Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jaroslav Kysela | 4438 | 68.51% | 17 | 13.93% |
Benjamin Herrenschmidt | 683 | 10.54% | 10 | 8.20% |
Linus Torvalds (pre-git) | 422 | 6.51% | 49 | 40.16% |
T. H. Huth | 320 | 4.94% | 1 | 0.82% |
Takashi Iwai | 243 | 3.75% | 12 | 9.84% |
Rusty Russell | 86 | 1.33% | 1 | 0.82% |
David Gibson | 73 | 1.13% | 1 | 0.82% |
Stephen Rothwell | 72 | 1.11% | 3 | 2.46% |
Risto Suominen | 30 | 0.46% | 4 | 3.28% |
Grant C. Likely | 20 | 0.31% | 3 | 2.46% |
Joe Perches | 16 | 0.25% | 2 | 1.64% |
Johannes Berg | 14 | 0.22% | 1 | 0.82% |
Andrew Morton | 12 | 0.19% | 1 | 0.82% |
Clemens Ladisch | 8 | 0.12% | 1 | 0.82% |
Al Viro | 7 | 0.11% | 2 | 1.64% |
David Woodhouse | 6 | 0.09% | 1 | 0.82% |
Paul Mackerras | 5 | 0.08% | 2 | 1.64% |
Jesper Juhl | 4 | 0.06% | 1 | 0.82% |
Linus Torvalds | 3 | 0.05% | 2 | 1.64% |
Chris Wedgwood | 3 | 0.05% | 1 | 0.82% |
Rob Herring | 3 | 0.05% | 2 | 1.64% |
Zou Wei | 2 | 0.03% | 1 | 0.82% |
Bhumika Goyal | 2 | 0.03% | 1 | 0.82% |
Li Yang | 2 | 0.03% | 1 | 0.82% |
Thomas Gleixner | 2 | 0.03% | 1 | 0.82% |
Arvind Yadav | 2 | 0.03% | 1 | 0.82% |
Total | 6478 | 122 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * PMac DBDMA lowlevel functions * * Copyright (c) by Takashi Iwai <tiwai@suse.de> * code based on dmasound.c. */ #include <linux/io.h> #include <asm/irq.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <sound/core.h> #include "pmac.h" #include <sound/pcm_params.h> #include <asm/pmac_feature.h> /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */ static const int awacs_freqs[8] = { 44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350 }; /* fixed frequency table for tumbler */ static const int tumbler_freqs[1] = { 44100 }; /* * we will allocate a single 'emergency' dbdma cmd block to use if the * tx status comes up "DEAD". This happens on some PowerComputing Pmac * clones, either owing to a bug in dbdma or some interaction between * IDE and sound. However, this measure would deal with DEAD status if * it appeared elsewhere. */ static struct pmac_dbdma emergency_dbdma; static int emergency_in_use; /* * allocate DBDMA command arrays */ static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size) { unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1); rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize, &rec->dma_base, GFP_KERNEL); if (rec->space == NULL) return -ENOMEM; rec->size = size; memset(rec->space, 0, rsize); rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space); rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space); return 0; } static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec) { if (rec->space) { unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1); dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base); } } /* * pcm stuff */ /* * look up frequency table */ unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate) { int i, ok, found; ok = rec->cur_freqs; if (rate > chip->freq_table[0]) return 0; found = 0; for (i = 0; i < chip->num_freqs; i++, ok >>= 1) { if (! (ok & 1)) continue; found = i; if (rate >= chip->freq_table[i]) break; } return found; } /* * check whether another stream is active */ static inline int another_stream(int stream) { return (stream == SNDRV_PCM_STREAM_PLAYBACK) ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; } /* * get a stream of the opposite direction */ static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream) { switch (stream) { case SNDRV_PCM_STREAM_PLAYBACK: return &chip->playback; case SNDRV_PCM_STREAM_CAPTURE: return &chip->capture; default: snd_BUG(); return NULL; } } /* * wait while run status is on */ static inline void snd_pmac_wait_ack(struct pmac_stream *rec) { int timeout = 50000; while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0) udelay(1); } /* * set the format and rate to the chip. * call the lowlevel function if defined (e.g. for AWACS). */ static void snd_pmac_pcm_set_format(struct snd_pmac *chip) { /* set up frequency and format */ out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8)); out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0); if (chip->set_format) chip->set_format(chip); } /* * stop the DMA transfer */ static inline void snd_pmac_dma_stop(struct pmac_stream *rec) { out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16); snd_pmac_wait_ack(rec); } /* * set the command pointer address */ static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd) { out_le32(&rec->dma->cmdptr, cmd->addr); } /* * start the DMA */ static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status) { out_le32(&rec->dma->control, status | (status << 16)); } /* * prepare playback/capture stream */ static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs) { int i; volatile struct dbdma_cmd __iomem *cp; struct snd_pcm_runtime *runtime = subs->runtime; int rate_index; long offset; struct pmac_stream *astr; rec->dma_size = snd_pcm_lib_buffer_bytes(subs); rec->period_size = snd_pcm_lib_period_bytes(subs); rec->nperiods = rec->dma_size / rec->period_size; rec->cur_period = 0; rate_index = snd_pmac_rate_index(chip, rec, runtime->rate); /* set up constraints */ astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); if (! astr) return -EINVAL; astr->cur_freqs = 1 << rate_index; astr->cur_formats = 1 << runtime->format; chip->rate_index = rate_index; chip->format = runtime->format; /* We really want to execute a DMA stop command, after the AWACS * is initialized. * For reasons I don't understand, it stops the hissing noise * common to many PowerBook G3 systems and random noise otherwise * captured on iBook2's about every third time. -ReneR */ spin_lock_irq(&chip->reg_lock); snd_pmac_dma_stop(rec); chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP); snd_pmac_dma_set_command(rec, &chip->extra_dma); snd_pmac_dma_run(rec, RUN); spin_unlock_irq(&chip->reg_lock); mdelay(5); spin_lock_irq(&chip->reg_lock); /* continuous DMA memory type doesn't provide the physical address, * so we need to resolve the address here... */ offset = runtime->dma_addr; for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) { cp->phy_addr = cpu_to_le32(offset); cp->req_count = cpu_to_le16(rec->period_size); /*cp->res_count = cpu_to_le16(0);*/ cp->xfer_status = cpu_to_le16(0); offset += rec->period_size; } /* make loop */ cp->command = cpu_to_le16(DBDMA_NOP | BR_ALWAYS); cp->cmd_dep = cpu_to_le32(rec->cmd.addr); snd_pmac_dma_stop(rec); snd_pmac_dma_set_command(rec, &rec->cmd); spin_unlock_irq(&chip->reg_lock); return 0; } /* * PCM trigger/stop */ static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs, int cmd) { volatile struct dbdma_cmd __iomem *cp; int i, command; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: if (rec->running) return -EBUSY; command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ? OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS; spin_lock(&chip->reg_lock); snd_pmac_beep_stop(chip); snd_pmac_pcm_set_format(chip); for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) out_le16(&cp->command, command); snd_pmac_dma_set_command(rec, &rec->cmd); (void)in_le32(&rec->dma->status); snd_pmac_dma_run(rec, RUN|WAKE); rec->running = 1; spin_unlock(&chip->reg_lock); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: spin_lock(&chip->reg_lock); rec->running = 0; /*printk(KERN_DEBUG "stopped!!\n");*/ snd_pmac_dma_stop(rec); for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) out_le16(&cp->command, DBDMA_STOP); spin_unlock(&chip->reg_lock); break; default: return -EINVAL; } return 0; } /* * return the current pointer */ inline static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs) { int count = 0; #if 1 /* hmm.. how can we get the current dma pointer?? */ int stat; volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period]; stat = le16_to_cpu(cp->xfer_status); if (stat & (ACTIVE|DEAD)) { count = in_le16(&cp->res_count); if (count) count = rec->period_size - count; } #endif count += rec->cur_period * rec->period_size; /*printk(KERN_DEBUG "pointer=%d\n", count);*/ return bytes_to_frames(subs->runtime, count); } /* * playback */ static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_prepare(chip, &chip->playback, subs); } static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs, int cmd) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd); } static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_pointer(chip, &chip->playback, subs); } /* * capture */ static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_prepare(chip, &chip->capture, subs); } static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs, int cmd) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd); } static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_pointer(chip, &chip->capture, subs); } /* * Handle DEAD DMA transfers: * if the TX status comes up "DEAD" - reported on some Power Computing machines * we need to re-start the dbdma - but from a different physical start address * and with a different transfer length. It would get very messy to do this * with the normal dbdma_cmd blocks - we would have to re-write the buffer start * addresses each time. So, we will keep a single dbdma_cmd block which can be * fiddled with. * When DEAD status is first reported the content of the faulted dbdma block is * copied into the emergency buffer and we note that the buffer is in use. * we then bump the start physical address by the amount that was successfully * output before it died. * On any subsequent DEAD result we just do the bump-ups (we know that we are * already using the emergency dbdma_cmd). * CHECK: this just tries to "do it". It is possible that we should abandon * xfers when the number of residual bytes gets below a certain value - I can * see that this might cause a loop-forever if a too small transfer causes * DEAD status. However this is a TODO for now - we'll see what gets reported. * When we get a successful transfer result with the emergency buffer we just * pretend that it completed using the original dmdma_cmd and carry on. The * 'next_cmd' field will already point back to the original loop of blocks. */ static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec, volatile struct dbdma_cmd __iomem *cp) { unsigned short req, res ; unsigned int phy ; /* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */ /* to clear DEAD status we must first clear RUN set it to quiescent to be on the safe side */ (void)in_le32(&rec->dma->status); out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16); if (!emergency_in_use) { /* new problem */ memcpy((void *)emergency_dbdma.cmds, (void *)cp, sizeof(struct dbdma_cmd)); emergency_in_use = 1; cp->xfer_status = cpu_to_le16(0); cp->req_count = cpu_to_le16(rec->period_size); cp = emergency_dbdma.cmds; } /* now bump the values to reflect the amount we haven't yet shifted */ req = le16_to_cpu(cp->req_count); res = le16_to_cpu(cp->res_count); phy = le32_to_cpu(cp->phy_addr); phy += (req - res); cp->req_count = cpu_to_le16(res); cp->res_count = cpu_to_le16(0); cp->xfer_status = cpu_to_le16(0); cp->phy_addr = cpu_to_le32(phy); cp->cmd_dep = cpu_to_le32(rec->cmd.addr + sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods)); cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS); /* point at our patched up command block */ out_le32(&rec->dma->cmdptr, emergency_dbdma.addr); /* we must re-start the controller */ (void)in_le32(&rec->dma->status); /* should complete clearing the DEAD status */ out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE)); } /* * update playback/capture pointer from interrupts */ static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec) { volatile struct dbdma_cmd __iomem *cp; int c; int stat; spin_lock(&chip->reg_lock); if (rec->running) { for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */ if (emergency_in_use) /* already using DEAD xfer? */ cp = emergency_dbdma.cmds; else cp = &rec->cmd.cmds[rec->cur_period]; stat = le16_to_cpu(cp->xfer_status); if (stat & DEAD) { snd_pmac_pcm_dead_xfer(rec, cp); break; /* this block is still going */ } if (emergency_in_use) emergency_in_use = 0 ; /* done that */ if (! (stat & ACTIVE)) break; /*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/ cp->xfer_status = cpu_to_le16(0); cp->req_count = cpu_to_le16(rec->period_size); /*cp->res_count = cpu_to_le16(0);*/ rec->cur_period++; if (rec->cur_period >= rec->nperiods) { rec->cur_period = 0; } spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(rec->substream); spin_lock(&chip->reg_lock); } } spin_unlock(&chip->reg_lock); } /* * hw info */ static const struct snd_pcm_hardware snd_pmac_playback = { .info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_RESUME), .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_8000_44100, .rate_min = 7350, .rate_max = 44100, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 131072, .period_bytes_min = 256, .period_bytes_max = 16384, .periods_min = 3, .periods_max = PMAC_MAX_FRAGS, }; static const struct snd_pcm_hardware snd_pmac_capture = { .info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_RESUME), .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_8000_44100, .rate_min = 7350, .rate_max = 44100, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 131072, .period_bytes_min = 256, .period_bytes_max = 16384, .periods_min = 3, .periods_max = PMAC_MAX_FRAGS, }; #if 0 // NYI static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_pmac *chip = rule->private; struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]); int i, freq_table[8], num_freqs; if (! rec) return -EINVAL; num_freqs = 0; for (i = chip->num_freqs - 1; i >= 0; i--) { if (rec->cur_freqs & (1 << i)) freq_table[num_freqs++] = chip->freq_table[i]; } return snd_interval_list(hw_param_interval(params, rule->var), num_freqs, freq_table, 0); } static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_pmac *chip = rule->private; struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]); if (! rec) return -EINVAL; return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT), rec->cur_formats); } #endif // NYI static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs) { struct snd_pcm_runtime *runtime = subs->runtime; int i; /* look up frequency table and fill bit mask */ runtime->hw.rates = 0; for (i = 0; i < chip->num_freqs; i++) if (chip->freqs_ok & (1 << i)) runtime->hw.rates |= snd_pcm_rate_to_rate_bit(chip->freq_table[i]); /* check for minimum and maximum rates */ for (i = 0; i < chip->num_freqs; i++) { if (chip->freqs_ok & (1 << i)) { runtime->hw.rate_max = chip->freq_table[i]; break; } } for (i = chip->num_freqs - 1; i >= 0; i--) { if (chip->freqs_ok & (1 << i)) { runtime->hw.rate_min = chip->freq_table[i]; break; } } runtime->hw.formats = chip->formats_ok; if (chip->can_capture) { if (! chip->can_duplex) runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX; runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX; } runtime->private_data = rec; rec->substream = subs; #if 0 /* FIXME: still under development.. */ snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, snd_pmac_hw_rule_rate, chip, rec->stream, -1); snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, snd_pmac_hw_rule_format, chip, rec->stream, -1); #endif runtime->hw.periods_max = rec->cmd.size - 1; /* constraints to fix choppy sound */ snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); return 0; } static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs) { struct pmac_stream *astr; snd_pmac_dma_stop(rec); astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); if (! astr) return -EINVAL; /* reset constraints */ astr->cur_freqs = chip->freqs_ok; astr->cur_formats = chip->formats_ok; return 0; } static int snd_pmac_playback_open(struct snd_pcm_substream *subs) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); subs->runtime->hw = snd_pmac_playback; return snd_pmac_pcm_open(chip, &chip->playback, subs); } static int snd_pmac_capture_open(struct snd_pcm_substream *subs) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); subs->runtime->hw = snd_pmac_capture; return snd_pmac_pcm_open(chip, &chip->capture, subs); } static int snd_pmac_playback_close(struct snd_pcm_substream *subs) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_close(chip, &chip->playback, subs); } static int snd_pmac_capture_close(struct snd_pcm_substream *subs) { struct snd_pmac *chip = snd_pcm_substream_chip(subs); return snd_pmac_pcm_close(chip, &chip->capture, subs); } /* */ static const struct snd_pcm_ops snd_pmac_playback_ops = { .open = snd_pmac_playback_open, .close = snd_pmac_playback_close, .prepare = snd_pmac_playback_prepare, .trigger = snd_pmac_playback_trigger, .pointer = snd_pmac_playback_pointer, }; static const struct snd_pcm_ops snd_pmac_capture_ops = { .open = snd_pmac_capture_open, .close = snd_pmac_capture_close, .prepare = snd_pmac_capture_prepare, .trigger = snd_pmac_capture_trigger, .pointer = snd_pmac_capture_pointer, }; int snd_pmac_pcm_new(struct snd_pmac *chip) { struct snd_pcm *pcm; int err; int num_captures = 1; if (! chip->can_capture) num_captures = 0; err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm); if (err < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops); if (chip->can_capture) snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops); pcm->private_data = chip; pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; strcpy(pcm->name, chip->card->shortname); chip->pcm = pcm; chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE; if (chip->can_byte_swap) chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE; chip->playback.cur_formats = chip->formats_ok; chip->capture.cur_formats = chip->formats_ok; chip->playback.cur_freqs = chip->freqs_ok; chip->capture.cur_freqs = chip->freqs_ok; /* preallocate 64k buffer */ snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &chip->pdev->dev, 64 * 1024, 64 * 1024); return 0; } static void snd_pmac_dbdma_reset(struct snd_pmac *chip) { out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); snd_pmac_wait_ack(&chip->playback); out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); snd_pmac_wait_ack(&chip->capture); } /* * handling beep */ void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed) { struct pmac_stream *rec = &chip->playback; snd_pmac_dma_stop(rec); chip->extra_dma.cmds->req_count = cpu_to_le16(bytes); chip->extra_dma.cmds->xfer_status = cpu_to_le16(0); chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr); chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr); chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS); out_le32(&chip->awacs->control, (in_le32(&chip->awacs->control) & ~0x1f00) | (speed << 8)); out_le32(&chip->awacs->byteswap, 0); snd_pmac_dma_set_command(rec, &chip->extra_dma); snd_pmac_dma_run(rec, RUN); } void snd_pmac_beep_dma_stop(struct snd_pmac *chip) { snd_pmac_dma_stop(&chip->playback); chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP); snd_pmac_pcm_set_format(chip); /* reset format */ } /* * interrupt handlers */ static irqreturn_t snd_pmac_tx_intr(int irq, void *devid) { struct snd_pmac *chip = devid; snd_pmac_pcm_update(chip, &chip->playback); return IRQ_HANDLED; } static irqreturn_t snd_pmac_rx_intr(int irq, void *devid) { struct snd_pmac *chip = devid; snd_pmac_pcm_update(chip, &chip->capture); return IRQ_HANDLED; } static irqreturn_t snd_pmac_ctrl_intr(int irq, void *devid) { struct snd_pmac *chip = devid; int ctrl = in_le32(&chip->awacs->control); /*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/ if (ctrl & MASK_PORTCHG) { /* do something when headphone is plugged/unplugged? */ if (chip->update_automute) chip->update_automute(chip, 1); } if (ctrl & MASK_CNTLERR) { int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16; if (err && chip->model <= PMAC_SCREAMER) snd_printk(KERN_DEBUG "error %x\n", err); } /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */ out_le32(&chip->awacs->control, ctrl); return IRQ_HANDLED; } /* * a wrapper to feature call for compatibility */ static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable) { if (ppc_md.feature_call) ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable); } /* * release resources */ static int snd_pmac_free(struct snd_pmac *chip) { /* stop sounds */ if (chip->initialized) { snd_pmac_dbdma_reset(chip); /* disable interrupts from awacs interface */ out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff); } if (chip->node) snd_pmac_sound_feature(chip, 0); /* clean up mixer if any */ if (chip->mixer_free) chip->mixer_free(chip); snd_pmac_detach_beep(chip); /* release resources */ if (chip->irq >= 0) free_irq(chip->irq, (void*)chip); if (chip->tx_irq >= 0) free_irq(chip->tx_irq, (void*)chip); if (chip->rx_irq >= 0) free_irq(chip->rx_irq, (void*)chip); snd_pmac_dbdma_free(chip, &chip->playback.cmd); snd_pmac_dbdma_free(chip, &chip->capture.cmd); snd_pmac_dbdma_free(chip, &chip->extra_dma); snd_pmac_dbdma_free(chip, &emergency_dbdma); iounmap(chip->macio_base); iounmap(chip->latch_base); iounmap(chip->awacs); iounmap(chip->playback.dma); iounmap(chip->capture.dma); if (chip->node) { int i; for (i = 0; i < 3; i++) { if (chip->requested & (1 << i)) release_mem_region(chip->rsrc[i].start, resource_size(&chip->rsrc[i])); } } pci_dev_put(chip->pdev); of_node_put(chip->node); kfree(chip); return 0; } /* * free the device */ static int snd_pmac_dev_free(struct snd_device *device) { struct snd_pmac *chip = device->device_data; return snd_pmac_free(chip); } /* * check the machine support byteswap (little-endian) */ static void detect_byte_swap(struct snd_pmac *chip) { struct device_node *mio; /* if seems that Keylargo can't byte-swap */ for (mio = chip->node->parent; mio; mio = mio->parent) { if (of_node_name_eq(mio, "mac-io")) { if (of_device_is_compatible(mio, "Keylargo")) chip->can_byte_swap = 0; break; } } /* it seems the Pismo & iBook can't byte-swap in hardware. */ if (of_machine_is_compatible("PowerBook3,1") || of_machine_is_compatible("PowerBook2,1")) chip->can_byte_swap = 0 ; if (of_machine_is_compatible("PowerBook2,1")) chip->can_duplex = 0; } /* * detect a sound chip */ static int snd_pmac_detect(struct snd_pmac *chip) { struct device_node *sound; struct device_node *dn; const unsigned int *prop; unsigned int l; struct macio_chip* macio; if (!machine_is(powermac)) return -ENODEV; chip->subframe = 0; chip->revision = 0; chip->freqs_ok = 0xff; /* all ok */ chip->model = PMAC_AWACS; chip->can_byte_swap = 1; chip->can_duplex = 1; chip->can_capture = 1; chip->num_freqs = ARRAY_SIZE(awacs_freqs); chip->freq_table = awacs_freqs; chip->pdev = NULL; chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */ /* check machine type */ if (of_machine_is_compatible("AAPL,3400/2400") || of_machine_is_compatible("AAPL,3500")) chip->is_pbook_3400 = 1; else if (of_machine_is_compatible("PowerBook1,1") || of_machine_is_compatible("AAPL,PowerBook1998")) chip->is_pbook_G3 = 1; chip->node = of_find_node_by_name(NULL, "awacs"); sound = of_node_get(chip->node); /* * powermac G3 models have a node called "davbus" * with a child called "sound". */ if (!chip->node) chip->node = of_find_node_by_name(NULL, "davbus"); /* * if we didn't find a davbus device, try 'i2s-a' since * this seems to be what iBooks have */ if (! chip->node) { chip->node = of_find_node_by_name(NULL, "i2s-a"); if (chip->node && chip->node->parent && chip->node->parent->parent) { if (of_device_is_compatible(chip->node->parent->parent, "K2-Keylargo")) chip->is_k2 = 1; } } if (! chip->node) return -ENODEV; if (!sound) { for_each_node_by_name(sound, "sound") if (sound->parent == chip->node) break; } if (! sound) { of_node_put(chip->node); chip->node = NULL; return -ENODEV; } prop = of_get_property(sound, "sub-frame", NULL); if (prop && *prop < 16) chip->subframe = *prop; prop = of_get_property(sound, "layout-id", NULL); if (prop) { /* partly deprecate snd-powermac, for those machines * that have a layout-id property for now */ printk(KERN_INFO "snd-powermac no longer handles any " "machines with a layout-id property " "in the device-tree, use snd-aoa.\n"); of_node_put(sound); of_node_put(chip->node); chip->node = NULL; return -ENODEV; } /* This should be verified on older screamers */ if (of_device_is_compatible(sound, "screamer")) { chip->model = PMAC_SCREAMER; // chip->can_byte_swap = 0; /* FIXME: check this */ } if (of_device_is_compatible(sound, "burgundy")) { chip->model = PMAC_BURGUNDY; chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ } if (of_device_is_compatible(sound, "daca")) { chip->model = PMAC_DACA; chip->can_capture = 0; /* no capture */ chip->can_duplex = 0; // chip->can_byte_swap = 0; /* FIXME: check this */ chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ } if (of_device_is_compatible(sound, "tumbler")) { chip->model = PMAC_TUMBLER; chip->can_capture = of_machine_is_compatible("PowerMac4,2") || of_machine_is_compatible("PowerBook3,2") || of_machine_is_compatible("PowerBook3,3") || of_machine_is_compatible("PowerBook4,1") || of_machine_is_compatible("PowerBook4,2") || of_machine_is_compatible("PowerBook4,3"); chip->can_duplex = 0; // chip->can_byte_swap = 0; /* FIXME: check this */ chip->num_freqs = ARRAY_SIZE(tumbler_freqs); chip->freq_table = tumbler_freqs; chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ } if (of_device_is_compatible(sound, "snapper")) { chip->model = PMAC_SNAPPER; // chip->can_byte_swap = 0; /* FIXME: check this */ chip->num_freqs = ARRAY_SIZE(tumbler_freqs); chip->freq_table = tumbler_freqs; chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ } prop = of_get_property(sound, "device-id", NULL); if (prop) chip->device_id = *prop; dn = of_find_node_by_name(NULL, "perch"); chip->has_iic = (dn != NULL); of_node_put(dn); /* We need the PCI device for DMA allocations, let's use a crude method * for now ... */ macio = macio_find(chip->node, macio_unknown); if (macio == NULL) printk(KERN_WARNING "snd-powermac: can't locate macio !\n"); else { struct pci_dev *pdev = NULL; for_each_pci_dev(pdev) { struct device_node *np = pci_device_to_OF_node(pdev); if (np && np == macio->of_node) { chip->pdev = pdev; break; } } } if (chip->pdev == NULL) printk(KERN_WARNING "snd-powermac: can't locate macio PCI" " device !\n"); detect_byte_swap(chip); /* look for a property saying what sample rates are available */ prop = of_get_property(sound, "sample-rates", &l); if (! prop) prop = of_get_property(sound, "output-frame-rates", &l); if (prop) { int i; chip->freqs_ok = 0; for (l /= sizeof(int); l > 0; --l) { unsigned int r = *prop++; /* Apple 'Fixed' format */ if (r >= 0x10000) r >>= 16; for (i = 0; i < chip->num_freqs; ++i) { if (r == chip->freq_table[i]) { chip->freqs_ok |= (1 << i); break; } } } } else { /* assume only 44.1khz */ chip->freqs_ok = 1; } of_node_put(sound); return 0; } #ifdef PMAC_SUPPORT_AUTOMUTE /* * auto-mute */ static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = chip->auto_mute; return 0; } static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); if (ucontrol->value.integer.value[0] != chip->auto_mute) { chip->auto_mute = !!ucontrol->value.integer.value[0]; if (chip->update_automute) chip->update_automute(chip, 1); return 1; } return 0; } static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); if (chip->detect_headphone) ucontrol->value.integer.value[0] = chip->detect_headphone(chip); else ucontrol->value.integer.value[0] = 0; return 0; } static const struct snd_kcontrol_new auto_mute_controls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Auto Mute Switch", .info = snd_pmac_boolean_mono_info, .get = pmac_auto_mute_get, .put = pmac_auto_mute_put, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Headphone Detection", .access = SNDRV_CTL_ELEM_ACCESS_READ, .info = snd_pmac_boolean_mono_info, .get = pmac_hp_detect_get, }, }; int snd_pmac_add_automute(struct snd_pmac *chip) { int err; chip->auto_mute = 1; err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip)); if (err < 0) { printk(KERN_ERR "snd-powermac: Failed to add automute control\n"); return err; } chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip); return snd_ctl_add(chip->card, chip->hp_detect_ctl); } #endif /* PMAC_SUPPORT_AUTOMUTE */ /* * create and detect a pmac chip record */ int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return) { struct snd_pmac *chip; struct device_node *np; int i, err; unsigned int irq; unsigned long ctrl_addr, txdma_addr, rxdma_addr; static const struct snd_device_ops ops = { .dev_free = snd_pmac_dev_free, }; *chip_return = NULL; chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (chip == NULL) return -ENOMEM; chip->card = card; spin_lock_init(&chip->reg_lock); chip->irq = chip->tx_irq = chip->rx_irq = -1; chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK; chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE; err = snd_pmac_detect(chip); if (err < 0) goto __error; if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 || snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 || snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 || snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) { err = -ENOMEM; goto __error; } np = chip->node; chip->requested = 0; if (chip->is_k2) { static const char * const rnames[] = { "Sound Control", "Sound DMA" }; for (i = 0; i < 2; i ++) { if (of_address_to_resource(np->parent, i, &chip->rsrc[i])) { printk(KERN_ERR "snd: can't translate rsrc " " %d (%s)\n", i, rnames[i]); err = -ENODEV; goto __error; } if (request_mem_region(chip->rsrc[i].start, resource_size(&chip->rsrc[i]), rnames[i]) == NULL) { printk(KERN_ERR "snd: can't request rsrc " " %d (%s: %pR)\n", i, rnames[i], &chip->rsrc[i]); err = -ENODEV; goto __error; } chip->requested |= (1 << i); } ctrl_addr = chip->rsrc[0].start; txdma_addr = chip->rsrc[1].start; rxdma_addr = txdma_addr + 0x100; } else { static const char * const rnames[] = { "Sound Control", "Sound Tx DMA", "Sound Rx DMA" }; for (i = 0; i < 3; i ++) { if (of_address_to_resource(np, i, &chip->rsrc[i])) { printk(KERN_ERR "snd: can't translate rsrc " " %d (%s)\n", i, rnames[i]); err = -ENODEV; goto __error; } if (request_mem_region(chip->rsrc[i].start, resource_size(&chip->rsrc[i]), rnames[i]) == NULL) { printk(KERN_ERR "snd: can't request rsrc " " %d (%s: %pR)\n", i, rnames[i], &chip->rsrc[i]); err = -ENODEV; goto __error; } chip->requested |= (1 << i); } ctrl_addr = chip->rsrc[0].start; txdma_addr = chip->rsrc[1].start; rxdma_addr = chip->rsrc[2].start; } chip->awacs = ioremap(ctrl_addr, 0x1000); chip->playback.dma = ioremap(txdma_addr, 0x100); chip->capture.dma = ioremap(rxdma_addr, 0x100); if (chip->model <= PMAC_BURGUNDY) { irq = irq_of_parse_and_map(np, 0); if (request_irq(irq, snd_pmac_ctrl_intr, 0, "PMac", (void*)chip)) { snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq); err = -EBUSY; goto __error; } chip->irq = irq; } irq = irq_of_parse_and_map(np, 1); if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){ snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq); err = -EBUSY; goto __error; } chip->tx_irq = irq; irq = irq_of_parse_and_map(np, 2); if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) { snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq); err = -EBUSY; goto __error; } chip->rx_irq = irq; snd_pmac_sound_feature(chip, 1); /* reset & enable interrupts */ if (chip->model <= PMAC_BURGUNDY) out_le32(&chip->awacs->control, chip->control_mask); /* Powerbooks have odd ways of enabling inputs such as an expansion-bay CD or sound from an internal modem or a PC-card modem. */ if (chip->is_pbook_3400) { /* Enable CD and PC-card sound inputs. */ /* This is done by reading from address * f301a000, + 0x10 to enable the expansion-bay * CD sound input, + 0x80 to enable the PC-card * sound input. The 0x100 enables the SCSI bus * terminator power. */ chip->latch_base = ioremap (0xf301a000, 0x1000); in_8(chip->latch_base + 0x190); } else if (chip->is_pbook_G3) { struct device_node* mio; for (mio = chip->node->parent; mio; mio = mio->parent) { if (of_node_name_eq(mio, "mac-io")) { struct resource r; if (of_address_to_resource(mio, 0, &r) == 0) chip->macio_base = ioremap(r.start, 0x40); break; } } /* Enable CD sound input. */ /* The relevant bits for writing to this byte are 0x8f. * I haven't found out what the 0x80 bit does. * For the 0xf bits, writing 3 or 7 enables the CD * input, any other value disables it. Values * 1, 3, 5, 7 enable the microphone. Values 0, 2, * 4, 6, 8 - f enable the input from the modem. */ if (chip->macio_base) out_8(chip->macio_base + 0x37, 3); } /* Reset dbdma channels */ snd_pmac_dbdma_reset(chip); err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); if (err < 0) goto __error; *chip_return = chip; return 0; __error: snd_pmac_free(chip); return err; } /* * sleep notify for powerbook */ #ifdef CONFIG_PM /* * Save state when going to sleep, restore it afterwards. */ void snd_pmac_suspend(struct snd_pmac *chip) { unsigned long flags; snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot); if (chip->suspend) chip->suspend(chip); spin_lock_irqsave(&chip->reg_lock, flags); snd_pmac_beep_stop(chip); spin_unlock_irqrestore(&chip->reg_lock, flags); if (chip->irq >= 0) disable_irq(chip->irq); if (chip->tx_irq >= 0) disable_irq(chip->tx_irq); if (chip->rx_irq >= 0) disable_irq(chip->rx_irq); snd_pmac_sound_feature(chip, 0); } void snd_pmac_resume(struct snd_pmac *chip) { snd_pmac_sound_feature(chip, 1); if (chip->resume) chip->resume(chip); /* enable CD sound input */ if (chip->macio_base && chip->is_pbook_G3) out_8(chip->macio_base + 0x37, 3); else if (chip->is_pbook_3400) in_8(chip->latch_base + 0x190); snd_pmac_pcm_set_format(chip); if (chip->irq >= 0) enable_irq(chip->irq); if (chip->tx_irq >= 0) enable_irq(chip->tx_irq); if (chip->rx_irq >= 0) enable_irq(chip->rx_irq); snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0); } #endif /* CONFIG_PM */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1