Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jeremy Kerr | 5914 | 99.81% | 15 | 83.33% |
Oliver Hartkopp | 5 | 0.08% | 1 | 5.56% |
Matt Johnston | 4 | 0.07% | 1 | 5.56% |
Ricardo Ribalda Delgado | 2 | 0.03% | 1 | 5.56% |
Total | 5925 | 18 |
// SPDX-License-Identifier: GPL-2.0 #include <kunit/test.h> #include "utils.h" struct mctp_test_route { struct mctp_route rt; struct sk_buff_head pkts; }; static int mctp_test_route_output(struct mctp_route *rt, struct sk_buff *skb) { struct mctp_test_route *test_rt = container_of(rt, struct mctp_test_route, rt); skb_queue_tail(&test_rt->pkts, skb); return 0; } /* local version of mctp_route_alloc() */ static struct mctp_test_route *mctp_route_test_alloc(void) { struct mctp_test_route *rt; rt = kzalloc(sizeof(*rt), GFP_KERNEL); if (!rt) return NULL; INIT_LIST_HEAD(&rt->rt.list); refcount_set(&rt->rt.refs, 1); rt->rt.output = mctp_test_route_output; skb_queue_head_init(&rt->pkts); return rt; } static struct mctp_test_route *mctp_test_create_route(struct net *net, struct mctp_dev *dev, mctp_eid_t eid, unsigned int mtu) { struct mctp_test_route *rt; rt = mctp_route_test_alloc(); if (!rt) return NULL; rt->rt.min = eid; rt->rt.max = eid; rt->rt.mtu = mtu; rt->rt.type = RTN_UNSPEC; if (dev) mctp_dev_hold(dev); rt->rt.dev = dev; list_add_rcu(&rt->rt.list, &net->mctp.routes); return rt; } static void mctp_test_route_destroy(struct kunit *test, struct mctp_test_route *rt) { unsigned int refs; rtnl_lock(); list_del_rcu(&rt->rt.list); rtnl_unlock(); skb_queue_purge(&rt->pkts); if (rt->rt.dev) mctp_dev_put(rt->rt.dev); refs = refcount_read(&rt->rt.refs); KUNIT_ASSERT_EQ_MSG(test, refs, 1, "route ref imbalance"); kfree_rcu(&rt->rt, rcu); } static void mctp_test_skb_set_dev(struct sk_buff *skb, struct mctp_test_dev *dev) { struct mctp_skb_cb *cb; cb = mctp_cb(skb); cb->net = READ_ONCE(dev->mdev->net); skb->dev = dev->ndev; } static struct sk_buff *mctp_test_create_skb(const struct mctp_hdr *hdr, unsigned int data_len) { size_t hdr_len = sizeof(*hdr); struct sk_buff *skb; unsigned int i; u8 *buf; skb = alloc_skb(hdr_len + data_len, GFP_KERNEL); if (!skb) return NULL; __mctp_cb(skb); memcpy(skb_put(skb, hdr_len), hdr, hdr_len); buf = skb_put(skb, data_len); for (i = 0; i < data_len; i++) buf[i] = i & 0xff; return skb; } static struct sk_buff *__mctp_test_create_skb_data(const struct mctp_hdr *hdr, const void *data, size_t data_len) { size_t hdr_len = sizeof(*hdr); struct sk_buff *skb; skb = alloc_skb(hdr_len + data_len, GFP_KERNEL); if (!skb) return NULL; __mctp_cb(skb); memcpy(skb_put(skb, hdr_len), hdr, hdr_len); memcpy(skb_put(skb, data_len), data, data_len); return skb; } #define mctp_test_create_skb_data(h, d) \ __mctp_test_create_skb_data(h, d, sizeof(*d)) struct mctp_frag_test { unsigned int mtu; unsigned int msgsize; unsigned int n_frags; }; static void mctp_test_fragment(struct kunit *test) { const struct mctp_frag_test *params; int rc, i, n, mtu, msgsize; struct mctp_test_route *rt; struct sk_buff *skb; struct mctp_hdr hdr; u8 seq; params = test->param_value; mtu = params->mtu; msgsize = params->msgsize; hdr.ver = 1; hdr.src = 8; hdr.dest = 10; hdr.flags_seq_tag = MCTP_HDR_FLAG_TO; skb = mctp_test_create_skb(&hdr, msgsize); KUNIT_ASSERT_TRUE(test, skb); rt = mctp_test_create_route(&init_net, NULL, 10, mtu); KUNIT_ASSERT_TRUE(test, rt); rc = mctp_do_fragment_route(&rt->rt, skb, mtu, MCTP_TAG_OWNER); KUNIT_EXPECT_FALSE(test, rc); n = rt->pkts.qlen; KUNIT_EXPECT_EQ(test, n, params->n_frags); for (i = 0;; i++) { struct mctp_hdr *hdr2; struct sk_buff *skb2; u8 tag_mask, seq2; bool first, last; first = i == 0; last = i == (n - 1); skb2 = skb_dequeue(&rt->pkts); if (!skb2) break; hdr2 = mctp_hdr(skb2); tag_mask = MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO; KUNIT_EXPECT_EQ(test, hdr2->ver, hdr.ver); KUNIT_EXPECT_EQ(test, hdr2->src, hdr.src); KUNIT_EXPECT_EQ(test, hdr2->dest, hdr.dest); KUNIT_EXPECT_EQ(test, hdr2->flags_seq_tag & tag_mask, hdr.flags_seq_tag & tag_mask); KUNIT_EXPECT_EQ(test, !!(hdr2->flags_seq_tag & MCTP_HDR_FLAG_SOM), first); KUNIT_EXPECT_EQ(test, !!(hdr2->flags_seq_tag & MCTP_HDR_FLAG_EOM), last); seq2 = (hdr2->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT) & MCTP_HDR_SEQ_MASK; if (first) { seq = seq2; } else { seq++; KUNIT_EXPECT_EQ(test, seq2, seq & MCTP_HDR_SEQ_MASK); } if (!last) KUNIT_EXPECT_EQ(test, skb2->len, mtu); else KUNIT_EXPECT_LE(test, skb2->len, mtu); kfree_skb(skb2); } mctp_test_route_destroy(test, rt); } static const struct mctp_frag_test mctp_frag_tests[] = { {.mtu = 68, .msgsize = 63, .n_frags = 1}, {.mtu = 68, .msgsize = 64, .n_frags = 1}, {.mtu = 68, .msgsize = 65, .n_frags = 2}, {.mtu = 68, .msgsize = 66, .n_frags = 2}, {.mtu = 68, .msgsize = 127, .n_frags = 2}, {.mtu = 68, .msgsize = 128, .n_frags = 2}, {.mtu = 68, .msgsize = 129, .n_frags = 3}, {.mtu = 68, .msgsize = 130, .n_frags = 3}, }; static void mctp_frag_test_to_desc(const struct mctp_frag_test *t, char *desc) { sprintf(desc, "mtu %d len %d -> %d frags", t->msgsize, t->mtu, t->n_frags); } KUNIT_ARRAY_PARAM(mctp_frag, mctp_frag_tests, mctp_frag_test_to_desc); struct mctp_rx_input_test { struct mctp_hdr hdr; bool input; }; static void mctp_test_rx_input(struct kunit *test) { const struct mctp_rx_input_test *params; struct mctp_test_route *rt; struct mctp_test_dev *dev; struct sk_buff *skb; params = test->param_value; dev = mctp_test_create_dev(); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev); rt = mctp_test_create_route(&init_net, dev->mdev, 8, 68); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt); skb = mctp_test_create_skb(¶ms->hdr, 1); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb); mctp_pkttype_receive(skb, dev->ndev, &mctp_packet_type, NULL); KUNIT_EXPECT_EQ(test, !!rt->pkts.qlen, params->input); mctp_test_route_destroy(test, rt); mctp_test_destroy_dev(dev); } #define RX_HDR(_ver, _src, _dest, _fst) \ { .ver = _ver, .src = _src, .dest = _dest, .flags_seq_tag = _fst } /* we have a route for EID 8 only */ static const struct mctp_rx_input_test mctp_rx_input_tests[] = { { .hdr = RX_HDR(1, 10, 8, 0), .input = true }, { .hdr = RX_HDR(1, 10, 9, 0), .input = false }, /* no input route */ { .hdr = RX_HDR(2, 10, 8, 0), .input = false }, /* invalid version */ }; static void mctp_rx_input_test_to_desc(const struct mctp_rx_input_test *t, char *desc) { sprintf(desc, "{%x,%x,%x,%x}", t->hdr.ver, t->hdr.src, t->hdr.dest, t->hdr.flags_seq_tag); } KUNIT_ARRAY_PARAM(mctp_rx_input, mctp_rx_input_tests, mctp_rx_input_test_to_desc); /* set up a local dev, route on EID 8, and a socket listening on type 0 */ static void __mctp_route_test_init(struct kunit *test, struct mctp_test_dev **devp, struct mctp_test_route **rtp, struct socket **sockp, unsigned int netid) { struct sockaddr_mctp addr = {0}; struct mctp_test_route *rt; struct mctp_test_dev *dev; struct socket *sock; int rc; dev = mctp_test_create_dev(); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev); if (netid != MCTP_NET_ANY) WRITE_ONCE(dev->mdev->net, netid); rt = mctp_test_create_route(&init_net, dev->mdev, 8, 68); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt); rc = sock_create_kern(&init_net, AF_MCTP, SOCK_DGRAM, 0, &sock); KUNIT_ASSERT_EQ(test, rc, 0); addr.smctp_family = AF_MCTP; addr.smctp_network = netid; addr.smctp_addr.s_addr = 8; addr.smctp_type = 0; rc = kernel_bind(sock, (struct sockaddr *)&addr, sizeof(addr)); KUNIT_ASSERT_EQ(test, rc, 0); *rtp = rt; *devp = dev; *sockp = sock; } static void __mctp_route_test_fini(struct kunit *test, struct mctp_test_dev *dev, struct mctp_test_route *rt, struct socket *sock) { sock_release(sock); mctp_test_route_destroy(test, rt); mctp_test_destroy_dev(dev); } struct mctp_route_input_sk_test { struct mctp_hdr hdr; u8 type; bool deliver; }; static void mctp_test_route_input_sk(struct kunit *test) { const struct mctp_route_input_sk_test *params; struct sk_buff *skb, *skb2; struct mctp_test_route *rt; struct mctp_test_dev *dev; struct socket *sock; int rc; params = test->param_value; __mctp_route_test_init(test, &dev, &rt, &sock, MCTP_NET_ANY); skb = mctp_test_create_skb_data(¶ms->hdr, ¶ms->type); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb); mctp_test_skb_set_dev(skb, dev); rc = mctp_route_input(&rt->rt, skb); if (params->deliver) { KUNIT_EXPECT_EQ(test, rc, 0); skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc); KUNIT_EXPECT_NOT_ERR_OR_NULL(test, skb2); KUNIT_EXPECT_EQ(test, skb->len, 1); skb_free_datagram(sock->sk, skb2); } else { KUNIT_EXPECT_NE(test, rc, 0); skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc); KUNIT_EXPECT_NULL(test, skb2); } __mctp_route_test_fini(test, dev, rt, sock); } #define FL_S (MCTP_HDR_FLAG_SOM) #define FL_E (MCTP_HDR_FLAG_EOM) #define FL_TO (MCTP_HDR_FLAG_TO) #define FL_T(t) ((t) & MCTP_HDR_TAG_MASK) static const struct mctp_route_input_sk_test mctp_route_input_sk_tests[] = { { .hdr = RX_HDR(1, 10, 8, FL_S | FL_E | FL_TO), .type = 0, .deliver = true }, { .hdr = RX_HDR(1, 10, 8, FL_S | FL_E | FL_TO), .type = 1, .deliver = false }, { .hdr = RX_HDR(1, 10, 8, FL_S | FL_E), .type = 0, .deliver = false }, { .hdr = RX_HDR(1, 10, 8, FL_E | FL_TO), .type = 0, .deliver = false }, { .hdr = RX_HDR(1, 10, 8, FL_TO), .type = 0, .deliver = false }, { .hdr = RX_HDR(1, 10, 8, 0), .type = 0, .deliver = false }, }; static void mctp_route_input_sk_to_desc(const struct mctp_route_input_sk_test *t, char *desc) { sprintf(desc, "{%x,%x,%x,%x} type %d", t->hdr.ver, t->hdr.src, t->hdr.dest, t->hdr.flags_seq_tag, t->type); } KUNIT_ARRAY_PARAM(mctp_route_input_sk, mctp_route_input_sk_tests, mctp_route_input_sk_to_desc); struct mctp_route_input_sk_reasm_test { const char *name; struct mctp_hdr hdrs[4]; int n_hdrs; int rx_len; }; static void mctp_test_route_input_sk_reasm(struct kunit *test) { const struct mctp_route_input_sk_reasm_test *params; struct sk_buff *skb, *skb2; struct mctp_test_route *rt; struct mctp_test_dev *dev; struct socket *sock; int i, rc; u8 c; params = test->param_value; __mctp_route_test_init(test, &dev, &rt, &sock, MCTP_NET_ANY); for (i = 0; i < params->n_hdrs; i++) { c = i; skb = mctp_test_create_skb_data(¶ms->hdrs[i], &c); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb); mctp_test_skb_set_dev(skb, dev); rc = mctp_route_input(&rt->rt, skb); } skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc); if (params->rx_len) { KUNIT_EXPECT_NOT_ERR_OR_NULL(test, skb2); KUNIT_EXPECT_EQ(test, skb2->len, params->rx_len); skb_free_datagram(sock->sk, skb2); } else { KUNIT_EXPECT_NULL(test, skb2); } __mctp_route_test_fini(test, dev, rt, sock); } #define RX_FRAG(f, s) RX_HDR(1, 10, 8, FL_TO | (f) | ((s) << MCTP_HDR_SEQ_SHIFT)) static const struct mctp_route_input_sk_reasm_test mctp_route_input_sk_reasm_tests[] = { { .name = "single packet", .hdrs = { RX_FRAG(FL_S | FL_E, 0), }, .n_hdrs = 1, .rx_len = 1, }, { .name = "single packet, offset seq", .hdrs = { RX_FRAG(FL_S | FL_E, 1), }, .n_hdrs = 1, .rx_len = 1, }, { .name = "start & end packets", .hdrs = { RX_FRAG(FL_S, 0), RX_FRAG(FL_E, 1), }, .n_hdrs = 2, .rx_len = 2, }, { .name = "start & end packets, offset seq", .hdrs = { RX_FRAG(FL_S, 1), RX_FRAG(FL_E, 2), }, .n_hdrs = 2, .rx_len = 2, }, { .name = "start & end packets, out of order", .hdrs = { RX_FRAG(FL_E, 1), RX_FRAG(FL_S, 0), }, .n_hdrs = 2, .rx_len = 0, }, { .name = "start, middle & end packets", .hdrs = { RX_FRAG(FL_S, 0), RX_FRAG(0, 1), RX_FRAG(FL_E, 2), }, .n_hdrs = 3, .rx_len = 3, }, { .name = "missing seq", .hdrs = { RX_FRAG(FL_S, 0), RX_FRAG(FL_E, 2), }, .n_hdrs = 2, .rx_len = 0, }, { .name = "seq wrap", .hdrs = { RX_FRAG(FL_S, 3), RX_FRAG(FL_E, 0), }, .n_hdrs = 2, .rx_len = 2, }, }; static void mctp_route_input_sk_reasm_to_desc( const struct mctp_route_input_sk_reasm_test *t, char *desc) { sprintf(desc, "%s", t->name); } KUNIT_ARRAY_PARAM(mctp_route_input_sk_reasm, mctp_route_input_sk_reasm_tests, mctp_route_input_sk_reasm_to_desc); struct mctp_route_input_sk_keys_test { const char *name; mctp_eid_t key_peer_addr; mctp_eid_t key_local_addr; u8 key_tag; struct mctp_hdr hdr; bool deliver; }; /* test packet rx in the presence of various key configurations */ static void mctp_test_route_input_sk_keys(struct kunit *test) { const struct mctp_route_input_sk_keys_test *params; struct mctp_test_route *rt; struct sk_buff *skb, *skb2; struct mctp_test_dev *dev; struct mctp_sk_key *key; struct netns_mctp *mns; struct mctp_sock *msk; struct socket *sock; unsigned long flags; unsigned int net; int rc; u8 c; params = test->param_value; dev = mctp_test_create_dev(); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev); net = READ_ONCE(dev->mdev->net); rt = mctp_test_create_route(&init_net, dev->mdev, 8, 68); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt); rc = sock_create_kern(&init_net, AF_MCTP, SOCK_DGRAM, 0, &sock); KUNIT_ASSERT_EQ(test, rc, 0); msk = container_of(sock->sk, struct mctp_sock, sk); mns = &sock_net(sock->sk)->mctp; /* set the incoming tag according to test params */ key = mctp_key_alloc(msk, net, params->key_local_addr, params->key_peer_addr, params->key_tag, GFP_KERNEL); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, key); spin_lock_irqsave(&mns->keys_lock, flags); mctp_reserve_tag(&init_net, key, msk); spin_unlock_irqrestore(&mns->keys_lock, flags); /* create packet and route */ c = 0; skb = mctp_test_create_skb_data(¶ms->hdr, &c); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb); mctp_test_skb_set_dev(skb, dev); rc = mctp_route_input(&rt->rt, skb); /* (potentially) receive message */ skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc); if (params->deliver) KUNIT_EXPECT_NOT_ERR_OR_NULL(test, skb2); else KUNIT_EXPECT_PTR_EQ(test, skb2, NULL); if (skb2) skb_free_datagram(sock->sk, skb2); mctp_key_unref(key); __mctp_route_test_fini(test, dev, rt, sock); } static const struct mctp_route_input_sk_keys_test mctp_route_input_sk_keys_tests[] = { { .name = "direct match", .key_peer_addr = 9, .key_local_addr = 8, .key_tag = 1, .hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1)), .deliver = true, }, { .name = "flipped src/dest", .key_peer_addr = 8, .key_local_addr = 9, .key_tag = 1, .hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1)), .deliver = false, }, { .name = "peer addr mismatch", .key_peer_addr = 9, .key_local_addr = 8, .key_tag = 1, .hdr = RX_HDR(1, 10, 8, FL_S | FL_E | FL_T(1)), .deliver = false, }, { .name = "tag value mismatch", .key_peer_addr = 9, .key_local_addr = 8, .key_tag = 1, .hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(2)), .deliver = false, }, { .name = "TO mismatch", .key_peer_addr = 9, .key_local_addr = 8, .key_tag = 1, .hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1) | FL_TO), .deliver = false, }, { .name = "broadcast response", .key_peer_addr = MCTP_ADDR_ANY, .key_local_addr = 8, .key_tag = 1, .hdr = RX_HDR(1, 11, 8, FL_S | FL_E | FL_T(1)), .deliver = true, }, { .name = "any local match", .key_peer_addr = 12, .key_local_addr = MCTP_ADDR_ANY, .key_tag = 1, .hdr = RX_HDR(1, 12, 8, FL_S | FL_E | FL_T(1)), .deliver = true, }, }; static void mctp_route_input_sk_keys_to_desc( const struct mctp_route_input_sk_keys_test *t, char *desc) { sprintf(desc, "%s", t->name); } KUNIT_ARRAY_PARAM(mctp_route_input_sk_keys, mctp_route_input_sk_keys_tests, mctp_route_input_sk_keys_to_desc); struct test_net { unsigned int netid; struct mctp_test_dev *dev; struct mctp_test_route *rt; struct socket *sock; struct sk_buff *skb; struct mctp_sk_key *key; struct { u8 type; unsigned int data; } msg; }; static void mctp_test_route_input_multiple_nets_bind_init(struct kunit *test, struct test_net *t) { struct mctp_hdr hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1) | FL_TO); t->msg.data = t->netid; __mctp_route_test_init(test, &t->dev, &t->rt, &t->sock, t->netid); t->skb = mctp_test_create_skb_data(&hdr, &t->msg); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, t->skb); mctp_test_skb_set_dev(t->skb, t->dev); } static void mctp_test_route_input_multiple_nets_bind_fini(struct kunit *test, struct test_net *t) { __mctp_route_test_fini(test, t->dev, t->rt, t->sock); } /* Test that skbs from different nets (otherwise identical) get routed to their * corresponding socket via the sockets' bind() */ static void mctp_test_route_input_multiple_nets_bind(struct kunit *test) { struct sk_buff *rx_skb1, *rx_skb2; struct test_net t1, t2; int rc; t1.netid = 1; t2.netid = 2; t1.msg.type = 0; t2.msg.type = 0; mctp_test_route_input_multiple_nets_bind_init(test, &t1); mctp_test_route_input_multiple_nets_bind_init(test, &t2); rc = mctp_route_input(&t1.rt->rt, t1.skb); KUNIT_ASSERT_EQ(test, rc, 0); rc = mctp_route_input(&t2.rt->rt, t2.skb); KUNIT_ASSERT_EQ(test, rc, 0); rx_skb1 = skb_recv_datagram(t1.sock->sk, MSG_DONTWAIT, &rc); KUNIT_EXPECT_NOT_ERR_OR_NULL(test, rx_skb1); KUNIT_EXPECT_EQ(test, rx_skb1->len, sizeof(t1.msg)); KUNIT_EXPECT_EQ(test, *(unsigned int *)skb_pull(rx_skb1, sizeof(t1.msg.data)), t1.netid); kfree_skb(rx_skb1); rx_skb2 = skb_recv_datagram(t2.sock->sk, MSG_DONTWAIT, &rc); KUNIT_EXPECT_NOT_ERR_OR_NULL(test, rx_skb2); KUNIT_EXPECT_EQ(test, rx_skb2->len, sizeof(t2.msg)); KUNIT_EXPECT_EQ(test, *(unsigned int *)skb_pull(rx_skb2, sizeof(t2.msg.data)), t2.netid); kfree_skb(rx_skb2); mctp_test_route_input_multiple_nets_bind_fini(test, &t1); mctp_test_route_input_multiple_nets_bind_fini(test, &t2); } static void mctp_test_route_input_multiple_nets_key_init(struct kunit *test, struct test_net *t) { struct mctp_hdr hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1)); struct mctp_sock *msk; struct netns_mctp *mns; unsigned long flags; t->msg.data = t->netid; __mctp_route_test_init(test, &t->dev, &t->rt, &t->sock, t->netid); msk = container_of(t->sock->sk, struct mctp_sock, sk); t->key = mctp_key_alloc(msk, t->netid, hdr.dest, hdr.src, 1, GFP_KERNEL); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, t->key); mns = &sock_net(t->sock->sk)->mctp; spin_lock_irqsave(&mns->keys_lock, flags); mctp_reserve_tag(&init_net, t->key, msk); spin_unlock_irqrestore(&mns->keys_lock, flags); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, t->key); t->skb = mctp_test_create_skb_data(&hdr, &t->msg); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, t->skb); mctp_test_skb_set_dev(t->skb, t->dev); } static void mctp_test_route_input_multiple_nets_key_fini(struct kunit *test, struct test_net *t) { mctp_key_unref(t->key); __mctp_route_test_fini(test, t->dev, t->rt, t->sock); } /* test that skbs from different nets (otherwise identical) get routed to their * corresponding socket via the sk_key */ static void mctp_test_route_input_multiple_nets_key(struct kunit *test) { struct sk_buff *rx_skb1, *rx_skb2; struct test_net t1, t2; int rc; t1.netid = 1; t2.netid = 2; /* use type 1 which is not bound */ t1.msg.type = 1; t2.msg.type = 1; mctp_test_route_input_multiple_nets_key_init(test, &t1); mctp_test_route_input_multiple_nets_key_init(test, &t2); rc = mctp_route_input(&t1.rt->rt, t1.skb); KUNIT_ASSERT_EQ(test, rc, 0); rc = mctp_route_input(&t2.rt->rt, t2.skb); KUNIT_ASSERT_EQ(test, rc, 0); rx_skb1 = skb_recv_datagram(t1.sock->sk, MSG_DONTWAIT, &rc); KUNIT_EXPECT_NOT_ERR_OR_NULL(test, rx_skb1); KUNIT_EXPECT_EQ(test, rx_skb1->len, sizeof(t1.msg)); KUNIT_EXPECT_EQ(test, *(unsigned int *)skb_pull(rx_skb1, sizeof(t1.msg.data)), t1.netid); kfree_skb(rx_skb1); rx_skb2 = skb_recv_datagram(t2.sock->sk, MSG_DONTWAIT, &rc); KUNIT_EXPECT_NOT_ERR_OR_NULL(test, rx_skb2); KUNIT_EXPECT_EQ(test, rx_skb2->len, sizeof(t2.msg)); KUNIT_EXPECT_EQ(test, *(unsigned int *)skb_pull(rx_skb2, sizeof(t2.msg.data)), t2.netid); kfree_skb(rx_skb2); mctp_test_route_input_multiple_nets_key_fini(test, &t1); mctp_test_route_input_multiple_nets_key_fini(test, &t2); } #if IS_ENABLED(CONFIG_MCTP_FLOWS) static void mctp_test_flow_init(struct kunit *test, struct mctp_test_dev **devp, struct mctp_test_route **rtp, struct socket **sock, struct sk_buff **skbp, unsigned int len) { struct mctp_test_route *rt; struct mctp_test_dev *dev; struct sk_buff *skb; /* we have a slightly odd routing setup here; the test route * is for EID 8, which is our local EID. We don't do a routing * lookup, so that's fine - all we require is a path through * mctp_local_output, which will call rt->output on whatever * route we provide */ __mctp_route_test_init(test, &dev, &rt, sock, MCTP_NET_ANY); /* Assign a single EID. ->addrs is freed on mctp netdev release */ dev->mdev->addrs = kmalloc(sizeof(u8), GFP_KERNEL); dev->mdev->num_addrs = 1; dev->mdev->addrs[0] = 8; skb = alloc_skb(len + sizeof(struct mctp_hdr) + 1, GFP_KERNEL); KUNIT_ASSERT_TRUE(test, skb); __mctp_cb(skb); skb_reserve(skb, sizeof(struct mctp_hdr) + 1); memset(skb_put(skb, len), 0, len); /* take a ref for the route, we'll decrement in local output */ refcount_inc(&rt->rt.refs); *devp = dev; *rtp = rt; *skbp = skb; } static void mctp_test_flow_fini(struct kunit *test, struct mctp_test_dev *dev, struct mctp_test_route *rt, struct socket *sock) { __mctp_route_test_fini(test, dev, rt, sock); } /* test that an outgoing skb has the correct MCTP extension data set */ static void mctp_test_packet_flow(struct kunit *test) { struct sk_buff *skb, *skb2; struct mctp_test_route *rt; struct mctp_test_dev *dev; struct mctp_flow *flow; struct socket *sock; u8 dst = 8; int n, rc; mctp_test_flow_init(test, &dev, &rt, &sock, &skb, 30); rc = mctp_local_output(sock->sk, &rt->rt, skb, dst, MCTP_TAG_OWNER); KUNIT_ASSERT_EQ(test, rc, 0); n = rt->pkts.qlen; KUNIT_ASSERT_EQ(test, n, 1); skb2 = skb_dequeue(&rt->pkts); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb2); flow = skb_ext_find(skb2, SKB_EXT_MCTP); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flow); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flow->key); KUNIT_ASSERT_PTR_EQ(test, flow->key->sk, sock->sk); kfree_skb(skb2); mctp_test_flow_fini(test, dev, rt, sock); } /* test that outgoing skbs, after fragmentation, all have the correct MCTP * extension data set. */ static void mctp_test_fragment_flow(struct kunit *test) { struct mctp_flow *flows[2]; struct sk_buff *tx_skbs[2]; struct mctp_test_route *rt; struct mctp_test_dev *dev; struct sk_buff *skb; struct socket *sock; u8 dst = 8; int n, rc; mctp_test_flow_init(test, &dev, &rt, &sock, &skb, 100); rc = mctp_local_output(sock->sk, &rt->rt, skb, dst, MCTP_TAG_OWNER); KUNIT_ASSERT_EQ(test, rc, 0); n = rt->pkts.qlen; KUNIT_ASSERT_EQ(test, n, 2); /* both resulting packets should have the same flow data */ tx_skbs[0] = skb_dequeue(&rt->pkts); tx_skbs[1] = skb_dequeue(&rt->pkts); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, tx_skbs[0]); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, tx_skbs[1]); flows[0] = skb_ext_find(tx_skbs[0], SKB_EXT_MCTP); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flows[0]); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flows[0]->key); KUNIT_ASSERT_PTR_EQ(test, flows[0]->key->sk, sock->sk); flows[1] = skb_ext_find(tx_skbs[1], SKB_EXT_MCTP); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flows[1]); KUNIT_ASSERT_PTR_EQ(test, flows[1]->key, flows[0]->key); kfree_skb(tx_skbs[0]); kfree_skb(tx_skbs[1]); mctp_test_flow_fini(test, dev, rt, sock); } #else static void mctp_test_packet_flow(struct kunit *test) { kunit_skip(test, "Requires CONFIG_MCTP_FLOWS=y"); } static void mctp_test_fragment_flow(struct kunit *test) { kunit_skip(test, "Requires CONFIG_MCTP_FLOWS=y"); } #endif /* Test that outgoing skbs cause a suitable tag to be created */ static void mctp_test_route_output_key_create(struct kunit *test) { const unsigned int netid = 50; const u8 dst = 26, src = 15; struct mctp_test_route *rt; struct mctp_test_dev *dev; struct mctp_sk_key *key; struct netns_mctp *mns; unsigned long flags; struct socket *sock; struct sk_buff *skb; bool empty, single; const int len = 2; int rc; dev = mctp_test_create_dev(); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev); WRITE_ONCE(dev->mdev->net, netid); rt = mctp_test_create_route(&init_net, dev->mdev, dst, 68); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt); rc = sock_create_kern(&init_net, AF_MCTP, SOCK_DGRAM, 0, &sock); KUNIT_ASSERT_EQ(test, rc, 0); dev->mdev->addrs = kmalloc(sizeof(u8), GFP_KERNEL); dev->mdev->num_addrs = 1; dev->mdev->addrs[0] = src; skb = alloc_skb(sizeof(struct mctp_hdr) + 1 + len, GFP_KERNEL); KUNIT_ASSERT_TRUE(test, skb); __mctp_cb(skb); skb_reserve(skb, sizeof(struct mctp_hdr) + 1 + len); memset(skb_put(skb, len), 0, len); refcount_inc(&rt->rt.refs); mns = &sock_net(sock->sk)->mctp; /* We assume we're starting from an empty keys list, which requires * preceding tests to clean up correctly! */ spin_lock_irqsave(&mns->keys_lock, flags); empty = hlist_empty(&mns->keys); spin_unlock_irqrestore(&mns->keys_lock, flags); KUNIT_ASSERT_TRUE(test, empty); rc = mctp_local_output(sock->sk, &rt->rt, skb, dst, MCTP_TAG_OWNER); KUNIT_ASSERT_EQ(test, rc, 0); key = NULL; single = false; spin_lock_irqsave(&mns->keys_lock, flags); if (!hlist_empty(&mns->keys)) { key = hlist_entry(mns->keys.first, struct mctp_sk_key, hlist); single = hlist_is_singular_node(&key->hlist, &mns->keys); } spin_unlock_irqrestore(&mns->keys_lock, flags); KUNIT_ASSERT_NOT_NULL(test, key); KUNIT_ASSERT_TRUE(test, single); KUNIT_EXPECT_EQ(test, key->net, netid); KUNIT_EXPECT_EQ(test, key->local_addr, src); KUNIT_EXPECT_EQ(test, key->peer_addr, dst); /* key has incoming tag, so inverse of what we sent */ KUNIT_EXPECT_FALSE(test, key->tag & MCTP_TAG_OWNER); sock_release(sock); mctp_test_route_destroy(test, rt); mctp_test_destroy_dev(dev); } static struct kunit_case mctp_test_cases[] = { KUNIT_CASE_PARAM(mctp_test_fragment, mctp_frag_gen_params), KUNIT_CASE_PARAM(mctp_test_rx_input, mctp_rx_input_gen_params), KUNIT_CASE_PARAM(mctp_test_route_input_sk, mctp_route_input_sk_gen_params), KUNIT_CASE_PARAM(mctp_test_route_input_sk_reasm, mctp_route_input_sk_reasm_gen_params), KUNIT_CASE_PARAM(mctp_test_route_input_sk_keys, mctp_route_input_sk_keys_gen_params), KUNIT_CASE(mctp_test_route_input_multiple_nets_bind), KUNIT_CASE(mctp_test_route_input_multiple_nets_key), KUNIT_CASE(mctp_test_packet_flow), KUNIT_CASE(mctp_test_fragment_flow), KUNIT_CASE(mctp_test_route_output_key_create), {} }; static struct kunit_suite mctp_test_suite = { .name = "mctp", .test_cases = mctp_test_cases, }; kunit_test_suite(mctp_test_suite);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1