Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jack Brennen | 797 | 99.62% | 1 | 33.33% |
Kai Germaschewski | 3 | 0.38% | 2 | 66.67% |
Total | 800 | 3 |
// SPDX-License-Identifier: GPL-2.0 /* * Helper functions for finding the symbol in an ELF which is "nearest" * to a given address. */ #include "modpost.h" struct syminfo { unsigned int symbol_index; unsigned int section_index; Elf_Addr addr; }; /* * Container used to hold an entire binary search table. * Entries in table are ascending, sorted first by section_index, * then by addr, and last by symbol_index. The sorting by * symbol_index is used to ensure predictable behavior when * multiple symbols are present with the same address; all * symbols past the first are effectively ignored, by eliding * them in symsearch_fixup(). */ struct symsearch { unsigned int table_size; struct syminfo table[]; }; static int syminfo_compare(const void *s1, const void *s2) { const struct syminfo *sym1 = s1; const struct syminfo *sym2 = s2; if (sym1->section_index > sym2->section_index) return 1; if (sym1->section_index < sym2->section_index) return -1; if (sym1->addr > sym2->addr) return 1; if (sym1->addr < sym2->addr) return -1; if (sym1->symbol_index > sym2->symbol_index) return 1; if (sym1->symbol_index < sym2->symbol_index) return -1; return 0; } static unsigned int symbol_count(struct elf_info *elf) { unsigned int result = 0; for (Elf_Sym *sym = elf->symtab_start; sym < elf->symtab_stop; sym++) { if (is_valid_name(elf, sym)) result++; } return result; } /* * Populate the search array that we just allocated. * Be slightly paranoid here. The ELF file is mmap'd and could * conceivably change between symbol_count() and symsearch_populate(). * If we notice any difference, bail out rather than potentially * propagating errors or crashing. */ static void symsearch_populate(struct elf_info *elf, struct syminfo *table, unsigned int table_size) { bool is_arm = (elf->hdr->e_machine == EM_ARM); for (Elf_Sym *sym = elf->symtab_start; sym < elf->symtab_stop; sym++) { if (is_valid_name(elf, sym)) { if (table_size-- == 0) fatal("%s: size mismatch\n", __func__); table->symbol_index = sym - elf->symtab_start; table->section_index = get_secindex(elf, sym); table->addr = sym->st_value; /* * For ARM Thumb instruction, the bit 0 of st_value is * set if the symbol is STT_FUNC type. Mask it to get * the address. */ if (is_arm && ELF_ST_TYPE(sym->st_info) == STT_FUNC) table->addr &= ~1; table++; } } if (table_size != 0) fatal("%s: size mismatch\n", __func__); } /* * Do any fixups on the table after sorting. * For now, this just finds adjacent entries which have * the same section_index and addr, and it propagates * the first symbol_index over the subsequent entries, * so that only one symbol_index is seen for any given * section_index and addr. This ensures that whether * we're looking at an address from "above" or "below" * that we see the same symbol_index. * This does leave some duplicate entries in the table; * in practice, these are a small fraction of the * total number of entries, and they are harmless to * the binary search algorithm other than a few occasional * unnecessary comparisons. */ static void symsearch_fixup(struct syminfo *table, unsigned int table_size) { /* Don't look at index 0, it will never change. */ for (unsigned int i = 1; i < table_size; i++) { if (table[i].addr == table[i - 1].addr && table[i].section_index == table[i - 1].section_index) { table[i].symbol_index = table[i - 1].symbol_index; } } } void symsearch_init(struct elf_info *elf) { unsigned int table_size = symbol_count(elf); elf->symsearch = NOFAIL(malloc(sizeof(struct symsearch) + sizeof(struct syminfo) * table_size)); elf->symsearch->table_size = table_size; symsearch_populate(elf, elf->symsearch->table, table_size); qsort(elf->symsearch->table, table_size, sizeof(struct syminfo), syminfo_compare); symsearch_fixup(elf->symsearch->table, table_size); } void symsearch_finish(struct elf_info *elf) { free(elf->symsearch); elf->symsearch = NULL; } /* * Find the syminfo which is in secndx and "nearest" to addr. * allow_negative: allow returning a symbol whose address is > addr. * min_distance: ignore symbols which are further away than this. * * Returns a pointer into the symbol table for success. * Returns NULL if no legal symbol is found within the requested range. */ Elf_Sym *symsearch_find_nearest(struct elf_info *elf, Elf_Addr addr, unsigned int secndx, bool allow_negative, Elf_Addr min_distance) { unsigned int hi = elf->symsearch->table_size; unsigned int lo = 0; struct syminfo *table = elf->symsearch->table; struct syminfo target; target.addr = addr; target.section_index = secndx; target.symbol_index = ~0; /* compares greater than any actual index */ while (hi > lo) { unsigned int mid = lo + (hi - lo) / 2; /* Avoids overflow */ if (syminfo_compare(&table[mid], &target) > 0) hi = mid; else lo = mid + 1; } /* * table[hi], if it exists, is the first entry in the array which * lies beyond target. table[hi - 1], if it exists, is the last * entry in the array which comes before target, including the * case where it perfectly matches the section and the address. * * Note -- if the address we're looking up falls perfectly * in the middle of two symbols, this is written to always * prefer the symbol with the lower address. */ Elf_Sym *result = NULL; if (allow_negative && hi < elf->symsearch->table_size && table[hi].section_index == secndx && table[hi].addr - addr <= min_distance) { min_distance = table[hi].addr - addr; result = &elf->symtab_start[table[hi].symbol_index]; } if (hi > 0 && table[hi - 1].section_index == secndx && addr - table[hi - 1].addr <= min_distance) { result = &elf->symtab_start[table[hi - 1].symbol_index]; } return result; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1