Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jaroslav Kysela | 4580 | 63.23% | 27 | 18.37% |
Takashi Iwai | 1003 | 13.85% | 28 | 19.05% |
Andy Shevchenko | 645 | 8.91% | 13 | 8.84% |
Ondrej Zary | 484 | 6.68% | 5 | 3.40% |
Linus Torvalds (pre-git) | 238 | 3.29% | 38 | 25.85% |
Hans Verkuil | 76 | 1.05% | 1 | 0.68% |
Dan Carpenter | 43 | 0.59% | 2 | 1.36% |
Ben Hutchings | 43 | 0.59% | 1 | 0.68% |
Zhouyang Jia | 26 | 0.36% | 1 | 0.68% |
Linus Torvalds | 20 | 0.28% | 6 | 4.08% |
Clemens Ladisch | 17 | 0.23% | 2 | 1.36% |
Harvey Harrison | 8 | 0.11% | 1 | 0.68% |
David S. Miller | 7 | 0.10% | 1 | 0.68% |
Rusty Russell | 6 | 0.08% | 2 | 1.36% |
Benoit Taine | 6 | 0.08% | 1 | 0.68% |
Sergey Vlasov | 5 | 0.07% | 1 | 0.68% |
Mauro Carvalho Chehab | 4 | 0.06% | 2 | 1.36% |
Tobias Klauser | 4 | 0.06% | 1 | 0.68% |
Hans de Goede | 4 | 0.06% | 1 | 0.68% |
Russell King | 3 | 0.04% | 1 | 0.68% |
Thomas Gleixner | 3 | 0.04% | 2 | 1.36% |
Julia Lawall | 3 | 0.04% | 2 | 1.36% |
Arnaldo Carvalho de Melo | 3 | 0.04% | 1 | 0.68% |
Adrian Bunk | 3 | 0.04% | 1 | 0.68% |
Auke-Jan H Kok | 3 | 0.04% | 1 | 0.68% |
Bhumika Goyal | 2 | 0.03% | 1 | 0.68% |
Pierre-Louis Bossart | 1 | 0.01% | 1 | 0.68% |
Lars-Peter Clausen | 1 | 0.01% | 1 | 0.68% |
Paul Gortmaker | 1 | 0.01% | 1 | 0.68% |
Joe Perches | 1 | 0.01% | 1 | 0.68% |
Total | 7243 | 147 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * The driver for the ForteMedia FM801 based soundcards * Copyright (c) by Jaroslav Kysela <perex@perex.cz> */ #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/module.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/tlv.h> #include <sound/ac97_codec.h> #include <sound/mpu401.h> #include <sound/opl3.h> #include <sound/initval.h> #ifdef CONFIG_SND_FM801_TEA575X_BOOL #include <media/drv-intf/tea575x.h> #endif MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>"); MODULE_DESCRIPTION("ForteMedia FM801"); MODULE_LICENSE("GPL"); static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ /* * Enable TEA575x tuner * 1 = MediaForte 256-PCS * 2 = MediaForte 256-PCP * 3 = MediaForte 64-PCR * 16 = setup tuner only (this is additional bit), i.e. SF64-PCR FM card * High 16-bits are video (radio) device number + 1 */ static int tea575x_tuner[SNDRV_CARDS]; static int radio_nr[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = -1}; module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for the FM801 soundcard."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for the FM801 soundcard."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable FM801 soundcard."); module_param_array(tea575x_tuner, int, NULL, 0444); MODULE_PARM_DESC(tea575x_tuner, "TEA575x tuner access method (0 = auto, 1 = SF256-PCS, 2=SF256-PCP, 3=SF64-PCR, 8=disable, +16=tuner-only)."); module_param_array(radio_nr, int, NULL, 0444); MODULE_PARM_DESC(radio_nr, "Radio device numbers"); #define TUNER_DISABLED (1<<3) #define TUNER_ONLY (1<<4) #define TUNER_TYPE_MASK (~TUNER_ONLY & 0xFFFF) /* * Direct registers */ #define fm801_writew(chip,reg,value) outw((value), chip->port + FM801_##reg) #define fm801_readw(chip,reg) inw(chip->port + FM801_##reg) #define fm801_writel(chip,reg,value) outl((value), chip->port + FM801_##reg) #define FM801_PCM_VOL 0x00 /* PCM Output Volume */ #define FM801_FM_VOL 0x02 /* FM Output Volume */ #define FM801_I2S_VOL 0x04 /* I2S Volume */ #define FM801_REC_SRC 0x06 /* Record Source */ #define FM801_PLY_CTRL 0x08 /* Playback Control */ #define FM801_PLY_COUNT 0x0a /* Playback Count */ #define FM801_PLY_BUF1 0x0c /* Playback Bufer I */ #define FM801_PLY_BUF2 0x10 /* Playback Buffer II */ #define FM801_CAP_CTRL 0x14 /* Capture Control */ #define FM801_CAP_COUNT 0x16 /* Capture Count */ #define FM801_CAP_BUF1 0x18 /* Capture Buffer I */ #define FM801_CAP_BUF2 0x1c /* Capture Buffer II */ #define FM801_CODEC_CTRL 0x22 /* Codec Control */ #define FM801_I2S_MODE 0x24 /* I2S Mode Control */ #define FM801_VOLUME 0x26 /* Volume Up/Down/Mute Status */ #define FM801_I2C_CTRL 0x29 /* I2C Control */ #define FM801_AC97_CMD 0x2a /* AC'97 Command */ #define FM801_AC97_DATA 0x2c /* AC'97 Data */ #define FM801_MPU401_DATA 0x30 /* MPU401 Data */ #define FM801_MPU401_CMD 0x31 /* MPU401 Command */ #define FM801_GPIO_CTRL 0x52 /* General Purpose I/O Control */ #define FM801_GEN_CTRL 0x54 /* General Control */ #define FM801_IRQ_MASK 0x56 /* Interrupt Mask */ #define FM801_IRQ_STATUS 0x5a /* Interrupt Status */ #define FM801_OPL3_BANK0 0x68 /* OPL3 Status Read / Bank 0 Write */ #define FM801_OPL3_DATA0 0x69 /* OPL3 Data 0 Write */ #define FM801_OPL3_BANK1 0x6a /* OPL3 Bank 1 Write */ #define FM801_OPL3_DATA1 0x6b /* OPL3 Bank 1 Write */ #define FM801_POWERDOWN 0x70 /* Blocks Power Down Control */ /* codec access */ #define FM801_AC97_READ (1<<7) /* read=1, write=0 */ #define FM801_AC97_VALID (1<<8) /* port valid=1 */ #define FM801_AC97_BUSY (1<<9) /* busy=1 */ #define FM801_AC97_ADDR_SHIFT 10 /* codec id (2bit) */ /* playback and record control register bits */ #define FM801_BUF1_LAST (1<<1) #define FM801_BUF2_LAST (1<<2) #define FM801_START (1<<5) #define FM801_PAUSE (1<<6) #define FM801_IMMED_STOP (1<<7) #define FM801_RATE_SHIFT 8 #define FM801_RATE_MASK (15 << FM801_RATE_SHIFT) #define FM801_CHANNELS_4 (1<<12) /* playback only */ #define FM801_CHANNELS_6 (2<<12) /* playback only */ #define FM801_CHANNELS_6MS (3<<12) /* playback only */ #define FM801_CHANNELS_MASK (3<<12) #define FM801_16BIT (1<<14) #define FM801_STEREO (1<<15) /* IRQ status bits */ #define FM801_IRQ_PLAYBACK (1<<8) #define FM801_IRQ_CAPTURE (1<<9) #define FM801_IRQ_VOLUME (1<<14) #define FM801_IRQ_MPU (1<<15) /* GPIO control register */ #define FM801_GPIO_GP0 (1<<0) /* read/write */ #define FM801_GPIO_GP1 (1<<1) #define FM801_GPIO_GP2 (1<<2) #define FM801_GPIO_GP3 (1<<3) #define FM801_GPIO_GP(x) (1<<(0+(x))) #define FM801_GPIO_GD0 (1<<8) /* directions: 1 = input, 0 = output*/ #define FM801_GPIO_GD1 (1<<9) #define FM801_GPIO_GD2 (1<<10) #define FM801_GPIO_GD3 (1<<11) #define FM801_GPIO_GD(x) (1<<(8+(x))) #define FM801_GPIO_GS0 (1<<12) /* function select: */ #define FM801_GPIO_GS1 (1<<13) /* 1 = GPIO */ #define FM801_GPIO_GS2 (1<<14) /* 0 = other (S/PDIF, VOL) */ #define FM801_GPIO_GS3 (1<<15) #define FM801_GPIO_GS(x) (1<<(12+(x))) /** * struct fm801 - describes FM801 chip * @dev: device for this chio * @irq: irq number * @port: I/O port number * @multichannel: multichannel support * @secondary: secondary codec * @secondary_addr: address of the secondary codec * @tea575x_tuner: tuner access method & flags * @ply_ctrl: playback control * @cap_ctrl: capture control * @ply_buffer: playback buffer * @ply_buf: playback buffer index * @ply_count: playback buffer count * @ply_size: playback buffer size * @ply_pos: playback position * @cap_buffer: capture buffer * @cap_buf: capture buffer index * @cap_count: capture buffer count * @cap_size: capture buffer size * @cap_pos: capture position * @ac97_bus: ac97 bus handle * @ac97: ac97 handle * @ac97_sec: ac97 secondary handle * @card: ALSA card * @pcm: PCM devices * @rmidi: rmidi device * @playback_substream: substream for playback * @capture_substream: substream for capture * @p_dma_size: playback DMA size * @c_dma_size: capture DMA size * @reg_lock: lock * @proc_entry: /proc entry * @v4l2_dev: v4l2 device * @tea: tea575a structure * @saved_regs: context saved during suspend */ struct fm801 { struct device *dev; int irq; unsigned long port; unsigned int multichannel: 1, secondary: 1; unsigned char secondary_addr; unsigned int tea575x_tuner; unsigned short ply_ctrl; unsigned short cap_ctrl; unsigned long ply_buffer; unsigned int ply_buf; unsigned int ply_count; unsigned int ply_size; unsigned int ply_pos; unsigned long cap_buffer; unsigned int cap_buf; unsigned int cap_count; unsigned int cap_size; unsigned int cap_pos; struct snd_ac97_bus *ac97_bus; struct snd_ac97 *ac97; struct snd_ac97 *ac97_sec; struct snd_card *card; struct snd_pcm *pcm; struct snd_rawmidi *rmidi; struct snd_pcm_substream *playback_substream; struct snd_pcm_substream *capture_substream; unsigned int p_dma_size; unsigned int c_dma_size; spinlock_t reg_lock; struct snd_info_entry *proc_entry; #ifdef CONFIG_SND_FM801_TEA575X_BOOL struct v4l2_device v4l2_dev; struct snd_tea575x tea; #endif u16 saved_regs[0x20]; }; /* * IO accessors */ static inline void fm801_iowrite16(struct fm801 *chip, unsigned short offset, u16 value) { outw(value, chip->port + offset); } static inline u16 fm801_ioread16(struct fm801 *chip, unsigned short offset) { return inw(chip->port + offset); } static const struct pci_device_id snd_fm801_ids[] = { { 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* FM801 */ { 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* Gallant Odyssey Sound 4 */ { 0, } }; MODULE_DEVICE_TABLE(pci, snd_fm801_ids); /* * common I/O routines */ static bool fm801_ac97_is_ready(struct fm801 *chip, unsigned int iterations) { unsigned int idx; for (idx = 0; idx < iterations; idx++) { if (!(fm801_readw(chip, AC97_CMD) & FM801_AC97_BUSY)) return true; udelay(10); } return false; } static bool fm801_ac97_is_valid(struct fm801 *chip, unsigned int iterations) { unsigned int idx; for (idx = 0; idx < iterations; idx++) { if (fm801_readw(chip, AC97_CMD) & FM801_AC97_VALID) return true; udelay(10); } return false; } static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg, unsigned short mask, unsigned short value) { int change; unsigned long flags; unsigned short old, new; spin_lock_irqsave(&chip->reg_lock, flags); old = fm801_ioread16(chip, reg); new = (old & ~mask) | value; change = old != new; if (change) fm801_iowrite16(chip, reg, new); spin_unlock_irqrestore(&chip->reg_lock, flags); return change; } static void snd_fm801_codec_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct fm801 *chip = ac97->private_data; /* * Wait until the codec interface is not ready.. */ if (!fm801_ac97_is_ready(chip, 100)) { dev_err(chip->card->dev, "AC'97 interface is busy (1)\n"); return; } /* write data and address */ fm801_writew(chip, AC97_DATA, val); fm801_writew(chip, AC97_CMD, reg | (ac97->addr << FM801_AC97_ADDR_SHIFT)); /* * Wait until the write command is not completed.. */ if (!fm801_ac97_is_ready(chip, 1000)) dev_err(chip->card->dev, "AC'97 interface #%d is busy (2)\n", ac97->num); } static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg) { struct fm801 *chip = ac97->private_data; /* * Wait until the codec interface is not ready.. */ if (!fm801_ac97_is_ready(chip, 100)) { dev_err(chip->card->dev, "AC'97 interface is busy (1)\n"); return 0; } /* read command */ fm801_writew(chip, AC97_CMD, reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ); if (!fm801_ac97_is_ready(chip, 100)) { dev_err(chip->card->dev, "AC'97 interface #%d is busy (2)\n", ac97->num); return 0; } if (!fm801_ac97_is_valid(chip, 1000)) { dev_err(chip->card->dev, "AC'97 interface #%d is not valid (2)\n", ac97->num); return 0; } return fm801_readw(chip, AC97_DATA); } static const unsigned int rates[] = { 5500, 8000, 9600, 11025, 16000, 19200, 22050, 32000, 38400, 44100, 48000 }; static const struct snd_pcm_hw_constraint_list hw_constraints_rates = { .count = ARRAY_SIZE(rates), .list = rates, .mask = 0, }; static const unsigned int channels[] = { 2, 4, 6 }; static const struct snd_pcm_hw_constraint_list hw_constraints_channels = { .count = ARRAY_SIZE(channels), .list = channels, .mask = 0, }; /* * Sample rate routines */ static unsigned short snd_fm801_rate_bits(unsigned int rate) { unsigned int idx; for (idx = 0; idx < ARRAY_SIZE(rates); idx++) if (rates[idx] == rate) return idx; snd_BUG(); return ARRAY_SIZE(rates) - 1; } /* * PCM part */ static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct fm801 *chip = snd_pcm_substream_chip(substream); spin_lock(&chip->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: chip->ply_ctrl &= ~(FM801_BUF1_LAST | FM801_BUF2_LAST | FM801_PAUSE); chip->ply_ctrl |= FM801_START | FM801_IMMED_STOP; break; case SNDRV_PCM_TRIGGER_STOP: chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: chip->ply_ctrl |= FM801_PAUSE; break; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: chip->ply_ctrl &= ~FM801_PAUSE; break; default: spin_unlock(&chip->reg_lock); snd_BUG(); return -EINVAL; } fm801_writew(chip, PLY_CTRL, chip->ply_ctrl); spin_unlock(&chip->reg_lock); return 0; } static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct fm801 *chip = snd_pcm_substream_chip(substream); spin_lock(&chip->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: chip->cap_ctrl &= ~(FM801_BUF1_LAST | FM801_BUF2_LAST | FM801_PAUSE); chip->cap_ctrl |= FM801_START | FM801_IMMED_STOP; break; case SNDRV_PCM_TRIGGER_STOP: chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: chip->cap_ctrl |= FM801_PAUSE; break; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: chip->cap_ctrl &= ~FM801_PAUSE; break; default: spin_unlock(&chip->reg_lock); snd_BUG(); return -EINVAL; } fm801_writew(chip, CAP_CTRL, chip->cap_ctrl); spin_unlock(&chip->reg_lock); return 0; } static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; chip->ply_size = snd_pcm_lib_buffer_bytes(substream); chip->ply_count = snd_pcm_lib_period_bytes(substream); spin_lock_irq(&chip->reg_lock); chip->ply_ctrl &= ~(FM801_START | FM801_16BIT | FM801_STEREO | FM801_RATE_MASK | FM801_CHANNELS_MASK); if (snd_pcm_format_width(runtime->format) == 16) chip->ply_ctrl |= FM801_16BIT; if (runtime->channels > 1) { chip->ply_ctrl |= FM801_STEREO; if (runtime->channels == 4) chip->ply_ctrl |= FM801_CHANNELS_4; else if (runtime->channels == 6) chip->ply_ctrl |= FM801_CHANNELS_6; } chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT; chip->ply_buf = 0; fm801_writew(chip, PLY_CTRL, chip->ply_ctrl); fm801_writew(chip, PLY_COUNT, chip->ply_count - 1); chip->ply_buffer = runtime->dma_addr; chip->ply_pos = 0; fm801_writel(chip, PLY_BUF1, chip->ply_buffer); fm801_writel(chip, PLY_BUF2, chip->ply_buffer + (chip->ply_count % chip->ply_size)); spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; chip->cap_size = snd_pcm_lib_buffer_bytes(substream); chip->cap_count = snd_pcm_lib_period_bytes(substream); spin_lock_irq(&chip->reg_lock); chip->cap_ctrl &= ~(FM801_START | FM801_16BIT | FM801_STEREO | FM801_RATE_MASK); if (snd_pcm_format_width(runtime->format) == 16) chip->cap_ctrl |= FM801_16BIT; if (runtime->channels > 1) chip->cap_ctrl |= FM801_STEREO; chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT; chip->cap_buf = 0; fm801_writew(chip, CAP_CTRL, chip->cap_ctrl); fm801_writew(chip, CAP_COUNT, chip->cap_count - 1); chip->cap_buffer = runtime->dma_addr; chip->cap_pos = 0; fm801_writel(chip, CAP_BUF1, chip->cap_buffer); fm801_writel(chip, CAP_BUF2, chip->cap_buffer + (chip->cap_count % chip->cap_size)); spin_unlock_irq(&chip->reg_lock); return 0; } static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); size_t ptr; if (!(chip->ply_ctrl & FM801_START)) return 0; spin_lock(&chip->reg_lock); ptr = chip->ply_pos + (chip->ply_count - 1) - fm801_readw(chip, PLY_COUNT); if (fm801_readw(chip, IRQ_STATUS) & FM801_IRQ_PLAYBACK) { ptr += chip->ply_count; ptr %= chip->ply_size; } spin_unlock(&chip->reg_lock); return bytes_to_frames(substream->runtime, ptr); } static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); size_t ptr; if (!(chip->cap_ctrl & FM801_START)) return 0; spin_lock(&chip->reg_lock); ptr = chip->cap_pos + (chip->cap_count - 1) - fm801_readw(chip, CAP_COUNT); if (fm801_readw(chip, IRQ_STATUS) & FM801_IRQ_CAPTURE) { ptr += chip->cap_count; ptr %= chip->cap_size; } spin_unlock(&chip->reg_lock); return bytes_to_frames(substream->runtime, ptr); } static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id) { struct fm801 *chip = dev_id; unsigned short status; unsigned int tmp; status = fm801_readw(chip, IRQ_STATUS); status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME; if (! status) return IRQ_NONE; /* ack first */ fm801_writew(chip, IRQ_STATUS, status); if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) { spin_lock(&chip->reg_lock); chip->ply_buf++; chip->ply_pos += chip->ply_count; chip->ply_pos %= chip->ply_size; tmp = chip->ply_pos + chip->ply_count; tmp %= chip->ply_size; if (chip->ply_buf & 1) fm801_writel(chip, PLY_BUF1, chip->ply_buffer + tmp); else fm801_writel(chip, PLY_BUF2, chip->ply_buffer + tmp); spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(chip->playback_substream); } if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) { spin_lock(&chip->reg_lock); chip->cap_buf++; chip->cap_pos += chip->cap_count; chip->cap_pos %= chip->cap_size; tmp = chip->cap_pos + chip->cap_count; tmp %= chip->cap_size; if (chip->cap_buf & 1) fm801_writel(chip, CAP_BUF1, chip->cap_buffer + tmp); else fm801_writel(chip, CAP_BUF2, chip->cap_buffer + tmp); spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(chip->capture_substream); } if (chip->rmidi && (status & FM801_IRQ_MPU)) snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data); if (status & FM801_IRQ_VOLUME) { /* TODO */ } return IRQ_HANDLED; } static const struct snd_pcm_hardware snd_fm801_playback = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000, .rate_min = 5500, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 1, .periods_max = 1024, .fifo_size = 0, }; static const struct snd_pcm_hardware snd_fm801_capture = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000, .rate_min = 5500, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 1, .periods_max = 1024, .fifo_size = 0, }; static int snd_fm801_playback_open(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; chip->playback_substream = substream; runtime->hw = snd_fm801_playback; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); if (chip->multichannel) { runtime->hw.channels_max = 6; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels); } err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) return err; return 0; } static int snd_fm801_capture_open(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; chip->capture_substream = substream; runtime->hw = snd_fm801_capture; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) return err; return 0; } static int snd_fm801_playback_close(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); chip->playback_substream = NULL; return 0; } static int snd_fm801_capture_close(struct snd_pcm_substream *substream) { struct fm801 *chip = snd_pcm_substream_chip(substream); chip->capture_substream = NULL; return 0; } static const struct snd_pcm_ops snd_fm801_playback_ops = { .open = snd_fm801_playback_open, .close = snd_fm801_playback_close, .prepare = snd_fm801_playback_prepare, .trigger = snd_fm801_playback_trigger, .pointer = snd_fm801_playback_pointer, }; static const struct snd_pcm_ops snd_fm801_capture_ops = { .open = snd_fm801_capture_open, .close = snd_fm801_capture_close, .prepare = snd_fm801_capture_prepare, .trigger = snd_fm801_capture_trigger, .pointer = snd_fm801_capture_pointer, }; static int snd_fm801_pcm(struct fm801 *chip, int device) { struct pci_dev *pdev = to_pci_dev(chip->dev); struct snd_pcm *pcm; int err; err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm); if (err < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops); pcm->private_data = chip; pcm->info_flags = 0; strcpy(pcm->name, "FM801"); chip->pcm = pcm; snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &pdev->dev, chip->multichannel ? 128*1024 : 64*1024, 128*1024); return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, snd_pcm_alt_chmaps, chip->multichannel ? 6 : 2, 0, NULL); } /* * TEA5757 radio */ #ifdef CONFIG_SND_FM801_TEA575X_BOOL /* GPIO to TEA575x maps */ struct snd_fm801_tea575x_gpio { u8 data, clk, wren, most; char *name; }; static const struct snd_fm801_tea575x_gpio snd_fm801_tea575x_gpios[] = { { .data = 1, .clk = 3, .wren = 2, .most = 0, .name = "SF256-PCS" }, { .data = 1, .clk = 0, .wren = 2, .most = 3, .name = "SF256-PCP" }, { .data = 2, .clk = 0, .wren = 1, .most = 3, .name = "SF64-PCR" }, }; #define get_tea575x_gpio(chip) \ (&snd_fm801_tea575x_gpios[((chip)->tea575x_tuner & TUNER_TYPE_MASK) - 1]) static void snd_fm801_tea575x_set_pins(struct snd_tea575x *tea, u8 pins) { struct fm801 *chip = tea->private_data; unsigned short reg = fm801_readw(chip, GPIO_CTRL); struct snd_fm801_tea575x_gpio gpio = *get_tea575x_gpio(chip); reg &= ~(FM801_GPIO_GP(gpio.data) | FM801_GPIO_GP(gpio.clk) | FM801_GPIO_GP(gpio.wren)); reg |= (pins & TEA575X_DATA) ? FM801_GPIO_GP(gpio.data) : 0; reg |= (pins & TEA575X_CLK) ? FM801_GPIO_GP(gpio.clk) : 0; /* WRITE_ENABLE is inverted */ reg |= (pins & TEA575X_WREN) ? 0 : FM801_GPIO_GP(gpio.wren); fm801_writew(chip, GPIO_CTRL, reg); } static u8 snd_fm801_tea575x_get_pins(struct snd_tea575x *tea) { struct fm801 *chip = tea->private_data; unsigned short reg = fm801_readw(chip, GPIO_CTRL); struct snd_fm801_tea575x_gpio gpio = *get_tea575x_gpio(chip); u8 ret; ret = 0; if (reg & FM801_GPIO_GP(gpio.data)) ret |= TEA575X_DATA; if (reg & FM801_GPIO_GP(gpio.most)) ret |= TEA575X_MOST; return ret; } static void snd_fm801_tea575x_set_direction(struct snd_tea575x *tea, bool output) { struct fm801 *chip = tea->private_data; unsigned short reg = fm801_readw(chip, GPIO_CTRL); struct snd_fm801_tea575x_gpio gpio = *get_tea575x_gpio(chip); /* use GPIO lines and set write enable bit */ reg |= FM801_GPIO_GS(gpio.data) | FM801_GPIO_GS(gpio.wren) | FM801_GPIO_GS(gpio.clk) | FM801_GPIO_GS(gpio.most); if (output) { /* all of lines are in the write direction */ /* clear data and clock lines */ reg &= ~(FM801_GPIO_GD(gpio.data) | FM801_GPIO_GD(gpio.wren) | FM801_GPIO_GD(gpio.clk) | FM801_GPIO_GP(gpio.data) | FM801_GPIO_GP(gpio.clk) | FM801_GPIO_GP(gpio.wren)); } else { /* use GPIO lines, set data direction to input */ reg |= FM801_GPIO_GD(gpio.data) | FM801_GPIO_GD(gpio.most) | FM801_GPIO_GP(gpio.data) | FM801_GPIO_GP(gpio.most) | FM801_GPIO_GP(gpio.wren); /* all of lines are in the write direction, except data */ /* clear data, write enable and clock lines */ reg &= ~(FM801_GPIO_GD(gpio.wren) | FM801_GPIO_GD(gpio.clk) | FM801_GPIO_GP(gpio.clk)); } fm801_writew(chip, GPIO_CTRL, reg); } static const struct snd_tea575x_ops snd_fm801_tea_ops = { .set_pins = snd_fm801_tea575x_set_pins, .get_pins = snd_fm801_tea575x_get_pins, .set_direction = snd_fm801_tea575x_set_direction, }; #endif /* * Mixer routines */ #define FM801_SINGLE(xname, reg, shift, mask, invert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \ .get = snd_fm801_get_single, .put = snd_fm801_put_single, \ .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) } static int snd_fm801_info_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int mask = (kcontrol->private_value >> 16) & 0xff; uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } static int snd_fm801_get_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift = (kcontrol->private_value >> 8) & 0xff; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0xff; long *value = ucontrol->value.integer.value; value[0] = (fm801_ioread16(chip, reg) >> shift) & mask; if (invert) value[0] = mask - value[0]; return 0; } static int snd_fm801_put_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift = (kcontrol->private_value >> 8) & 0xff; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0xff; unsigned short val; val = (ucontrol->value.integer.value[0] & mask); if (invert) val = mask - val; return snd_fm801_update_bits(chip, reg, mask << shift, val << shift); } #define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \ .get = snd_fm801_get_double, .put = snd_fm801_put_double, \ .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) } #define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ .name = xname, .info = snd_fm801_info_double, \ .get = snd_fm801_get_double, .put = snd_fm801_put_double, \ .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \ .tlv = { .p = (xtlv) } } static int snd_fm801_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int mask = (kcontrol->private_value >> 16) & 0xff; uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } static int snd_fm801_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift_left = (kcontrol->private_value >> 8) & 0x0f; int shift_right = (kcontrol->private_value >> 12) & 0x0f; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0xff; long *value = ucontrol->value.integer.value; spin_lock_irq(&chip->reg_lock); value[0] = (fm801_ioread16(chip, reg) >> shift_left) & mask; value[1] = (fm801_ioread16(chip, reg) >> shift_right) & mask; spin_unlock_irq(&chip->reg_lock); if (invert) { value[0] = mask - value[0]; value[1] = mask - value[1]; } return 0; } static int snd_fm801_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift_left = (kcontrol->private_value >> 8) & 0x0f; int shift_right = (kcontrol->private_value >> 12) & 0x0f; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0xff; unsigned short val1, val2; val1 = ucontrol->value.integer.value[0] & mask; val2 = ucontrol->value.integer.value[1] & mask; if (invert) { val1 = mask - val1; val2 = mask - val2; } return snd_fm801_update_bits(chip, reg, (mask << shift_left) | (mask << shift_right), (val1 << shift_left ) | (val2 << shift_right)); } static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char * const texts[5] = { "AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary" }; return snd_ctl_enum_info(uinfo, 1, 5, texts); } static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); unsigned short val; val = fm801_readw(chip, REC_SRC) & 7; if (val > 4) val = 4; ucontrol->value.enumerated.item[0] = val; return 0; } static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct fm801 *chip = snd_kcontrol_chip(kcontrol); unsigned short val; val = ucontrol->value.enumerated.item[0]; if (val > 4) return -EINVAL; return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val); } static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0); #define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls) static const struct snd_kcontrol_new snd_fm801_controls[] = { FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1, db_scale_dsp), FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1), FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1, db_scale_dsp), FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1), FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1, db_scale_dsp), FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Digital Capture Source", .info = snd_fm801_info_mux, .get = snd_fm801_get_mux, .put = snd_fm801_put_mux, } }; #define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi) static const struct snd_kcontrol_new snd_fm801_controls_multi[] = { FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0), FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0), FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0), FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0), FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0), FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0), }; static int snd_fm801_mixer(struct fm801 *chip) { struct snd_ac97_template ac97; unsigned int i; int err; static const struct snd_ac97_bus_ops ops = { .write = snd_fm801_codec_write, .read = snd_fm801_codec_read, }; err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus); if (err < 0) return err; memset(&ac97, 0, sizeof(ac97)); ac97.private_data = chip; err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97); if (err < 0) return err; if (chip->secondary) { ac97.num = 1; ac97.addr = chip->secondary_addr; err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec); if (err < 0) return err; } for (i = 0; i < FM801_CONTROLS; i++) { err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip)); if (err < 0) return err; } if (chip->multichannel) { for (i = 0; i < FM801_CONTROLS_MULTI; i++) { err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip)); if (err < 0) return err; } } return 0; } /* * initialization routines */ static int wait_for_codec(struct fm801 *chip, unsigned int codec_id, unsigned short reg, unsigned long waits) { unsigned long timeout = jiffies + waits; fm801_writew(chip, AC97_CMD, reg | (codec_id << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ); udelay(5); do { if ((fm801_readw(chip, AC97_CMD) & (FM801_AC97_VALID | FM801_AC97_BUSY)) == FM801_AC97_VALID) return 0; schedule_timeout_uninterruptible(1); } while (time_after(timeout, jiffies)); return -EIO; } static int reset_codec(struct fm801 *chip) { /* codec cold reset + AC'97 warm reset */ fm801_writew(chip, CODEC_CTRL, (1 << 5) | (1 << 6)); fm801_readw(chip, CODEC_CTRL); /* flush posting data */ udelay(100); fm801_writew(chip, CODEC_CTRL, 0); return wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)); } static void snd_fm801_chip_multichannel_init(struct fm801 *chip) { unsigned short cmdw; if (chip->multichannel) { if (chip->secondary_addr) { wait_for_codec(chip, chip->secondary_addr, AC97_VENDOR_ID1, msecs_to_jiffies(50)); } else { /* my card has the secondary codec */ /* at address #3, so the loop is inverted */ int i; for (i = 3; i > 0; i--) { if (!wait_for_codec(chip, i, AC97_VENDOR_ID1, msecs_to_jiffies(50))) { cmdw = fm801_readw(chip, AC97_DATA); if (cmdw != 0xffff && cmdw != 0) { chip->secondary = 1; chip->secondary_addr = i; break; } } } } /* the recovery phase, it seems that probing for non-existing codec might */ /* cause timeout problems */ wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750)); } } static void snd_fm801_chip_init(struct fm801 *chip) { unsigned short cmdw; /* init volume */ fm801_writew(chip, PCM_VOL, 0x0808); fm801_writew(chip, FM_VOL, 0x9f1f); fm801_writew(chip, I2S_VOL, 0x8808); /* I2S control - I2S mode */ fm801_writew(chip, I2S_MODE, 0x0003); /* interrupt setup */ cmdw = fm801_readw(chip, IRQ_MASK); if (chip->irq < 0) cmdw |= 0x00c3; /* mask everything, no PCM nor MPU */ else cmdw &= ~0x0083; /* unmask MPU, PLAYBACK & CAPTURE */ fm801_writew(chip, IRQ_MASK, cmdw); /* interrupt clear */ fm801_writew(chip, IRQ_STATUS, FM801_IRQ_PLAYBACK | FM801_IRQ_CAPTURE | FM801_IRQ_MPU); } static void snd_fm801_free(struct snd_card *card) { struct fm801 *chip = card->private_data; unsigned short cmdw; /* interrupt setup - mask everything */ cmdw = fm801_readw(chip, IRQ_MASK); cmdw |= 0x00c3; fm801_writew(chip, IRQ_MASK, cmdw); #ifdef CONFIG_SND_FM801_TEA575X_BOOL if (!(chip->tea575x_tuner & TUNER_DISABLED)) { snd_tea575x_exit(&chip->tea); v4l2_device_unregister(&chip->v4l2_dev); } #endif } static int snd_fm801_create(struct snd_card *card, struct pci_dev *pci, int tea575x_tuner, int radio_nr) { struct fm801 *chip = card->private_data; int err; err = pcim_enable_device(pci); if (err < 0) return err; spin_lock_init(&chip->reg_lock); chip->card = card; chip->dev = &pci->dev; chip->irq = -1; chip->tea575x_tuner = tea575x_tuner; err = pci_request_regions(pci, "FM801"); if (err < 0) return err; chip->port = pci_resource_start(pci, 0); if (pci->revision >= 0xb1) /* FM801-AU */ chip->multichannel = 1; if (!(chip->tea575x_tuner & TUNER_ONLY)) { if (reset_codec(chip) < 0) { dev_info(chip->card->dev, "Primary AC'97 codec not found, assume SF64-PCR (tuner-only)\n"); chip->tea575x_tuner = 3 | TUNER_ONLY; } else { snd_fm801_chip_multichannel_init(chip); } } if ((chip->tea575x_tuner & TUNER_ONLY) == 0) { if (devm_request_irq(&pci->dev, pci->irq, snd_fm801_interrupt, IRQF_SHARED, KBUILD_MODNAME, chip)) { dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq); return -EBUSY; } chip->irq = pci->irq; card->sync_irq = chip->irq; pci_set_master(pci); } card->private_free = snd_fm801_free; snd_fm801_chip_init(chip); #ifdef CONFIG_SND_FM801_TEA575X_BOOL err = v4l2_device_register(&pci->dev, &chip->v4l2_dev); if (err < 0) return err; chip->tea.v4l2_dev = &chip->v4l2_dev; chip->tea.radio_nr = radio_nr; chip->tea.private_data = chip; chip->tea.ops = &snd_fm801_tea_ops; sprintf(chip->tea.bus_info, "PCI:%s", pci_name(pci)); if ((chip->tea575x_tuner & TUNER_TYPE_MASK) > 0 && (chip->tea575x_tuner & TUNER_TYPE_MASK) < 4) { if (snd_tea575x_init(&chip->tea, THIS_MODULE)) { dev_err(card->dev, "TEA575x radio not found\n"); return -ENODEV; } } else if ((chip->tea575x_tuner & TUNER_TYPE_MASK) == 0) { unsigned int tuner_only = chip->tea575x_tuner & TUNER_ONLY; /* autodetect tuner connection */ for (tea575x_tuner = 1; tea575x_tuner <= 3; tea575x_tuner++) { chip->tea575x_tuner = tea575x_tuner; if (!snd_tea575x_init(&chip->tea, THIS_MODULE)) { dev_info(card->dev, "detected TEA575x radio type %s\n", get_tea575x_gpio(chip)->name); break; } } if (tea575x_tuner == 4) { dev_err(card->dev, "TEA575x radio not found\n"); chip->tea575x_tuner = TUNER_DISABLED; } chip->tea575x_tuner |= tuner_only; } if (!(chip->tea575x_tuner & TUNER_DISABLED)) { strscpy(chip->tea.card, get_tea575x_gpio(chip)->name, sizeof(chip->tea.card)); } #endif return 0; } static int __snd_card_fm801_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct snd_card *card; struct fm801 *chip; struct snd_opl3 *opl3; int err; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { dev++; return -ENOENT; } err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, sizeof(*chip), &card); if (err < 0) return err; chip = card->private_data; err = snd_fm801_create(card, pci, tea575x_tuner[dev], radio_nr[dev]); if (err < 0) return err; strcpy(card->driver, "FM801"); strcpy(card->shortname, "ForteMedia FM801-"); strcat(card->shortname, chip->multichannel ? "AU" : "AS"); sprintf(card->longname, "%s at 0x%lx, irq %i", card->shortname, chip->port, chip->irq); if (chip->tea575x_tuner & TUNER_ONLY) goto __fm801_tuner_only; err = snd_fm801_pcm(chip, 0); if (err < 0) return err; err = snd_fm801_mixer(chip); if (err < 0) return err; err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801, chip->port + FM801_MPU401_DATA, MPU401_INFO_INTEGRATED | MPU401_INFO_IRQ_HOOK, -1, &chip->rmidi); if (err < 0) return err; err = snd_opl3_create(card, chip->port + FM801_OPL3_BANK0, chip->port + FM801_OPL3_BANK1, OPL3_HW_OPL3_FM801, 1, &opl3); if (err < 0) return err; err = snd_opl3_hwdep_new(opl3, 0, 1, NULL); if (err < 0) return err; __fm801_tuner_only: err = snd_card_register(card); if (err < 0) return err; pci_set_drvdata(pci, card); dev++; return 0; } static int snd_card_fm801_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { return snd_card_free_on_error(&pci->dev, __snd_card_fm801_probe(pci, pci_id)); } static const unsigned char saved_regs[] = { FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC, FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2, FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2, FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL, }; static int snd_fm801_suspend(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct fm801 *chip = card->private_data; int i; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); for (i = 0; i < ARRAY_SIZE(saved_regs); i++) chip->saved_regs[i] = fm801_ioread16(chip, saved_regs[i]); if (chip->tea575x_tuner & TUNER_ONLY) { /* FIXME: tea575x suspend */ } else { snd_ac97_suspend(chip->ac97); snd_ac97_suspend(chip->ac97_sec); } return 0; } static int snd_fm801_resume(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct fm801 *chip = card->private_data; int i; if (chip->tea575x_tuner & TUNER_ONLY) { snd_fm801_chip_init(chip); } else { reset_codec(chip); snd_fm801_chip_multichannel_init(chip); snd_fm801_chip_init(chip); snd_ac97_resume(chip->ac97); snd_ac97_resume(chip->ac97_sec); } for (i = 0; i < ARRAY_SIZE(saved_regs); i++) fm801_iowrite16(chip, saved_regs[i], chip->saved_regs[i]); #ifdef CONFIG_SND_FM801_TEA575X_BOOL if (!(chip->tea575x_tuner & TUNER_DISABLED)) snd_tea575x_set_freq(&chip->tea); #endif snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(snd_fm801_pm, snd_fm801_suspend, snd_fm801_resume); static struct pci_driver fm801_driver = { .name = KBUILD_MODNAME, .id_table = snd_fm801_ids, .probe = snd_card_fm801_probe, .driver = { .pm = &snd_fm801_pm, }, }; module_pci_driver(fm801_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1