {
		if (ieee80211_wep_encrypt(tx->local, skb, tx->key->conf.key,
					  tx->key->conf.keylen,
					  tx->key->conf.keyidx))
			return -1;
	} else if ((hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
		   (hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) {
		if (!ieee80211_wep_add_iv(tx->local, skb,
					  tx->key->conf.keylen,
					  tx->key->conf.keyidx))
			return -1;
	}

	return 0;
}

ieee80211_tx_result
ieee80211_crypto_wep_encrypt(struct ieee80211_tx_data *tx)
{
	struct sk_buff *skb;

	ieee80211_tx_set_protected(tx);

	skb_queue_walk(&tx->skbs, skb) {
		if (wep_encrypt_skb(tx, skb) < 0) {
			I802_DEBUG_INC(tx->local->tx_handlers_drop_wep);
			return TX_DROP;
		}
	}

	return TX_CONTINUE;
}