Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Johannes Berg | 2546 | 40.85% | 66 | 45.52% |
Janusz Dziedzic | 566 | 9.08% | 4 | 2.76% |
Alexei Avshalom Lazar | 540 | 8.66% | 2 | 1.38% |
Thomas Pedersen | 386 | 6.19% | 5 | 3.45% |
Simon Wunderlich | 384 | 6.16% | 4 | 2.76% |
Vasanthakumar Thiagarajan | 256 | 4.11% | 2 | 1.38% |
Andrei Otcheretianski | 226 | 3.63% | 1 | 0.69% |
Jia Ding | 198 | 3.18% | 1 | 0.69% |
Ilan Peer | 174 | 2.79% | 3 | 2.07% |
Luis R. Rodriguez | 166 | 2.66% | 3 | 2.07% |
Aloka Dixit | 109 | 1.75% | 1 | 0.69% |
Luciano Coelho | 95 | 1.52% | 3 | 2.07% |
Michal Kazior | 93 | 1.49% | 2 | 1.38% |
Arik Nemtsov | 89 | 1.43% | 4 | 2.76% |
Jouni Malinen | 71 | 1.14% | 6 | 4.14% |
Lorenzo Bianconi | 52 | 0.83% | 3 | 2.07% |
Shay Bar | 42 | 0.67% | 1 | 0.69% |
Avraham Stern | 32 | 0.51% | 1 | 0.69% |
Wen Gong | 23 | 0.37% | 1 | 0.69% |
Dmitry Lebed | 23 | 0.37% | 1 | 0.69% |
Masashi Honma | 18 | 0.29% | 1 | 0.69% |
Alexander Simon | 17 | 0.27% | 1 | 0.69% |
Arend Van Spriel | 17 | 0.27% | 2 | 1.38% |
Rostislav Lisovy | 14 | 0.22% | 2 | 1.38% |
Beni Lev | 12 | 0.19% | 1 | 0.69% |
Aditya Kumar Singh | 10 | 0.16% | 1 | 0.69% |
Ayala Beker | 7 | 0.11% | 2 | 1.38% |
Vladimir Kondratiev | 6 | 0.10% | 1 | 0.69% |
Orr Mazor | 6 | 0.10% | 1 | 0.69% |
Denis Kenzior | 6 | 0.10% | 1 | 0.69% |
Hong Liu | 5 | 0.08% | 1 | 0.69% |
Evan Quan | 5 | 0.08% | 1 | 0.69% |
Sergey Matyukevich | 5 | 0.08% | 1 | 0.69% |
Peng Xu | 4 | 0.06% | 1 | 0.69% |
Hila Gonen | 4 | 0.06% | 1 | 0.69% |
Gustavo A. R. Silva | 4 | 0.06% | 1 | 0.69% |
Mark Mentovai | 3 | 0.05% | 1 | 0.69% |
Luis Carlos Cobo Rus | 3 | 0.05% | 1 | 0.69% |
Sunil Dutt Undekari | 3 | 0.05% | 1 | 0.69% |
Zhao, Gang | 2 | 0.03% | 2 | 1.38% |
David S. Miller | 2 | 0.03% | 1 | 0.69% |
Eric W. Biedermann | 2 | 0.03% | 1 | 0.69% |
Jiri Benc | 2 | 0.03% | 1 | 0.69% |
Colin Ian King | 1 | 0.02% | 1 | 0.69% |
Samuel Ortiz | 1 | 0.02% | 1 | 0.69% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 0.69% |
Manikanta Pubbisetty | 1 | 0.02% | 1 | 0.69% |
Total | 6232 | 145 |
// SPDX-License-Identifier: GPL-2.0 /* * This file contains helper code to handle channel * settings and keeping track of what is possible at * any point in time. * * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright 2018-2024 Intel Corporation */ #include <linux/export.h> #include <linux/bitfield.h> #include <net/cfg80211.h> #include "core.h" #include "rdev-ops.h" static bool cfg80211_valid_60g_freq(u32 freq) { return freq >= 58320 && freq <= 70200; } void cfg80211_chandef_create(struct cfg80211_chan_def *chandef, struct ieee80211_channel *chan, enum nl80211_channel_type chan_type) { if (WARN_ON(!chan)) return; *chandef = (struct cfg80211_chan_def) { .chan = chan, .freq1_offset = chan->freq_offset, }; switch (chan_type) { case NL80211_CHAN_NO_HT: chandef->width = NL80211_CHAN_WIDTH_20_NOHT; chandef->center_freq1 = chan->center_freq; break; case NL80211_CHAN_HT20: chandef->width = NL80211_CHAN_WIDTH_20; chandef->center_freq1 = chan->center_freq; break; case NL80211_CHAN_HT40PLUS: chandef->width = NL80211_CHAN_WIDTH_40; chandef->center_freq1 = chan->center_freq + 10; break; case NL80211_CHAN_HT40MINUS: chandef->width = NL80211_CHAN_WIDTH_40; chandef->center_freq1 = chan->center_freq - 10; break; default: WARN_ON(1); } } EXPORT_SYMBOL(cfg80211_chandef_create); struct cfg80211_per_bw_puncturing_values { u8 len; const u16 *valid_values; }; static const u16 puncturing_values_80mhz[] = { 0x8, 0x4, 0x2, 0x1 }; static const u16 puncturing_values_160mhz[] = { 0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1, 0xc0, 0x30, 0xc, 0x3 }; static const u16 puncturing_values_320mhz[] = { 0xc000, 0x3000, 0xc00, 0x300, 0xc0, 0x30, 0xc, 0x3, 0xf000, 0xf00, 0xf0, 0xf, 0xfc00, 0xf300, 0xf0c0, 0xf030, 0xf00c, 0xf003, 0xc00f, 0x300f, 0xc0f, 0x30f, 0xcf, 0x3f }; #define CFG80211_PER_BW_VALID_PUNCTURING_VALUES(_bw) \ { \ .len = ARRAY_SIZE(puncturing_values_ ## _bw ## mhz), \ .valid_values = puncturing_values_ ## _bw ## mhz \ } static const struct cfg80211_per_bw_puncturing_values per_bw_puncturing[] = { CFG80211_PER_BW_VALID_PUNCTURING_VALUES(80), CFG80211_PER_BW_VALID_PUNCTURING_VALUES(160), CFG80211_PER_BW_VALID_PUNCTURING_VALUES(320) }; static bool valid_puncturing_bitmap(const struct cfg80211_chan_def *chandef) { u32 idx, i, start_freq, primary_center = chandef->chan->center_freq; switch (chandef->width) { case NL80211_CHAN_WIDTH_80: idx = 0; start_freq = chandef->center_freq1 - 40; break; case NL80211_CHAN_WIDTH_160: idx = 1; start_freq = chandef->center_freq1 - 80; break; case NL80211_CHAN_WIDTH_320: idx = 2; start_freq = chandef->center_freq1 - 160; break; default: return chandef->punctured == 0; } if (!chandef->punctured) return true; /* check if primary channel is punctured */ if (chandef->punctured & (u16)BIT((primary_center - start_freq) / 20)) return false; for (i = 0; i < per_bw_puncturing[idx].len; i++) { if (per_bw_puncturing[idx].valid_values[i] == chandef->punctured) return true; } return false; } static bool cfg80211_edmg_chandef_valid(const struct cfg80211_chan_def *chandef) { int max_contiguous = 0; int num_of_enabled = 0; int contiguous = 0; int i; if (!chandef->edmg.channels || !chandef->edmg.bw_config) return false; if (!cfg80211_valid_60g_freq(chandef->chan->center_freq)) return false; for (i = 0; i < 6; i++) { if (chandef->edmg.channels & BIT(i)) { contiguous++; num_of_enabled++; } else { contiguous = 0; } max_contiguous = max(contiguous, max_contiguous); } /* basic verification of edmg configuration according to * IEEE P802.11ay/D4.0 section 9.4.2.251 */ /* check bw_config against contiguous edmg channels */ switch (chandef->edmg.bw_config) { case IEEE80211_EDMG_BW_CONFIG_4: case IEEE80211_EDMG_BW_CONFIG_8: case IEEE80211_EDMG_BW_CONFIG_12: if (max_contiguous < 1) return false; break; case IEEE80211_EDMG_BW_CONFIG_5: case IEEE80211_EDMG_BW_CONFIG_9: case IEEE80211_EDMG_BW_CONFIG_13: if (max_contiguous < 2) return false; break; case IEEE80211_EDMG_BW_CONFIG_6: case IEEE80211_EDMG_BW_CONFIG_10: case IEEE80211_EDMG_BW_CONFIG_14: if (max_contiguous < 3) return false; break; case IEEE80211_EDMG_BW_CONFIG_7: case IEEE80211_EDMG_BW_CONFIG_11: case IEEE80211_EDMG_BW_CONFIG_15: if (max_contiguous < 4) return false; break; default: return false; } /* check bw_config against aggregated (non contiguous) edmg channels */ switch (chandef->edmg.bw_config) { case IEEE80211_EDMG_BW_CONFIG_4: case IEEE80211_EDMG_BW_CONFIG_5: case IEEE80211_EDMG_BW_CONFIG_6: case IEEE80211_EDMG_BW_CONFIG_7: break; case IEEE80211_EDMG_BW_CONFIG_8: case IEEE80211_EDMG_BW_CONFIG_9: case IEEE80211_EDMG_BW_CONFIG_10: case IEEE80211_EDMG_BW_CONFIG_11: if (num_of_enabled < 2) return false; break; case IEEE80211_EDMG_BW_CONFIG_12: case IEEE80211_EDMG_BW_CONFIG_13: case IEEE80211_EDMG_BW_CONFIG_14: case IEEE80211_EDMG_BW_CONFIG_15: if (num_of_enabled < 4 || max_contiguous < 2) return false; break; default: return false; } return true; } int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width) { int mhz; switch (chan_width) { case NL80211_CHAN_WIDTH_1: mhz = 1; break; case NL80211_CHAN_WIDTH_2: mhz = 2; break; case NL80211_CHAN_WIDTH_4: mhz = 4; break; case NL80211_CHAN_WIDTH_8: mhz = 8; break; case NL80211_CHAN_WIDTH_16: mhz = 16; break; case NL80211_CHAN_WIDTH_5: mhz = 5; break; case NL80211_CHAN_WIDTH_10: mhz = 10; break; case NL80211_CHAN_WIDTH_20: case NL80211_CHAN_WIDTH_20_NOHT: mhz = 20; break; case NL80211_CHAN_WIDTH_40: mhz = 40; break; case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_80: mhz = 80; break; case NL80211_CHAN_WIDTH_160: mhz = 160; break; case NL80211_CHAN_WIDTH_320: mhz = 320; break; default: WARN_ON_ONCE(1); return -1; } return mhz; } EXPORT_SYMBOL(nl80211_chan_width_to_mhz); static int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c) { return nl80211_chan_width_to_mhz(c->width); } bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef) { u32 control_freq, oper_freq; int oper_width, control_width; if (!chandef->chan) return false; if (chandef->freq1_offset >= 1000) return false; control_freq = chandef->chan->center_freq; switch (chandef->width) { case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: case NL80211_CHAN_WIDTH_20: case NL80211_CHAN_WIDTH_20_NOHT: if (ieee80211_chandef_to_khz(chandef) != ieee80211_channel_to_khz(chandef->chan)) return false; if (chandef->center_freq2) return false; break; case NL80211_CHAN_WIDTH_1: case NL80211_CHAN_WIDTH_2: case NL80211_CHAN_WIDTH_4: case NL80211_CHAN_WIDTH_8: case NL80211_CHAN_WIDTH_16: if (chandef->chan->band != NL80211_BAND_S1GHZ) return false; control_freq = ieee80211_channel_to_khz(chandef->chan); oper_freq = ieee80211_chandef_to_khz(chandef); control_width = nl80211_chan_width_to_mhz( ieee80211_s1g_channel_width( chandef->chan)); oper_width = cfg80211_chandef_get_width(chandef); if (oper_width < 0 || control_width < 0) return false; if (chandef->center_freq2) return false; if (control_freq + MHZ_TO_KHZ(control_width) / 2 > oper_freq + MHZ_TO_KHZ(oper_width) / 2) return false; if (control_freq - MHZ_TO_KHZ(control_width) / 2 < oper_freq - MHZ_TO_KHZ(oper_width) / 2) return false; break; case NL80211_CHAN_WIDTH_80P80: if (!chandef->center_freq2) return false; /* adjacent is not allowed -- that's a 160 MHz channel */ if (chandef->center_freq1 - chandef->center_freq2 == 80 || chandef->center_freq2 - chandef->center_freq1 == 80) return false; break; default: if (chandef->center_freq2) return false; break; } switch (chandef->width) { case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: case NL80211_CHAN_WIDTH_20: case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_1: case NL80211_CHAN_WIDTH_2: case NL80211_CHAN_WIDTH_4: case NL80211_CHAN_WIDTH_8: case NL80211_CHAN_WIDTH_16: /* all checked above */ break; case NL80211_CHAN_WIDTH_320: if (chandef->center_freq1 == control_freq + 150 || chandef->center_freq1 == control_freq + 130 || chandef->center_freq1 == control_freq + 110 || chandef->center_freq1 == control_freq + 90 || chandef->center_freq1 == control_freq - 90 || chandef->center_freq1 == control_freq - 110 || chandef->center_freq1 == control_freq - 130 || chandef->center_freq1 == control_freq - 150) break; fallthrough; case NL80211_CHAN_WIDTH_160: if (chandef->center_freq1 == control_freq + 70 || chandef->center_freq1 == control_freq + 50 || chandef->center_freq1 == control_freq - 50 || chandef->center_freq1 == control_freq - 70) break; fallthrough; case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_80: if (chandef->center_freq1 == control_freq + 30 || chandef->center_freq1 == control_freq - 30) break; fallthrough; case NL80211_CHAN_WIDTH_40: if (chandef->center_freq1 == control_freq + 10 || chandef->center_freq1 == control_freq - 10) break; fallthrough; default: return false; } /* channel 14 is only for IEEE 802.11b */ if (chandef->center_freq1 == 2484 && chandef->width != NL80211_CHAN_WIDTH_20_NOHT) return false; if (cfg80211_chandef_is_edmg(chandef) && !cfg80211_edmg_chandef_valid(chandef)) return false; return valid_puncturing_bitmap(chandef); } EXPORT_SYMBOL(cfg80211_chandef_valid); int cfg80211_chandef_primary(const struct cfg80211_chan_def *c, enum nl80211_chan_width primary_chan_width, u16 *punctured) { int pri_width = nl80211_chan_width_to_mhz(primary_chan_width); int width = cfg80211_chandef_get_width(c); u32 control = c->chan->center_freq; u32 center = c->center_freq1; u16 _punct = 0; if (WARN_ON_ONCE(pri_width < 0 || width < 0)) return -1; /* not intended to be called this way, can't determine */ if (WARN_ON_ONCE(pri_width > width)) return -1; if (!punctured) punctured = &_punct; *punctured = c->punctured; while (width > pri_width) { unsigned int bits_to_drop = width / 20 / 2; if (control > center) { center += width / 4; *punctured >>= bits_to_drop; } else { center -= width / 4; *punctured &= (1 << bits_to_drop) - 1; } width /= 2; } return center; } EXPORT_SYMBOL(cfg80211_chandef_primary); static const struct cfg80211_chan_def * check_chandef_primary_compat(const struct cfg80211_chan_def *c1, const struct cfg80211_chan_def *c2, enum nl80211_chan_width primary_chan_width) { u16 punct_c1 = 0, punct_c2 = 0; /* check primary is compatible -> error if not */ if (cfg80211_chandef_primary(c1, primary_chan_width, &punct_c1) != cfg80211_chandef_primary(c2, primary_chan_width, &punct_c2)) return ERR_PTR(-EINVAL); if (punct_c1 != punct_c2) return ERR_PTR(-EINVAL); /* assumes c1 is smaller width, if that was just checked -> done */ if (c1->width == primary_chan_width) return c2; /* otherwise continue checking the next width */ return NULL; } static const struct cfg80211_chan_def * _cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1, const struct cfg80211_chan_def *c2) { const struct cfg80211_chan_def *ret; /* If they are identical, return */ if (cfg80211_chandef_identical(c1, c2)) return c2; /* otherwise, must have same control channel */ if (c1->chan != c2->chan) return NULL; /* * If they have the same width, but aren't identical, * then they can't be compatible. */ if (c1->width == c2->width) return NULL; /* * can't be compatible if one of them is 5/10 MHz or S1G * but they don't have the same width. */ #define NARROW_OR_S1G(width) ((width) == NL80211_CHAN_WIDTH_5 || \ (width) == NL80211_CHAN_WIDTH_10 || \ (width) == NL80211_CHAN_WIDTH_1 || \ (width) == NL80211_CHAN_WIDTH_2 || \ (width) == NL80211_CHAN_WIDTH_4 || \ (width) == NL80211_CHAN_WIDTH_8 || \ (width) == NL80211_CHAN_WIDTH_16) if (NARROW_OR_S1G(c1->width) || NARROW_OR_S1G(c2->width)) return NULL; /* * Make sure that c1 is always the narrower one, so that later * we either return NULL or c2 and don't have to check both * directions. */ if (c1->width > c2->width) swap(c1, c2); /* * No further checks needed if the "narrower" one is only 20 MHz. * Here "narrower" includes being a 20 MHz non-HT channel vs. a * 20 MHz HT (or later) one. */ if (c1->width <= NL80211_CHAN_WIDTH_20) return c2; ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_40); if (ret) return ret; ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_80); if (ret) return ret; /* * If c1 is 80+80, then c2 is 160 or higher, but that cannot * match. If c2 was also 80+80 it was already either accepted * or rejected above (identical or not, respectively.) */ if (c1->width == NL80211_CHAN_WIDTH_80P80) return NULL; ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_160); if (ret) return ret; /* * Getting here would mean they're both wider than 160, have the * same primary 160, but are not identical - this cannot happen * since they must be 320 (no wider chandefs exist, at least yet.) */ WARN_ON_ONCE(1); return NULL; } const struct cfg80211_chan_def * cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1, const struct cfg80211_chan_def *c2) { const struct cfg80211_chan_def *ret; ret = _cfg80211_chandef_compatible(c1, c2); if (IS_ERR(ret)) return NULL; return ret; } EXPORT_SYMBOL(cfg80211_chandef_compatible); static void cfg80211_set_chans_dfs_state(struct wiphy *wiphy, u32 center_freq, u32 bandwidth, enum nl80211_dfs_state dfs_state) { struct ieee80211_channel *c; u32 freq; for (freq = center_freq - bandwidth/2 + 10; freq <= center_freq + bandwidth/2 - 10; freq += 20) { c = ieee80211_get_channel(wiphy, freq); if (!c || !(c->flags & IEEE80211_CHAN_RADAR)) continue; c->dfs_state = dfs_state; c->dfs_state_entered = jiffies; } } void cfg80211_set_dfs_state(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef, enum nl80211_dfs_state dfs_state) { int width; if (WARN_ON(!cfg80211_chandef_valid(chandef))) return; width = cfg80211_chandef_get_width(chandef); if (width < 0) return; cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq1, width, dfs_state); if (!chandef->center_freq2) return; cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq2, width, dfs_state); } static u32 cfg80211_get_start_freq(u32 center_freq, u32 bandwidth) { u32 start_freq; bandwidth = MHZ_TO_KHZ(bandwidth); if (bandwidth <= MHZ_TO_KHZ(20)) start_freq = center_freq; else start_freq = center_freq - bandwidth / 2 + MHZ_TO_KHZ(10); return start_freq; } static u32 cfg80211_get_end_freq(u32 center_freq, u32 bandwidth) { u32 end_freq; bandwidth = MHZ_TO_KHZ(bandwidth); if (bandwidth <= MHZ_TO_KHZ(20)) end_freq = center_freq; else end_freq = center_freq + bandwidth / 2 - MHZ_TO_KHZ(10); return end_freq; } static bool cfg80211_dfs_permissive_check_wdev(struct cfg80211_registered_device *rdev, enum nl80211_iftype iftype, struct wireless_dev *wdev, struct ieee80211_channel *chan) { unsigned int link_id; for_each_valid_link(wdev, link_id) { struct ieee80211_channel *other_chan = NULL; struct cfg80211_chan_def chandef = {}; int ret; /* In order to avoid daisy chaining only allow BSS STA */ if (wdev->iftype != NL80211_IFTYPE_STATION || !wdev->links[link_id].client.current_bss) continue; other_chan = wdev->links[link_id].client.current_bss->pub.channel; if (!other_chan) continue; if (chan == other_chan) return true; /* continue if we can't get the channel */ ret = rdev_get_channel(rdev, wdev, link_id, &chandef); if (ret) continue; if (cfg80211_is_sub_chan(&chandef, chan, false)) return true; } return false; } /* * Check if P2P GO is allowed to operate on a DFS channel */ static bool cfg80211_dfs_permissive_chan(struct wiphy *wiphy, enum nl80211_iftype iftype, struct ieee80211_channel *chan) { struct wireless_dev *wdev; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); lockdep_assert_held(&rdev->wiphy.mtx); if (!wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_DFS_CONCURRENT) || !(chan->flags & IEEE80211_CHAN_DFS_CONCURRENT)) return false; /* only valid for P2P GO */ if (iftype != NL80211_IFTYPE_P2P_GO) return false; /* * Allow only if there's a concurrent BSS */ list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { bool ret = cfg80211_dfs_permissive_check_wdev(rdev, iftype, wdev, chan); if (ret) return ret; } return false; } static int cfg80211_get_chans_dfs_required(struct wiphy *wiphy, u32 center_freq, u32 bandwidth, enum nl80211_iftype iftype) { struct ieee80211_channel *c; u32 freq, start_freq, end_freq; start_freq = cfg80211_get_start_freq(center_freq, bandwidth); end_freq = cfg80211_get_end_freq(center_freq, bandwidth); for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { c = ieee80211_get_channel_khz(wiphy, freq); if (!c) return -EINVAL; if (c->flags & IEEE80211_CHAN_RADAR && !cfg80211_dfs_permissive_chan(wiphy, iftype, c)) return 1; } return 0; } int cfg80211_chandef_dfs_required(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef, enum nl80211_iftype iftype) { int width; int ret; if (WARN_ON(!cfg80211_chandef_valid(chandef))) return -EINVAL; switch (iftype) { case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_MESH_POINT: width = cfg80211_chandef_get_width(chandef); if (width < 0) return -EINVAL; ret = cfg80211_get_chans_dfs_required(wiphy, ieee80211_chandef_to_khz(chandef), width, iftype); if (ret < 0) return ret; else if (ret > 0) return BIT(chandef->width); if (!chandef->center_freq2) return 0; ret = cfg80211_get_chans_dfs_required(wiphy, MHZ_TO_KHZ(chandef->center_freq2), width, iftype); if (ret < 0) return ret; else if (ret > 0) return BIT(chandef->width); break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_OCB: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_P2P_DEVICE: case NL80211_IFTYPE_NAN: break; case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_UNSPECIFIED: case NUM_NL80211_IFTYPES: WARN_ON(1); } return 0; } EXPORT_SYMBOL(cfg80211_chandef_dfs_required); static int cfg80211_get_chans_dfs_usable(struct wiphy *wiphy, u32 center_freq, u32 bandwidth) { struct ieee80211_channel *c; u32 freq, start_freq, end_freq; int count = 0; start_freq = cfg80211_get_start_freq(center_freq, bandwidth); end_freq = cfg80211_get_end_freq(center_freq, bandwidth); /* * Check entire range of channels for the bandwidth. * Check all channels are DFS channels (DFS_USABLE or * DFS_AVAILABLE). Return number of usable channels * (require CAC). Allow DFS and non-DFS channel mix. */ for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { c = ieee80211_get_channel_khz(wiphy, freq); if (!c) return -EINVAL; if (c->flags & IEEE80211_CHAN_DISABLED) return -EINVAL; if (c->flags & IEEE80211_CHAN_RADAR) { if (c->dfs_state == NL80211_DFS_UNAVAILABLE) return -EINVAL; if (c->dfs_state == NL80211_DFS_USABLE) count++; } } return count; } bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef) { int width; int r1, r2 = 0; if (WARN_ON(!cfg80211_chandef_valid(chandef))) return false; width = cfg80211_chandef_get_width(chandef); if (width < 0) return false; r1 = cfg80211_get_chans_dfs_usable(wiphy, MHZ_TO_KHZ(chandef->center_freq1), width); if (r1 < 0) return false; switch (chandef->width) { case NL80211_CHAN_WIDTH_80P80: WARN_ON(!chandef->center_freq2); r2 = cfg80211_get_chans_dfs_usable(wiphy, MHZ_TO_KHZ(chandef->center_freq2), width); if (r2 < 0) return false; break; default: WARN_ON(chandef->center_freq2); break; } return (r1 + r2 > 0); } EXPORT_SYMBOL(cfg80211_chandef_dfs_usable); /* * Checks if center frequency of chan falls with in the bandwidth * range of chandef. */ bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef, struct ieee80211_channel *chan, bool primary_only) { int width; u32 freq; if (!chandef->chan) return false; if (chandef->chan->center_freq == chan->center_freq) return true; if (primary_only) return false; width = cfg80211_chandef_get_width(chandef); if (width <= 20) return false; for (freq = chandef->center_freq1 - width / 2 + 10; freq <= chandef->center_freq1 + width / 2 - 10; freq += 20) { if (chan->center_freq == freq) return true; } if (!chandef->center_freq2) return false; for (freq = chandef->center_freq2 - width / 2 + 10; freq <= chandef->center_freq2 + width / 2 - 10; freq += 20) { if (chan->center_freq == freq) return true; } return false; } bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev) { unsigned int link; lockdep_assert_wiphy(wdev->wiphy); switch (wdev->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: for_each_valid_link(wdev, link) { if (wdev->links[link].ap.beacon_interval) return true; } break; case NL80211_IFTYPE_ADHOC: if (wdev->u.ibss.ssid_len) return true; break; case NL80211_IFTYPE_MESH_POINT: if (wdev->u.mesh.id_len) return true; break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_OCB: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_P2P_DEVICE: /* Can NAN type be considered as beaconing interface? */ case NL80211_IFTYPE_NAN: break; case NL80211_IFTYPE_UNSPECIFIED: case NL80211_IFTYPE_WDS: case NUM_NL80211_IFTYPES: WARN_ON(1); } return false; } bool cfg80211_wdev_on_sub_chan(struct wireless_dev *wdev, struct ieee80211_channel *chan, bool primary_only) { unsigned int link; switch (wdev->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: for_each_valid_link(wdev, link) { if (cfg80211_is_sub_chan(&wdev->links[link].ap.chandef, chan, primary_only)) return true; } break; case NL80211_IFTYPE_ADHOC: return cfg80211_is_sub_chan(&wdev->u.ibss.chandef, chan, primary_only); case NL80211_IFTYPE_MESH_POINT: return cfg80211_is_sub_chan(&wdev->u.mesh.chandef, chan, primary_only); default: break; } return false; } static bool cfg80211_is_wiphy_oper_chan(struct wiphy *wiphy, struct ieee80211_channel *chan) { struct wireless_dev *wdev; lockdep_assert_wiphy(wiphy); list_for_each_entry(wdev, &wiphy->wdev_list, list) { if (!cfg80211_beaconing_iface_active(wdev)) continue; if (cfg80211_wdev_on_sub_chan(wdev, chan, false)) return true; } return false; } static bool cfg80211_offchan_chain_is_active(struct cfg80211_registered_device *rdev, struct ieee80211_channel *channel) { if (!rdev->background_radar_wdev) return false; if (!cfg80211_chandef_valid(&rdev->background_radar_chandef)) return false; return cfg80211_is_sub_chan(&rdev->background_radar_chandef, channel, false); } bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy, struct ieee80211_channel *chan) { struct cfg80211_registered_device *rdev; ASSERT_RTNL(); if (!(chan->flags & IEEE80211_CHAN_RADAR)) return false; for_each_rdev(rdev) { bool found; if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) continue; wiphy_lock(&rdev->wiphy); found = cfg80211_is_wiphy_oper_chan(&rdev->wiphy, chan) || cfg80211_offchan_chain_is_active(rdev, chan); wiphy_unlock(&rdev->wiphy); if (found) return true; } return false; } static bool cfg80211_get_chans_dfs_available(struct wiphy *wiphy, u32 center_freq, u32 bandwidth) { struct ieee80211_channel *c; u32 freq, start_freq, end_freq; bool dfs_offload; dfs_offload = wiphy_ext_feature_isset(wiphy, NL80211_EXT_FEATURE_DFS_OFFLOAD); start_freq = cfg80211_get_start_freq(center_freq, bandwidth); end_freq = cfg80211_get_end_freq(center_freq, bandwidth); /* * Check entire range of channels for the bandwidth. * If any channel in between is disabled or has not * had gone through CAC return false */ for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { c = ieee80211_get_channel_khz(wiphy, freq); if (!c) return false; if (c->flags & IEEE80211_CHAN_DISABLED) return false; if ((c->flags & IEEE80211_CHAN_RADAR) && (c->dfs_state != NL80211_DFS_AVAILABLE) && !(c->dfs_state == NL80211_DFS_USABLE && dfs_offload)) return false; } return true; } static bool cfg80211_chandef_dfs_available(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef) { int width; int r; if (WARN_ON(!cfg80211_chandef_valid(chandef))) return false; width = cfg80211_chandef_get_width(chandef); if (width < 0) return false; r = cfg80211_get_chans_dfs_available(wiphy, MHZ_TO_KHZ(chandef->center_freq1), width); /* If any of channels unavailable for cf1 just return */ if (!r) return r; switch (chandef->width) { case NL80211_CHAN_WIDTH_80P80: WARN_ON(!chandef->center_freq2); r = cfg80211_get_chans_dfs_available(wiphy, MHZ_TO_KHZ(chandef->center_freq2), width); break; default: WARN_ON(chandef->center_freq2); break; } return r; } static unsigned int cfg80211_get_chans_dfs_cac_time(struct wiphy *wiphy, u32 center_freq, u32 bandwidth) { struct ieee80211_channel *c; u32 start_freq, end_freq, freq; unsigned int dfs_cac_ms = 0; start_freq = cfg80211_get_start_freq(center_freq, bandwidth); end_freq = cfg80211_get_end_freq(center_freq, bandwidth); for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { c = ieee80211_get_channel_khz(wiphy, freq); if (!c) return 0; if (c->flags & IEEE80211_CHAN_DISABLED) return 0; if (!(c->flags & IEEE80211_CHAN_RADAR)) continue; if (c->dfs_cac_ms > dfs_cac_ms) dfs_cac_ms = c->dfs_cac_ms; } return dfs_cac_ms; } unsigned int cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef) { int width; unsigned int t1 = 0, t2 = 0; if (WARN_ON(!cfg80211_chandef_valid(chandef))) return 0; width = cfg80211_chandef_get_width(chandef); if (width < 0) return 0; t1 = cfg80211_get_chans_dfs_cac_time(wiphy, MHZ_TO_KHZ(chandef->center_freq1), width); if (!chandef->center_freq2) return t1; t2 = cfg80211_get_chans_dfs_cac_time(wiphy, MHZ_TO_KHZ(chandef->center_freq2), width); return max(t1, t2); } EXPORT_SYMBOL(cfg80211_chandef_dfs_cac_time); static bool cfg80211_secondary_chans_ok(struct wiphy *wiphy, u32 center_freq, u32 bandwidth, u32 prohibited_flags, bool monitor) { struct ieee80211_channel *c; u32 freq, start_freq, end_freq; start_freq = cfg80211_get_start_freq(center_freq, bandwidth); end_freq = cfg80211_get_end_freq(center_freq, bandwidth); for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { c = ieee80211_get_channel_khz(wiphy, freq); if (!c) return false; if (monitor && c->flags & IEEE80211_CHAN_CAN_MONITOR) continue; if (c->flags & prohibited_flags) return false; } return true; } /* check if the operating channels are valid and supported */ static bool cfg80211_edmg_usable(struct wiphy *wiphy, u8 edmg_channels, enum ieee80211_edmg_bw_config edmg_bw_config, int primary_channel, struct ieee80211_edmg *edmg_cap) { struct ieee80211_channel *chan; int i, freq; int channels_counter = 0; if (!edmg_channels && !edmg_bw_config) return true; if ((!edmg_channels && edmg_bw_config) || (edmg_channels && !edmg_bw_config)) return false; if (!(edmg_channels & BIT(primary_channel - 1))) return false; /* 60GHz channels 1..6 */ for (i = 0; i < 6; i++) { if (!(edmg_channels & BIT(i))) continue; if (!(edmg_cap->channels & BIT(i))) return false; channels_counter++; freq = ieee80211_channel_to_frequency(i + 1, NL80211_BAND_60GHZ); chan = ieee80211_get_channel(wiphy, freq); if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) return false; } /* IEEE802.11 allows max 4 channels */ if (channels_counter > 4) return false; /* check bw_config is a subset of what driver supports * (see IEEE P802.11ay/D4.0 section 9.4.2.251, Table 13) */ if ((edmg_bw_config % 4) > (edmg_cap->bw_config % 4)) return false; if (edmg_bw_config > edmg_cap->bw_config) return false; return true; } bool _cfg80211_chandef_usable(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef, u32 prohibited_flags, bool monitor) { struct ieee80211_sta_ht_cap *ht_cap; struct ieee80211_sta_vht_cap *vht_cap; struct ieee80211_edmg *edmg_cap; u32 width, control_freq, cap; bool ext_nss_cap, support_80_80 = false, support_320 = false; const struct ieee80211_sband_iftype_data *iftd; struct ieee80211_supported_band *sband; int i; if (WARN_ON(!cfg80211_chandef_valid(chandef))) return false; ht_cap = &wiphy->bands[chandef->chan->band]->ht_cap; vht_cap = &wiphy->bands[chandef->chan->band]->vht_cap; edmg_cap = &wiphy->bands[chandef->chan->band]->edmg_cap; ext_nss_cap = __le16_to_cpu(vht_cap->vht_mcs.tx_highest) & IEEE80211_VHT_EXT_NSS_BW_CAPABLE; if (edmg_cap->channels && !cfg80211_edmg_usable(wiphy, chandef->edmg.channels, chandef->edmg.bw_config, chandef->chan->hw_value, edmg_cap)) return false; control_freq = chandef->chan->center_freq; switch (chandef->width) { case NL80211_CHAN_WIDTH_1: width = 1; break; case NL80211_CHAN_WIDTH_2: width = 2; break; case NL80211_CHAN_WIDTH_4: width = 4; break; case NL80211_CHAN_WIDTH_8: width = 8; break; case NL80211_CHAN_WIDTH_16: width = 16; break; case NL80211_CHAN_WIDTH_5: width = 5; break; case NL80211_CHAN_WIDTH_10: prohibited_flags |= IEEE80211_CHAN_NO_10MHZ; width = 10; break; case NL80211_CHAN_WIDTH_20: if (!ht_cap->ht_supported && chandef->chan->band != NL80211_BAND_6GHZ) return false; fallthrough; case NL80211_CHAN_WIDTH_20_NOHT: prohibited_flags |= IEEE80211_CHAN_NO_20MHZ; width = 20; break; case NL80211_CHAN_WIDTH_40: width = 40; if (chandef->chan->band == NL80211_BAND_6GHZ) break; if (!ht_cap->ht_supported) return false; if (!(ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) || ht_cap->cap & IEEE80211_HT_CAP_40MHZ_INTOLERANT) return false; if (chandef->center_freq1 < control_freq && chandef->chan->flags & IEEE80211_CHAN_NO_HT40MINUS) return false; if (chandef->center_freq1 > control_freq && chandef->chan->flags & IEEE80211_CHAN_NO_HT40PLUS) return false; break; case NL80211_CHAN_WIDTH_80P80: cap = vht_cap->cap; support_80_80 = (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || (ext_nss_cap && u32_get_bits(cap, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) > 1); if (chandef->chan->band != NL80211_BAND_6GHZ && !support_80_80) return false; fallthrough; case NL80211_CHAN_WIDTH_80: prohibited_flags |= IEEE80211_CHAN_NO_80MHZ; width = 80; if (chandef->chan->band == NL80211_BAND_6GHZ) break; if (!vht_cap->vht_supported) return false; break; case NL80211_CHAN_WIDTH_160: prohibited_flags |= IEEE80211_CHAN_NO_160MHZ; width = 160; if (chandef->chan->band == NL80211_BAND_6GHZ) break; if (!vht_cap->vht_supported) return false; cap = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK; if (cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ && !(ext_nss_cap && (vht_cap->cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK))) return false; break; case NL80211_CHAN_WIDTH_320: prohibited_flags |= IEEE80211_CHAN_NO_320MHZ; width = 320; if (chandef->chan->band != NL80211_BAND_6GHZ) return false; sband = wiphy->bands[NL80211_BAND_6GHZ]; if (!sband) return false; for_each_sband_iftype_data(sband, i, iftd) { if (!iftd->eht_cap.has_eht) continue; if (iftd->eht_cap.eht_cap_elem.phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) { support_320 = true; break; } } if (!support_320) return false; break; default: WARN_ON_ONCE(1); return false; } /* * TODO: What if there are only certain 80/160/80+80 MHz channels * allowed by the driver, or only certain combinations? * For 40 MHz the driver can set the NO_HT40 flags, but for * 80/160 MHz and in particular 80+80 MHz this isn't really * feasible and we only have NO_80MHZ/NO_160MHZ so far but * no way to cover 80+80 MHz or more complex restrictions. * Note that such restrictions also need to be advertised to * userspace, for example for P2P channel selection. */ if (width > 20) prohibited_flags |= IEEE80211_CHAN_NO_OFDM; /* 5 and 10 MHz are only defined for the OFDM PHY */ if (width < 20) prohibited_flags |= IEEE80211_CHAN_NO_OFDM; if (!cfg80211_secondary_chans_ok(wiphy, ieee80211_chandef_to_khz(chandef), width, prohibited_flags, monitor)) return false; if (!chandef->center_freq2) return true; return cfg80211_secondary_chans_ok(wiphy, MHZ_TO_KHZ(chandef->center_freq2), width, prohibited_flags, monitor); } bool cfg80211_chandef_usable(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef, u32 prohibited_flags) { return _cfg80211_chandef_usable(wiphy, chandef, prohibited_flags, false); } EXPORT_SYMBOL(cfg80211_chandef_usable); static bool cfg80211_ir_permissive_check_wdev(enum nl80211_iftype iftype, struct wireless_dev *wdev, struct ieee80211_channel *chan) { struct ieee80211_channel *other_chan = NULL; unsigned int link_id; int r1, r2; for_each_valid_link(wdev, link_id) { if (wdev->iftype == NL80211_IFTYPE_STATION && wdev->links[link_id].client.current_bss) other_chan = wdev->links[link_id].client.current_bss->pub.channel; /* * If a GO already operates on the same GO_CONCURRENT channel, * this one (maybe the same one) can beacon as well. We allow * the operation even if the station we relied on with * GO_CONCURRENT is disconnected now. But then we must make sure * we're not outdoor on an indoor-only channel. */ if (iftype == NL80211_IFTYPE_P2P_GO && wdev->iftype == NL80211_IFTYPE_P2P_GO && wdev->links[link_id].ap.beacon_interval && !(chan->flags & IEEE80211_CHAN_INDOOR_ONLY)) other_chan = wdev->links[link_id].ap.chandef.chan; if (!other_chan) continue; if (chan == other_chan) return true; if (chan->band != NL80211_BAND_5GHZ && chan->band != NL80211_BAND_6GHZ) continue; r1 = cfg80211_get_unii(chan->center_freq); r2 = cfg80211_get_unii(other_chan->center_freq); if (r1 != -EINVAL && r1 == r2) { /* * At some locations channels 149-165 are considered a * bundle, but at other locations, e.g., Indonesia, * channels 149-161 are considered a bundle while * channel 165 is left out and considered to be in a * different bundle. Thus, in case that there is a * station interface connected to an AP on channel 165, * it is assumed that channels 149-161 are allowed for * GO operations. However, having a station interface * connected to an AP on channels 149-161, does not * allow GO operation on channel 165. */ if (chan->center_freq == 5825 && other_chan->center_freq != 5825) continue; return true; } } return false; } /* * Check if the channel can be used under permissive conditions mandated by * some regulatory bodies, i.e., the channel is marked with * IEEE80211_CHAN_IR_CONCURRENT and there is an additional station interface * associated to an AP on the same channel or on the same UNII band * (assuming that the AP is an authorized master). * In addition allow operation on a channel on which indoor operation is * allowed, iff we are currently operating in an indoor environment. */ static bool cfg80211_ir_permissive_chan(struct wiphy *wiphy, enum nl80211_iftype iftype, struct ieee80211_channel *chan) { struct wireless_dev *wdev; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); lockdep_assert_held(&rdev->wiphy.mtx); if (!IS_ENABLED(CONFIG_CFG80211_REG_RELAX_NO_IR) || !(wiphy->regulatory_flags & REGULATORY_ENABLE_RELAX_NO_IR)) return false; /* only valid for GO and TDLS off-channel (station/p2p-CL) */ if (iftype != NL80211_IFTYPE_P2P_GO && iftype != NL80211_IFTYPE_STATION && iftype != NL80211_IFTYPE_P2P_CLIENT) return false; if (regulatory_indoor_allowed() && (chan->flags & IEEE80211_CHAN_INDOOR_ONLY)) return true; if (!(chan->flags & IEEE80211_CHAN_IR_CONCURRENT)) return false; /* * Generally, it is possible to rely on another device/driver to allow * the IR concurrent relaxation, however, since the device can further * enforce the relaxation (by doing a similar verifications as this), * and thus fail the GO instantiation, consider only the interfaces of * the current registered device. */ list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { bool ret; ret = cfg80211_ir_permissive_check_wdev(iftype, wdev, chan); if (ret) return ret; } return false; } static bool _cfg80211_reg_can_beacon(struct wiphy *wiphy, struct cfg80211_chan_def *chandef, enum nl80211_iftype iftype, bool check_no_ir) { bool res; u32 prohibited_flags = IEEE80211_CHAN_DISABLED; int dfs_required; trace_cfg80211_reg_can_beacon(wiphy, chandef, iftype, check_no_ir); if (check_no_ir) prohibited_flags |= IEEE80211_CHAN_NO_IR; dfs_required = cfg80211_chandef_dfs_required(wiphy, chandef, iftype); if (dfs_required != 0) prohibited_flags |= IEEE80211_CHAN_RADAR; if (dfs_required > 0 && cfg80211_chandef_dfs_available(wiphy, chandef)) { /* We can skip IEEE80211_CHAN_NO_IR if chandef dfs available */ prohibited_flags = IEEE80211_CHAN_DISABLED; } res = cfg80211_chandef_usable(wiphy, chandef, prohibited_flags); trace_cfg80211_return_bool(res); return res; } bool cfg80211_reg_can_beacon(struct wiphy *wiphy, struct cfg80211_chan_def *chandef, enum nl80211_iftype iftype) { return _cfg80211_reg_can_beacon(wiphy, chandef, iftype, true); } EXPORT_SYMBOL(cfg80211_reg_can_beacon); bool cfg80211_reg_can_beacon_relax(struct wiphy *wiphy, struct cfg80211_chan_def *chandef, enum nl80211_iftype iftype) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); bool check_no_ir; lockdep_assert_held(&rdev->wiphy.mtx); /* * Under certain conditions suggested by some regulatory bodies a * GO/STA can IR on channels marked with IEEE80211_NO_IR. Set this flag * only if such relaxations are not enabled and the conditions are not * met. */ check_no_ir = !cfg80211_ir_permissive_chan(wiphy, iftype, chandef->chan); return _cfg80211_reg_can_beacon(wiphy, chandef, iftype, check_no_ir); } EXPORT_SYMBOL(cfg80211_reg_can_beacon_relax); int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev, struct cfg80211_chan_def *chandef) { if (!rdev->ops->set_monitor_channel) return -EOPNOTSUPP; if (!cfg80211_has_monitors_only(rdev)) return -EBUSY; return rdev_set_monitor_channel(rdev, chandef); } bool cfg80211_any_usable_channels(struct wiphy *wiphy, unsigned long sband_mask, u32 prohibited_flags) { int idx; prohibited_flags |= IEEE80211_CHAN_DISABLED; for_each_set_bit(idx, &sband_mask, NUM_NL80211_BANDS) { struct ieee80211_supported_band *sband = wiphy->bands[idx]; int chanidx; if (!sband) continue; for (chanidx = 0; chanidx < sband->n_channels; chanidx++) { struct ieee80211_channel *chan; chan = &sband->channels[chanidx]; if (chan->flags & prohibited_flags) continue; return true; } } return false; } EXPORT_SYMBOL(cfg80211_any_usable_channels); struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev, unsigned int link_id) { lockdep_assert_wiphy(wdev->wiphy); WARN_ON(wdev->valid_links && !(wdev->valid_links & BIT(link_id))); WARN_ON(!wdev->valid_links && link_id > 0); switch (wdev->iftype) { case NL80211_IFTYPE_MESH_POINT: return &wdev->u.mesh.chandef; case NL80211_IFTYPE_ADHOC: return &wdev->u.ibss.chandef; case NL80211_IFTYPE_OCB: return &wdev->u.ocb.chandef; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: return &wdev->links[link_id].ap.chandef; default: return NULL; } } EXPORT_SYMBOL(wdev_chandef);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1