Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Howells | 4206 | 92.66% | 87 | 61.27% |
Linus Torvalds (pre-git) | 117 | 2.58% | 17 | 11.97% |
Christoph Hellwig | 65 | 1.43% | 3 | 2.11% |
Eric Dumazet | 28 | 0.62% | 2 | 1.41% |
Linus Torvalds | 28 | 0.62% | 4 | 2.82% |
Joe Perches | 24 | 0.53% | 2 | 1.41% |
Eric W. Biedermann | 12 | 0.26% | 3 | 2.11% |
Denys Vlasenko | 10 | 0.22% | 1 | 0.70% |
Gustavo A. R. Silva | 7 | 0.15% | 2 | 1.41% |
Hideaki Yoshifuji / 吉藤英明 | 6 | 0.13% | 1 | 0.70% |
Wei Yongjun | 5 | 0.11% | 1 | 0.70% |
Ilpo Järvinen | 4 | 0.09% | 1 | 0.70% |
David S. Miller | 3 | 0.07% | 2 | 1.41% |
Elena Reshetova | 3 | 0.07% | 2 | 1.41% |
Eric Paris | 3 | 0.07% | 1 | 0.70% |
Thomas Gleixner | 2 | 0.04% | 1 | 0.70% |
Karsten Graul | 2 | 0.04% | 1 | 0.70% |
Arnaldo Carvalho de Melo | 2 | 0.04% | 1 | 0.70% |
Marc Dionne | 2 | 0.04% | 1 | 0.70% |
Tejun Heo | 2 | 0.04% | 2 | 1.41% |
Stephen Hemminger | 2 | 0.04% | 2 | 1.41% |
Al Viro | 2 | 0.04% | 1 | 0.70% |
Paul Bolle | 1 | 0.02% | 1 | 0.70% |
Pavel Emelyanov | 1 | 0.02% | 1 | 0.70% |
Pankaj Bharadiya | 1 | 0.02% | 1 | 0.70% |
Herbert Xu | 1 | 0.02% | 1 | 0.70% |
Total | 4539 | 142 |
// SPDX-License-Identifier: GPL-2.0-or-later /* AF_RXRPC implementation * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/kernel.h> #include <linux/net.h> #include <linux/slab.h> #include <linux/skbuff.h> #include <linux/random.h> #include <linux/poll.h> #include <linux/proc_fs.h> #include <linux/key-type.h> #include <net/net_namespace.h> #include <net/sock.h> #include <net/af_rxrpc.h> #define CREATE_TRACE_POINTS #include "ar-internal.h" MODULE_DESCRIPTION("RxRPC network protocol"); MODULE_AUTHOR("Red Hat, Inc."); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_RXRPC); unsigned int rxrpc_debug; // = RXRPC_DEBUG_KPROTO; module_param_named(debug, rxrpc_debug, uint, 0644); MODULE_PARM_DESC(debug, "RxRPC debugging mask"); static struct proto rxrpc_proto; static const struct proto_ops rxrpc_rpc_ops; /* current debugging ID */ atomic_t rxrpc_debug_id; EXPORT_SYMBOL(rxrpc_debug_id); /* count of skbs currently in use */ atomic_t rxrpc_n_rx_skbs; struct workqueue_struct *rxrpc_workqueue; static void rxrpc_sock_destructor(struct sock *); /* * see if an RxRPC socket is currently writable */ static inline int rxrpc_writable(struct sock *sk) { return refcount_read(&sk->sk_wmem_alloc) < (size_t) sk->sk_sndbuf; } /* * wait for write bufferage to become available */ static void rxrpc_write_space(struct sock *sk) { _enter("%p", sk); rcu_read_lock(); if (rxrpc_writable(sk)) { struct socket_wq *wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible(&wq->wait); sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); } rcu_read_unlock(); } /* * validate an RxRPC address */ static int rxrpc_validate_address(struct rxrpc_sock *rx, struct sockaddr_rxrpc *srx, int len) { unsigned int tail; if (len < sizeof(struct sockaddr_rxrpc)) return -EINVAL; if (srx->srx_family != AF_RXRPC) return -EAFNOSUPPORT; if (srx->transport_type != SOCK_DGRAM) return -ESOCKTNOSUPPORT; len -= offsetof(struct sockaddr_rxrpc, transport); if (srx->transport_len < sizeof(sa_family_t) || srx->transport_len > len) return -EINVAL; switch (srx->transport.family) { case AF_INET: if (rx->family != AF_INET && rx->family != AF_INET6) return -EAFNOSUPPORT; if (srx->transport_len < sizeof(struct sockaddr_in)) return -EINVAL; tail = offsetof(struct sockaddr_rxrpc, transport.sin.__pad); break; #ifdef CONFIG_AF_RXRPC_IPV6 case AF_INET6: if (rx->family != AF_INET6) return -EAFNOSUPPORT; if (srx->transport_len < sizeof(struct sockaddr_in6)) return -EINVAL; tail = offsetof(struct sockaddr_rxrpc, transport) + sizeof(struct sockaddr_in6); break; #endif default: return -EAFNOSUPPORT; } if (tail < len) memset((void *)srx + tail, 0, len - tail); _debug("INET: %pISp", &srx->transport); return 0; } /* * bind a local address to an RxRPC socket */ static int rxrpc_bind(struct socket *sock, struct sockaddr *saddr, int len) { struct sockaddr_rxrpc *srx = (struct sockaddr_rxrpc *)saddr; struct rxrpc_local *local; struct rxrpc_sock *rx = rxrpc_sk(sock->sk); u16 service_id; int ret; _enter("%p,%p,%d", rx, saddr, len); ret = rxrpc_validate_address(rx, srx, len); if (ret < 0) goto error; service_id = srx->srx_service; lock_sock(&rx->sk); switch (rx->sk.sk_state) { case RXRPC_UNBOUND: rx->srx = *srx; local = rxrpc_lookup_local(sock_net(&rx->sk), &rx->srx); if (IS_ERR(local)) { ret = PTR_ERR(local); goto error_unlock; } if (service_id) { write_lock(&local->services_lock); if (local->service) goto service_in_use; rx->local = local; local->service = rx; write_unlock(&local->services_lock); rx->sk.sk_state = RXRPC_SERVER_BOUND; } else { rx->local = local; rx->sk.sk_state = RXRPC_CLIENT_BOUND; } break; case RXRPC_SERVER_BOUND: ret = -EINVAL; if (service_id == 0) goto error_unlock; ret = -EADDRINUSE; if (service_id == rx->srx.srx_service) goto error_unlock; ret = -EINVAL; srx->srx_service = rx->srx.srx_service; if (memcmp(srx, &rx->srx, sizeof(*srx)) != 0) goto error_unlock; rx->second_service = service_id; rx->sk.sk_state = RXRPC_SERVER_BOUND2; break; default: ret = -EINVAL; goto error_unlock; } release_sock(&rx->sk); _leave(" = 0"); return 0; service_in_use: write_unlock(&local->services_lock); rxrpc_unuse_local(local, rxrpc_local_unuse_bind); rxrpc_put_local(local, rxrpc_local_put_bind); ret = -EADDRINUSE; error_unlock: release_sock(&rx->sk); error: _leave(" = %d", ret); return ret; } /* * set the number of pending calls permitted on a listening socket */ static int rxrpc_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; struct rxrpc_sock *rx = rxrpc_sk(sk); unsigned int max, old; int ret; _enter("%p,%d", rx, backlog); lock_sock(&rx->sk); switch (rx->sk.sk_state) { case RXRPC_UNBOUND: ret = -EADDRNOTAVAIL; break; case RXRPC_SERVER_BOUND: case RXRPC_SERVER_BOUND2: ASSERT(rx->local != NULL); max = READ_ONCE(rxrpc_max_backlog); ret = -EINVAL; if (backlog == INT_MAX) backlog = max; else if (backlog < 0 || backlog > max) break; old = sk->sk_max_ack_backlog; sk->sk_max_ack_backlog = backlog; ret = rxrpc_service_prealloc(rx, GFP_KERNEL); if (ret == 0) rx->sk.sk_state = RXRPC_SERVER_LISTENING; else sk->sk_max_ack_backlog = old; break; case RXRPC_SERVER_LISTENING: if (backlog == 0) { rx->sk.sk_state = RXRPC_SERVER_LISTEN_DISABLED; sk->sk_max_ack_backlog = 0; rxrpc_discard_prealloc(rx); ret = 0; break; } fallthrough; default: ret = -EBUSY; break; } release_sock(&rx->sk); _leave(" = %d", ret); return ret; } /** * rxrpc_kernel_lookup_peer - Obtain remote transport endpoint for an address * @sock: The socket through which it will be accessed * @srx: The network address * @gfp: Allocation flags * * Lookup or create a remote transport endpoint record for the specified * address and return it with a ref held. */ struct rxrpc_peer *rxrpc_kernel_lookup_peer(struct socket *sock, struct sockaddr_rxrpc *srx, gfp_t gfp) { struct rxrpc_sock *rx = rxrpc_sk(sock->sk); int ret; ret = rxrpc_validate_address(rx, srx, sizeof(*srx)); if (ret < 0) return ERR_PTR(ret); return rxrpc_lookup_peer(rx->local, srx, gfp); } EXPORT_SYMBOL(rxrpc_kernel_lookup_peer); /** * rxrpc_kernel_get_peer - Get a reference on a peer * @peer: The peer to get a reference on. * * Get a record for the remote peer in a call. */ struct rxrpc_peer *rxrpc_kernel_get_peer(struct rxrpc_peer *peer) { return peer ? rxrpc_get_peer(peer, rxrpc_peer_get_application) : NULL; } EXPORT_SYMBOL(rxrpc_kernel_get_peer); /** * rxrpc_kernel_put_peer - Allow a kernel app to drop a peer reference * @peer: The peer to drop a ref on */ void rxrpc_kernel_put_peer(struct rxrpc_peer *peer) { rxrpc_put_peer(peer, rxrpc_peer_put_application); } EXPORT_SYMBOL(rxrpc_kernel_put_peer); /** * rxrpc_kernel_begin_call - Allow a kernel service to begin a call * @sock: The socket on which to make the call * @peer: The peer to contact * @key: The security context to use (defaults to socket setting) * @user_call_ID: The ID to use * @tx_total_len: Total length of data to transmit during the call (or -1) * @hard_timeout: The maximum lifespan of the call in sec * @gfp: The allocation constraints * @notify_rx: Where to send notifications instead of socket queue * @service_id: The ID of the service to contact * @upgrade: Request service upgrade for call * @interruptibility: The call is interruptible, or can be canceled. * @debug_id: The debug ID for tracing to be assigned to the call * * Allow a kernel service to begin a call on the nominated socket. This just * sets up all the internal tracking structures and allocates connection and * call IDs as appropriate. The call to be used is returned. * * The default socket destination address and security may be overridden by * supplying @srx and @key. */ struct rxrpc_call *rxrpc_kernel_begin_call(struct socket *sock, struct rxrpc_peer *peer, struct key *key, unsigned long user_call_ID, s64 tx_total_len, u32 hard_timeout, gfp_t gfp, rxrpc_notify_rx_t notify_rx, u16 service_id, bool upgrade, enum rxrpc_interruptibility interruptibility, unsigned int debug_id) { struct rxrpc_conn_parameters cp; struct rxrpc_call_params p; struct rxrpc_call *call; struct rxrpc_sock *rx = rxrpc_sk(sock->sk); _enter(",,%x,%lx", key_serial(key), user_call_ID); if (WARN_ON_ONCE(peer->local != rx->local)) return ERR_PTR(-EIO); lock_sock(&rx->sk); if (!key) key = rx->key; if (key && !key->payload.data[0]) key = NULL; /* a no-security key */ memset(&p, 0, sizeof(p)); p.user_call_ID = user_call_ID; p.tx_total_len = tx_total_len; p.interruptibility = interruptibility; p.kernel = true; p.timeouts.hard = hard_timeout; memset(&cp, 0, sizeof(cp)); cp.local = rx->local; cp.peer = peer; cp.key = key; cp.security_level = rx->min_sec_level; cp.exclusive = false; cp.upgrade = upgrade; cp.service_id = service_id; call = rxrpc_new_client_call(rx, &cp, &p, gfp, debug_id); /* The socket has been unlocked. */ if (!IS_ERR(call)) { call->notify_rx = notify_rx; mutex_unlock(&call->user_mutex); } _leave(" = %p", call); return call; } EXPORT_SYMBOL(rxrpc_kernel_begin_call); /* * Dummy function used to stop the notifier talking to recvmsg(). */ static void rxrpc_dummy_notify_rx(struct sock *sk, struct rxrpc_call *rxcall, unsigned long call_user_ID) { } /** * rxrpc_kernel_shutdown_call - Allow a kernel service to shut down a call it was using * @sock: The socket the call is on * @call: The call to end * * Allow a kernel service to shut down a call it was using. The call must be * complete before this is called (the call should be aborted if necessary). */ void rxrpc_kernel_shutdown_call(struct socket *sock, struct rxrpc_call *call) { _enter("%d{%d}", call->debug_id, refcount_read(&call->ref)); mutex_lock(&call->user_mutex); if (!test_bit(RXRPC_CALL_RELEASED, &call->flags)) { rxrpc_release_call(rxrpc_sk(sock->sk), call); /* Make sure we're not going to call back into a kernel service */ if (call->notify_rx) { spin_lock(&call->notify_lock); call->notify_rx = rxrpc_dummy_notify_rx; spin_unlock(&call->notify_lock); } } mutex_unlock(&call->user_mutex); } EXPORT_SYMBOL(rxrpc_kernel_shutdown_call); /** * rxrpc_kernel_put_call - Release a reference to a call * @sock: The socket the call is on * @call: The call to put * * Drop the application's ref on an rxrpc call. */ void rxrpc_kernel_put_call(struct socket *sock, struct rxrpc_call *call) { rxrpc_put_call(call, rxrpc_call_put_kernel); } EXPORT_SYMBOL(rxrpc_kernel_put_call); /** * rxrpc_kernel_check_life - Check to see whether a call is still alive * @sock: The socket the call is on * @call: The call to check * * Allow a kernel service to find out whether a call is still alive - whether * it has completed successfully and all received data has been consumed. */ bool rxrpc_kernel_check_life(const struct socket *sock, const struct rxrpc_call *call) { if (!rxrpc_call_is_complete(call)) return true; if (call->completion != RXRPC_CALL_SUCCEEDED) return false; return !skb_queue_empty(&call->recvmsg_queue); } EXPORT_SYMBOL(rxrpc_kernel_check_life); /** * rxrpc_kernel_get_epoch - Retrieve the epoch value from a call. * @sock: The socket the call is on * @call: The call to query * * Allow a kernel service to retrieve the epoch value from a service call to * see if the client at the other end rebooted. */ u32 rxrpc_kernel_get_epoch(struct socket *sock, struct rxrpc_call *call) { return call->conn->proto.epoch; } EXPORT_SYMBOL(rxrpc_kernel_get_epoch); /** * rxrpc_kernel_new_call_notification - Get notifications of new calls * @sock: The socket to intercept received messages on * @notify_new_call: Function to be called when new calls appear * @discard_new_call: Function to discard preallocated calls * * Allow a kernel service to be given notifications about new calls. */ void rxrpc_kernel_new_call_notification( struct socket *sock, rxrpc_notify_new_call_t notify_new_call, rxrpc_discard_new_call_t discard_new_call) { struct rxrpc_sock *rx = rxrpc_sk(sock->sk); rx->notify_new_call = notify_new_call; rx->discard_new_call = discard_new_call; } EXPORT_SYMBOL(rxrpc_kernel_new_call_notification); /** * rxrpc_kernel_set_max_life - Set maximum lifespan on a call * @sock: The socket the call is on * @call: The call to configure * @hard_timeout: The maximum lifespan of the call in ms * * Set the maximum lifespan of a call. The call will end with ETIME or * ETIMEDOUT if it takes longer than this. */ void rxrpc_kernel_set_max_life(struct socket *sock, struct rxrpc_call *call, unsigned long hard_timeout) { ktime_t delay = ms_to_ktime(hard_timeout), expect_term_by; mutex_lock(&call->user_mutex); expect_term_by = ktime_add(ktime_get_real(), delay); WRITE_ONCE(call->expect_term_by, expect_term_by); trace_rxrpc_timer_set(call, delay, rxrpc_timer_trace_hard); rxrpc_poke_call(call, rxrpc_call_poke_set_timeout); mutex_unlock(&call->user_mutex); } EXPORT_SYMBOL(rxrpc_kernel_set_max_life); /* * connect an RxRPC socket * - this just targets it at a specific destination; no actual connection * negotiation takes place */ static int rxrpc_connect(struct socket *sock, struct sockaddr *addr, int addr_len, int flags) { struct sockaddr_rxrpc *srx = (struct sockaddr_rxrpc *)addr; struct rxrpc_sock *rx = rxrpc_sk(sock->sk); int ret; _enter("%p,%p,%d,%d", rx, addr, addr_len, flags); ret = rxrpc_validate_address(rx, srx, addr_len); if (ret < 0) { _leave(" = %d [bad addr]", ret); return ret; } lock_sock(&rx->sk); ret = -EISCONN; if (test_bit(RXRPC_SOCK_CONNECTED, &rx->flags)) goto error; switch (rx->sk.sk_state) { case RXRPC_UNBOUND: rx->sk.sk_state = RXRPC_CLIENT_UNBOUND; break; case RXRPC_CLIENT_UNBOUND: case RXRPC_CLIENT_BOUND: break; default: ret = -EBUSY; goto error; } rx->connect_srx = *srx; set_bit(RXRPC_SOCK_CONNECTED, &rx->flags); ret = 0; error: release_sock(&rx->sk); return ret; } /* * send a message through an RxRPC socket * - in a client this does a number of things: * - finds/sets up a connection for the security specified (if any) * - initiates a call (ID in control data) * - ends the request phase of a call (if MSG_MORE is not set) * - sends a call data packet * - may send an abort (abort code in control data) */ static int rxrpc_sendmsg(struct socket *sock, struct msghdr *m, size_t len) { struct rxrpc_local *local; struct rxrpc_sock *rx = rxrpc_sk(sock->sk); int ret; _enter(",{%d},,%zu", rx->sk.sk_state, len); if (m->msg_flags & MSG_OOB) return -EOPNOTSUPP; if (m->msg_name) { ret = rxrpc_validate_address(rx, m->msg_name, m->msg_namelen); if (ret < 0) { _leave(" = %d [bad addr]", ret); return ret; } } lock_sock(&rx->sk); switch (rx->sk.sk_state) { case RXRPC_UNBOUND: case RXRPC_CLIENT_UNBOUND: rx->srx.srx_family = AF_RXRPC; rx->srx.srx_service = 0; rx->srx.transport_type = SOCK_DGRAM; rx->srx.transport.family = rx->family; switch (rx->family) { case AF_INET: rx->srx.transport_len = sizeof(struct sockaddr_in); break; #ifdef CONFIG_AF_RXRPC_IPV6 case AF_INET6: rx->srx.transport_len = sizeof(struct sockaddr_in6); break; #endif default: ret = -EAFNOSUPPORT; goto error_unlock; } local = rxrpc_lookup_local(sock_net(sock->sk), &rx->srx); if (IS_ERR(local)) { ret = PTR_ERR(local); goto error_unlock; } rx->local = local; rx->sk.sk_state = RXRPC_CLIENT_BOUND; fallthrough; case RXRPC_CLIENT_BOUND: if (!m->msg_name && test_bit(RXRPC_SOCK_CONNECTED, &rx->flags)) { m->msg_name = &rx->connect_srx; m->msg_namelen = sizeof(rx->connect_srx); } fallthrough; case RXRPC_SERVER_BOUND: case RXRPC_SERVER_LISTENING: ret = rxrpc_do_sendmsg(rx, m, len); /* The socket has been unlocked */ goto out; default: ret = -EINVAL; goto error_unlock; } error_unlock: release_sock(&rx->sk); out: _leave(" = %d", ret); return ret; } int rxrpc_sock_set_min_security_level(struct sock *sk, unsigned int val) { if (sk->sk_state != RXRPC_UNBOUND) return -EISCONN; if (val > RXRPC_SECURITY_MAX) return -EINVAL; lock_sock(sk); rxrpc_sk(sk)->min_sec_level = val; release_sock(sk); return 0; } EXPORT_SYMBOL(rxrpc_sock_set_min_security_level); /* * set RxRPC socket options */ static int rxrpc_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct rxrpc_sock *rx = rxrpc_sk(sock->sk); unsigned int min_sec_level; u16 service_upgrade[2]; int ret; _enter(",%d,%d,,%d", level, optname, optlen); lock_sock(&rx->sk); ret = -EOPNOTSUPP; if (level == SOL_RXRPC) { switch (optname) { case RXRPC_EXCLUSIVE_CONNECTION: ret = -EINVAL; if (optlen != 0) goto error; ret = -EISCONN; if (rx->sk.sk_state != RXRPC_UNBOUND) goto error; rx->exclusive = true; goto success; case RXRPC_SECURITY_KEY: ret = -EINVAL; if (rx->key) goto error; ret = -EISCONN; if (rx->sk.sk_state != RXRPC_UNBOUND) goto error; ret = rxrpc_request_key(rx, optval, optlen); goto error; case RXRPC_SECURITY_KEYRING: ret = -EINVAL; if (rx->key) goto error; ret = -EISCONN; if (rx->sk.sk_state != RXRPC_UNBOUND) goto error; ret = rxrpc_server_keyring(rx, optval, optlen); goto error; case RXRPC_MIN_SECURITY_LEVEL: ret = -EINVAL; if (optlen != sizeof(unsigned int)) goto error; ret = -EISCONN; if (rx->sk.sk_state != RXRPC_UNBOUND) goto error; ret = copy_from_sockptr(&min_sec_level, optval, sizeof(unsigned int)); if (ret < 0) goto error; ret = -EINVAL; if (min_sec_level > RXRPC_SECURITY_MAX) goto error; rx->min_sec_level = min_sec_level; goto success; case RXRPC_UPGRADEABLE_SERVICE: ret = -EINVAL; if (optlen != sizeof(service_upgrade) || rx->service_upgrade.from != 0) goto error; ret = -EISCONN; if (rx->sk.sk_state != RXRPC_SERVER_BOUND2) goto error; ret = -EFAULT; if (copy_from_sockptr(service_upgrade, optval, sizeof(service_upgrade)) != 0) goto error; ret = -EINVAL; if ((service_upgrade[0] != rx->srx.srx_service || service_upgrade[1] != rx->second_service) && (service_upgrade[0] != rx->second_service || service_upgrade[1] != rx->srx.srx_service)) goto error; rx->service_upgrade.from = service_upgrade[0]; rx->service_upgrade.to = service_upgrade[1]; goto success; default: break; } } success: ret = 0; error: release_sock(&rx->sk); return ret; } /* * Get socket options. */ static int rxrpc_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *_optlen) { int optlen; if (level != SOL_RXRPC) return -EOPNOTSUPP; if (get_user(optlen, _optlen)) return -EFAULT; switch (optname) { case RXRPC_SUPPORTED_CMSG: if (optlen < sizeof(int)) return -ETOOSMALL; if (put_user(RXRPC__SUPPORTED - 1, (int __user *)optval) || put_user(sizeof(int), _optlen)) return -EFAULT; return 0; default: return -EOPNOTSUPP; } } /* * permit an RxRPC socket to be polled */ static __poll_t rxrpc_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; struct rxrpc_sock *rx = rxrpc_sk(sk); __poll_t mask; sock_poll_wait(file, sock, wait); mask = 0; /* the socket is readable if there are any messages waiting on the Rx * queue */ if (!list_empty(&rx->recvmsg_q)) mask |= EPOLLIN | EPOLLRDNORM; /* the socket is writable if there is space to add new data to the * socket; there is no guarantee that any particular call in progress * on the socket may have space in the Tx ACK window */ if (rxrpc_writable(sk)) mask |= EPOLLOUT | EPOLLWRNORM; return mask; } /* * create an RxRPC socket */ static int rxrpc_create(struct net *net, struct socket *sock, int protocol, int kern) { struct rxrpc_net *rxnet; struct rxrpc_sock *rx; struct sock *sk; _enter("%p,%d", sock, protocol); /* we support transport protocol UDP/UDP6 only */ if (protocol != PF_INET && IS_ENABLED(CONFIG_AF_RXRPC_IPV6) && protocol != PF_INET6) return -EPROTONOSUPPORT; if (sock->type != SOCK_DGRAM) return -ESOCKTNOSUPPORT; sock->ops = &rxrpc_rpc_ops; sock->state = SS_UNCONNECTED; sk = sk_alloc(net, PF_RXRPC, GFP_KERNEL, &rxrpc_proto, kern); if (!sk) return -ENOMEM; sock_init_data(sock, sk); sock_set_flag(sk, SOCK_RCU_FREE); sk->sk_state = RXRPC_UNBOUND; sk->sk_write_space = rxrpc_write_space; sk->sk_max_ack_backlog = 0; sk->sk_destruct = rxrpc_sock_destructor; rx = rxrpc_sk(sk); rx->family = protocol; rx->calls = RB_ROOT; spin_lock_init(&rx->incoming_lock); INIT_LIST_HEAD(&rx->sock_calls); INIT_LIST_HEAD(&rx->to_be_accepted); INIT_LIST_HEAD(&rx->recvmsg_q); spin_lock_init(&rx->recvmsg_lock); rwlock_init(&rx->call_lock); memset(&rx->srx, 0, sizeof(rx->srx)); rxnet = rxrpc_net(sock_net(&rx->sk)); timer_reduce(&rxnet->peer_keepalive_timer, jiffies + 1); _leave(" = 0 [%p]", rx); return 0; } /* * Kill all the calls on a socket and shut it down. */ static int rxrpc_shutdown(struct socket *sock, int flags) { struct sock *sk = sock->sk; struct rxrpc_sock *rx = rxrpc_sk(sk); int ret = 0; _enter("%p,%d", sk, flags); if (flags != SHUT_RDWR) return -EOPNOTSUPP; if (sk->sk_state == RXRPC_CLOSE) return -ESHUTDOWN; lock_sock(sk); if (sk->sk_state < RXRPC_CLOSE) { sk->sk_state = RXRPC_CLOSE; sk->sk_shutdown = SHUTDOWN_MASK; } else { ret = -ESHUTDOWN; } rxrpc_discard_prealloc(rx); release_sock(sk); return ret; } /* * RxRPC socket destructor */ static void rxrpc_sock_destructor(struct sock *sk) { _enter("%p", sk); rxrpc_purge_queue(&sk->sk_receive_queue); WARN_ON(refcount_read(&sk->sk_wmem_alloc)); WARN_ON(!sk_unhashed(sk)); WARN_ON(sk->sk_socket); if (!sock_flag(sk, SOCK_DEAD)) { printk("Attempt to release alive rxrpc socket: %p\n", sk); return; } } /* * release an RxRPC socket */ static int rxrpc_release_sock(struct sock *sk) { struct rxrpc_sock *rx = rxrpc_sk(sk); _enter("%p{%d,%d}", sk, sk->sk_state, refcount_read(&sk->sk_refcnt)); /* declare the socket closed for business */ sock_orphan(sk); sk->sk_shutdown = SHUTDOWN_MASK; /* We want to kill off all connections from a service socket * as fast as possible because we can't share these; client * sockets, on the other hand, can share an endpoint. */ switch (sk->sk_state) { case RXRPC_SERVER_BOUND: case RXRPC_SERVER_BOUND2: case RXRPC_SERVER_LISTENING: case RXRPC_SERVER_LISTEN_DISABLED: rx->local->service_closed = true; break; } sk->sk_state = RXRPC_CLOSE; if (rx->local && rx->local->service == rx) { write_lock(&rx->local->services_lock); rx->local->service = NULL; write_unlock(&rx->local->services_lock); } /* try to flush out this socket */ rxrpc_discard_prealloc(rx); rxrpc_release_calls_on_socket(rx); flush_workqueue(rxrpc_workqueue); rxrpc_purge_queue(&sk->sk_receive_queue); rxrpc_unuse_local(rx->local, rxrpc_local_unuse_release_sock); rxrpc_put_local(rx->local, rxrpc_local_put_release_sock); rx->local = NULL; key_put(rx->key); rx->key = NULL; key_put(rx->securities); rx->securities = NULL; sock_put(sk); _leave(" = 0"); return 0; } /* * release an RxRPC BSD socket on close() or equivalent */ static int rxrpc_release(struct socket *sock) { struct sock *sk = sock->sk; _enter("%p{%p}", sock, sk); if (!sk) return 0; sock->sk = NULL; return rxrpc_release_sock(sk); } /* * RxRPC network protocol */ static const struct proto_ops rxrpc_rpc_ops = { .family = PF_RXRPC, .owner = THIS_MODULE, .release = rxrpc_release, .bind = rxrpc_bind, .connect = rxrpc_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = sock_no_getname, .poll = rxrpc_poll, .ioctl = sock_no_ioctl, .listen = rxrpc_listen, .shutdown = rxrpc_shutdown, .setsockopt = rxrpc_setsockopt, .getsockopt = rxrpc_getsockopt, .sendmsg = rxrpc_sendmsg, .recvmsg = rxrpc_recvmsg, .mmap = sock_no_mmap, }; static struct proto rxrpc_proto = { .name = "RXRPC", .owner = THIS_MODULE, .obj_size = sizeof(struct rxrpc_sock), .max_header = sizeof(struct rxrpc_wire_header), }; static const struct net_proto_family rxrpc_family_ops = { .family = PF_RXRPC, .create = rxrpc_create, .owner = THIS_MODULE, }; /* * initialise and register the RxRPC protocol */ static int __init af_rxrpc_init(void) { int ret = -1; BUILD_BUG_ON(sizeof(struct rxrpc_skb_priv) > sizeof_field(struct sk_buff, cb)); ret = -ENOMEM; rxrpc_gen_version_string(); rxrpc_call_jar = kmem_cache_create( "rxrpc_call_jar", sizeof(struct rxrpc_call), 0, SLAB_HWCACHE_ALIGN, NULL); if (!rxrpc_call_jar) { pr_notice("Failed to allocate call jar\n"); goto error_call_jar; } rxrpc_workqueue = alloc_ordered_workqueue("krxrpcd", WQ_HIGHPRI | WQ_MEM_RECLAIM); if (!rxrpc_workqueue) { pr_notice("Failed to allocate work queue\n"); goto error_work_queue; } ret = rxrpc_init_security(); if (ret < 0) { pr_crit("Cannot initialise security\n"); goto error_security; } ret = register_pernet_device(&rxrpc_net_ops); if (ret) goto error_pernet; ret = proto_register(&rxrpc_proto, 1); if (ret < 0) { pr_crit("Cannot register protocol\n"); goto error_proto; } ret = sock_register(&rxrpc_family_ops); if (ret < 0) { pr_crit("Cannot register socket family\n"); goto error_sock; } ret = register_key_type(&key_type_rxrpc); if (ret < 0) { pr_crit("Cannot register client key type\n"); goto error_key_type; } ret = register_key_type(&key_type_rxrpc_s); if (ret < 0) { pr_crit("Cannot register server key type\n"); goto error_key_type_s; } ret = rxrpc_sysctl_init(); if (ret < 0) { pr_crit("Cannot register sysctls\n"); goto error_sysctls; } return 0; error_sysctls: unregister_key_type(&key_type_rxrpc_s); error_key_type_s: unregister_key_type(&key_type_rxrpc); error_key_type: sock_unregister(PF_RXRPC); error_sock: proto_unregister(&rxrpc_proto); error_proto: unregister_pernet_device(&rxrpc_net_ops); error_pernet: rxrpc_exit_security(); error_security: destroy_workqueue(rxrpc_workqueue); error_work_queue: kmem_cache_destroy(rxrpc_call_jar); error_call_jar: return ret; } /* * unregister the RxRPC protocol */ static void __exit af_rxrpc_exit(void) { _enter(""); rxrpc_sysctl_exit(); unregister_key_type(&key_type_rxrpc_s); unregister_key_type(&key_type_rxrpc); sock_unregister(PF_RXRPC); proto_unregister(&rxrpc_proto); unregister_pernet_device(&rxrpc_net_ops); ASSERTCMP(atomic_read(&rxrpc_n_rx_skbs), ==, 0); /* Make sure the local and peer records pinned by any dying connections * are released. */ rcu_barrier(); destroy_workqueue(rxrpc_workqueue); rxrpc_exit_security(); kmem_cache_destroy(rxrpc_call_jar); _leave(""); } module_init(af_rxrpc_init); module_exit(af_rxrpc_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1