Contributors: 15
Author Tokens Token Proportion Commits Commit Proportion
Arnaud Patard 2227 60.29% 2 5.13%
Olivier Moysan 919 24.88% 11 28.21%
Liam Girdwood 171 4.63% 1 2.56%
Kuninori Morimoto 91 2.46% 3 7.69%
Brian Austin 63 1.71% 3 7.69%
Mark Brown 63 1.71% 4 10.26%
Axel Lin 51 1.38% 4 10.26%
Guillermo Rodriguez 47 1.27% 1 2.56%
Takashi Iwai 23 0.62% 2 5.13%
Uwe Kleine-König 23 0.62% 1 2.56%
Lars-Peter Clausen 10 0.27% 2 5.13%
Thomas Gleixner 2 0.05% 1 2.56%
Charles Keepax 2 0.05% 2 5.13%
Bhumika Goyal 1 0.03% 1 2.56%
Christophe Jaillet 1 0.03% 1 2.56%
Total 3694 39


// SPDX-License-Identifier: GPL-2.0-only
/*
 * cs42l51.c
 *
 * ASoC Driver for Cirrus Logic CS42L51 codecs
 *
 * Copyright (c) 2010 Arnaud Patard <apatard@mandriva.com>
 *
 * Based on cs4270.c - Copyright (c) Freescale Semiconductor
 *
 * For now:
 *  - Only I2C is support. Not SPI
 *  - master mode *NOT* supported
 */

#include <linux/clk.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/soc.h>
#include <sound/tlv.h>
#include <sound/initval.h>
#include <sound/pcm_params.h>
#include <sound/pcm.h>
#include <linux/gpio/consumer.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>

#include "cs42l51.h"

enum master_slave_mode {
	MODE_SLAVE,
	MODE_SLAVE_AUTO,
	MODE_MASTER,
};

static const char * const cs42l51_supply_names[] = {
	"VL",
	"VD",
	"VA",
	"VAHP",
};

struct cs42l51_private {
	unsigned int mclk;
	struct clk *mclk_handle;
	unsigned int audio_mode;	/* The mode (I2S or left-justified) */
	enum master_slave_mode func;
	struct regulator_bulk_data supplies[ARRAY_SIZE(cs42l51_supply_names)];
	struct gpio_desc *reset_gpio;
	struct regmap *regmap;
};

#define CS42L51_FORMATS (SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S18_3LE | \
			 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_LE)

static int cs42l51_get_chan_mix(struct snd_kcontrol *kcontrol,
			struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
	unsigned long value = snd_soc_component_read(component, CS42L51_PCM_MIXER)&3;

	switch (value) {
	default:
	case 0:
		ucontrol->value.enumerated.item[0] = 0;
		break;
	/* same value : (L+R)/2 and (R+L)/2 */
	case 1:
	case 2:
		ucontrol->value.enumerated.item[0] = 1;
		break;
	case 3:
		ucontrol->value.enumerated.item[0] = 2;
		break;
	}

	return 0;
}

#define CHAN_MIX_NORMAL	0x00
#define CHAN_MIX_BOTH	0x55
#define CHAN_MIX_SWAP	0xFF

static int cs42l51_set_chan_mix(struct snd_kcontrol *kcontrol,
			struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
	unsigned char val;

	switch (ucontrol->value.enumerated.item[0]) {
	default:
	case 0:
		val = CHAN_MIX_NORMAL;
		break;
	case 1:
		val = CHAN_MIX_BOTH;
		break;
	case 2:
		val = CHAN_MIX_SWAP;
		break;
	}

	snd_soc_component_write(component, CS42L51_PCM_MIXER, val);

	return 1;
}

static const DECLARE_TLV_DB_SCALE(adc_pcm_tlv, -5150, 50, 0);
static const DECLARE_TLV_DB_SCALE(tone_tlv, -1050, 150, 0);

static const DECLARE_TLV_DB_SCALE(aout_tlv, -10200, 50, 0);

static const DECLARE_TLV_DB_SCALE(boost_tlv, 1600, 1600, 0);
static const DECLARE_TLV_DB_SCALE(adc_boost_tlv, 2000, 2000, 0);
static const char *chan_mix[] = {
	"L R",
	"L+R",
	"R L",
};

static const DECLARE_TLV_DB_SCALE(pga_tlv, -300, 50, 0);
static const DECLARE_TLV_DB_SCALE(adc_att_tlv, -9600, 100, 0);

static SOC_ENUM_SINGLE_EXT_DECL(cs42l51_chan_mix, chan_mix);

static const struct snd_kcontrol_new cs42l51_snd_controls[] = {
	SOC_DOUBLE_R_SX_TLV("PCM Playback Volume",
			CS42L51_PCMA_VOL, CS42L51_PCMB_VOL,
			0, 0x19, 0x7F, adc_pcm_tlv),
	SOC_DOUBLE_R("PCM Playback Switch",
			CS42L51_PCMA_VOL, CS42L51_PCMB_VOL, 7, 1, 1),
	SOC_DOUBLE_R_SX_TLV("Analog Playback Volume",
			CS42L51_AOUTA_VOL, CS42L51_AOUTB_VOL,
			0, 0x34, 0xE4, aout_tlv),
	SOC_DOUBLE_R_SX_TLV("ADC Mixer Volume",
			CS42L51_ADCA_VOL, CS42L51_ADCB_VOL,
			0, 0x19, 0x7F, adc_pcm_tlv),
	SOC_DOUBLE_R("ADC Mixer Switch",
			CS42L51_ADCA_VOL, CS42L51_ADCB_VOL, 7, 1, 1),
	SOC_DOUBLE_R_SX_TLV("ADC Attenuator Volume",
			CS42L51_ADCA_ATT, CS42L51_ADCB_ATT,
			0, 0xA0, 96, adc_att_tlv),
	SOC_DOUBLE_R_SX_TLV("PGA Volume",
			CS42L51_ALC_PGA_CTL, CS42L51_ALC_PGB_CTL,
			0, 0x1A, 30, pga_tlv),
	SOC_SINGLE("Playback Deemphasis Switch", CS42L51_DAC_CTL, 3, 1, 0),
	SOC_SINGLE("Auto-Mute Switch", CS42L51_DAC_CTL, 2, 1, 0),
	SOC_SINGLE("Soft Ramp Switch", CS42L51_DAC_CTL, 1, 1, 0),
	SOC_SINGLE("Zero Cross Switch", CS42L51_DAC_CTL, 0, 0, 0),
	SOC_DOUBLE_TLV("Mic Boost Volume",
			CS42L51_MIC_CTL, 0, 1, 1, 0, boost_tlv),
	SOC_DOUBLE_TLV("ADC Boost Volume",
		       CS42L51_MIC_CTL, 5, 6, 1, 0, adc_boost_tlv),
	SOC_SINGLE_TLV("Bass Volume", CS42L51_TONE_CTL, 0, 0xf, 1, tone_tlv),
	SOC_SINGLE_TLV("Treble Volume", CS42L51_TONE_CTL, 4, 0xf, 1, tone_tlv),
	SOC_ENUM_EXT("PCM channel mixer",
			cs42l51_chan_mix,
			cs42l51_get_chan_mix, cs42l51_set_chan_mix),
};

/*
 * to power down, one must:
 * 1.) Enable the PDN bit
 * 2.) enable power-down for the select channels
 * 3.) disable the PDN bit.
 */
static int cs42l51_pdn_event(struct snd_soc_dapm_widget *w,
		struct snd_kcontrol *kcontrol, int event)
{
	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);

	switch (event) {
	case SND_SOC_DAPM_PRE_PMD:
		snd_soc_component_update_bits(component, CS42L51_POWER_CTL1,
				    CS42L51_POWER_CTL1_PDN,
				    CS42L51_POWER_CTL1_PDN);
		break;
	default:
	case SND_SOC_DAPM_POST_PMD:
		snd_soc_component_update_bits(component, CS42L51_POWER_CTL1,
				    CS42L51_POWER_CTL1_PDN, 0);
		break;
	}

	return 0;
}

static const char *cs42l51_dac_names[] = {"Direct PCM",
	"DSP PCM", "ADC"};
static SOC_ENUM_SINGLE_DECL(cs42l51_dac_mux_enum,
			    CS42L51_DAC_CTL, 6, cs42l51_dac_names);
static const struct snd_kcontrol_new cs42l51_dac_mux_controls =
	SOC_DAPM_ENUM("Route", cs42l51_dac_mux_enum);

static const char *cs42l51_adcl_names[] = {"AIN1 Left", "AIN2 Left",
	"MIC Left", "MIC+preamp Left"};
static SOC_ENUM_SINGLE_DECL(cs42l51_adcl_mux_enum,
			    CS42L51_ADC_INPUT, 4, cs42l51_adcl_names);
static const struct snd_kcontrol_new cs42l51_adcl_mux_controls =
	SOC_DAPM_ENUM("Route", cs42l51_adcl_mux_enum);

static const char *cs42l51_adcr_names[] = {"AIN1 Right", "AIN2 Right",
	"MIC Right", "MIC+preamp Right"};
static SOC_ENUM_SINGLE_DECL(cs42l51_adcr_mux_enum,
			    CS42L51_ADC_INPUT, 6, cs42l51_adcr_names);
static const struct snd_kcontrol_new cs42l51_adcr_mux_controls =
	SOC_DAPM_ENUM("Route", cs42l51_adcr_mux_enum);

static const struct snd_soc_dapm_widget cs42l51_dapm_widgets[] = {
	SND_SOC_DAPM_SUPPLY("Mic Bias", CS42L51_MIC_POWER_CTL, 1, 1, NULL,
			    SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
	SND_SOC_DAPM_PGA_E("Left PGA", CS42L51_POWER_CTL1, 3, 1, NULL, 0,
		cs42l51_pdn_event, SND_SOC_DAPM_PRE_POST_PMD),
	SND_SOC_DAPM_PGA_E("Right PGA", CS42L51_POWER_CTL1, 4, 1, NULL, 0,
		cs42l51_pdn_event, SND_SOC_DAPM_PRE_POST_PMD),
	SND_SOC_DAPM_ADC_E("Left ADC", "Left HiFi Capture",
		CS42L51_POWER_CTL1, 1, 1,
		cs42l51_pdn_event, SND_SOC_DAPM_PRE_POST_PMD),
	SND_SOC_DAPM_ADC_E("Right ADC", "Right HiFi Capture",
		CS42L51_POWER_CTL1, 2, 1,
		cs42l51_pdn_event, SND_SOC_DAPM_PRE_POST_PMD),
	SND_SOC_DAPM_DAC_E("Left DAC", NULL, CS42L51_POWER_CTL1, 5, 1,
			   cs42l51_pdn_event, SND_SOC_DAPM_PRE_POST_PMD),
	SND_SOC_DAPM_DAC_E("Right DAC", NULL, CS42L51_POWER_CTL1, 6, 1,
			   cs42l51_pdn_event, SND_SOC_DAPM_PRE_POST_PMD),

	/* analog/mic */
	SND_SOC_DAPM_INPUT("AIN1L"),
	SND_SOC_DAPM_INPUT("AIN1R"),
	SND_SOC_DAPM_INPUT("AIN2L"),
	SND_SOC_DAPM_INPUT("AIN2R"),
	SND_SOC_DAPM_INPUT("MICL"),
	SND_SOC_DAPM_INPUT("MICR"),

	SND_SOC_DAPM_MIXER("Mic Preamp Left",
		CS42L51_MIC_POWER_CTL, 2, 1, NULL, 0),
	SND_SOC_DAPM_MIXER("Mic Preamp Right",
		CS42L51_MIC_POWER_CTL, 3, 1, NULL, 0),

	/* HP */
	SND_SOC_DAPM_OUTPUT("HPL"),
	SND_SOC_DAPM_OUTPUT("HPR"),

	/* mux */
	SND_SOC_DAPM_MUX("DAC Mux", SND_SOC_NOPM, 0, 0,
		&cs42l51_dac_mux_controls),
	SND_SOC_DAPM_MUX("PGA-ADC Mux Left", SND_SOC_NOPM, 0, 0,
		&cs42l51_adcl_mux_controls),
	SND_SOC_DAPM_MUX("PGA-ADC Mux Right", SND_SOC_NOPM, 0, 0,
		&cs42l51_adcr_mux_controls),
};

static int mclk_event(struct snd_soc_dapm_widget *w,
		      struct snd_kcontrol *kcontrol, int event)
{
	struct snd_soc_component *comp = snd_soc_dapm_to_component(w->dapm);
	struct cs42l51_private *cs42l51 = snd_soc_component_get_drvdata(comp);

	switch (event) {
	case SND_SOC_DAPM_PRE_PMU:
		return clk_prepare_enable(cs42l51->mclk_handle);
	case SND_SOC_DAPM_POST_PMD:
		/* Delay mclk shutdown to fulfill power-down sequence requirements */
		msleep(20);
		clk_disable_unprepare(cs42l51->mclk_handle);
		break;
	}

	return 0;
}

static const struct snd_soc_dapm_widget cs42l51_dapm_mclk_widgets[] = {
	SND_SOC_DAPM_SUPPLY("MCLK", SND_SOC_NOPM, 0, 0, mclk_event,
			    SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
};

static const struct snd_soc_dapm_route cs42l51_routes[] = {
	{"HPL", NULL, "Left DAC"},
	{"HPR", NULL, "Right DAC"},

	{"Right DAC", NULL, "DAC Mux"},
	{"Left DAC", NULL, "DAC Mux"},

	{"DAC Mux", "Direct PCM", "Playback"},
	{"DAC Mux", "DSP PCM", "Playback"},

	{"Left ADC", NULL, "Left PGA"},
	{"Right ADC", NULL, "Right PGA"},

	{"Mic Preamp Left",  NULL,  "MICL"},
	{"Mic Preamp Right", NULL,  "MICR"},

	{"PGA-ADC Mux Left",  "AIN1 Left",        "AIN1L" },
	{"PGA-ADC Mux Left",  "AIN2 Left",        "AIN2L" },
	{"PGA-ADC Mux Left",  "MIC Left",         "MICL"  },
	{"PGA-ADC Mux Left",  "MIC+preamp Left",  "Mic Preamp Left" },
	{"PGA-ADC Mux Right", "AIN1 Right",       "AIN1R" },
	{"PGA-ADC Mux Right", "AIN2 Right",       "AIN2R" },
	{"PGA-ADC Mux Right", "MIC Right",        "MICR" },
	{"PGA-ADC Mux Right", "MIC+preamp Right", "Mic Preamp Right" },

	{"Left PGA", NULL, "PGA-ADC Mux Left"},
	{"Right PGA", NULL, "PGA-ADC Mux Right"},
};

static int cs42l51_set_dai_fmt(struct snd_soc_dai *codec_dai,
		unsigned int format)
{
	struct snd_soc_component *component = codec_dai->component;
	struct cs42l51_private *cs42l51 = snd_soc_component_get_drvdata(component);

	switch (format & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
	case SND_SOC_DAIFMT_LEFT_J:
	case SND_SOC_DAIFMT_RIGHT_J:
		cs42l51->audio_mode = format & SND_SOC_DAIFMT_FORMAT_MASK;
		break;
	default:
		dev_err(component->dev, "invalid DAI format\n");
		return -EINVAL;
	}

	switch (format & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBM_CFM:
		cs42l51->func = MODE_MASTER;
		break;
	case SND_SOC_DAIFMT_CBS_CFS:
		cs42l51->func = MODE_SLAVE_AUTO;
		break;
	default:
		dev_err(component->dev, "Unknown master/slave configuration\n");
		return -EINVAL;
	}

	return 0;
}

struct cs42l51_ratios {
	unsigned int ratio;
	unsigned char speed_mode;
	unsigned char mclk;
};

static struct cs42l51_ratios slave_ratios[] = {
	{  512, CS42L51_QSM_MODE, 0 }, {  768, CS42L51_QSM_MODE, 0 },
	{ 1024, CS42L51_QSM_MODE, 0 }, { 1536, CS42L51_QSM_MODE, 0 },
	{ 2048, CS42L51_QSM_MODE, 0 }, { 3072, CS42L51_QSM_MODE, 0 },
	{  256, CS42L51_HSM_MODE, 0 }, {  384, CS42L51_HSM_MODE, 0 },
	{  512, CS42L51_HSM_MODE, 0 }, {  768, CS42L51_HSM_MODE, 0 },
	{ 1024, CS42L51_HSM_MODE, 0 }, { 1536, CS42L51_HSM_MODE, 0 },
	{  128, CS42L51_SSM_MODE, 0 }, {  192, CS42L51_SSM_MODE, 0 },
	{  256, CS42L51_SSM_MODE, 0 }, {  384, CS42L51_SSM_MODE, 0 },
	{  512, CS42L51_SSM_MODE, 0 }, {  768, CS42L51_SSM_MODE, 0 },
	{  128, CS42L51_DSM_MODE, 0 }, {  192, CS42L51_DSM_MODE, 0 },
	{  256, CS42L51_DSM_MODE, 0 }, {  384, CS42L51_DSM_MODE, 0 },
};

static struct cs42l51_ratios slave_auto_ratios[] = {
	{ 1024, CS42L51_QSM_MODE, 0 }, { 1536, CS42L51_QSM_MODE, 0 },
	{ 2048, CS42L51_QSM_MODE, 1 }, { 3072, CS42L51_QSM_MODE, 1 },
	{  512, CS42L51_HSM_MODE, 0 }, {  768, CS42L51_HSM_MODE, 0 },
	{ 1024, CS42L51_HSM_MODE, 1 }, { 1536, CS42L51_HSM_MODE, 1 },
	{  256, CS42L51_SSM_MODE, 0 }, {  384, CS42L51_SSM_MODE, 0 },
	{  512, CS42L51_SSM_MODE, 1 }, {  768, CS42L51_SSM_MODE, 1 },
	{  128, CS42L51_DSM_MODE, 0 }, {  192, CS42L51_DSM_MODE, 0 },
	{  256, CS42L51_DSM_MODE, 1 }, {  384, CS42L51_DSM_MODE, 1 },
};

/*
 * Master mode mclk/fs ratios.
 * Recommended configurations are SSM for 4-50khz and DSM for 50-100kHz ranges
 * The table below provides support of following ratios:
 * 128: SSM (%128) with div2 disabled
 * 256: SSM (%128) with div2 enabled
 * In both cases, if sampling rate is above 50kHz, SSM is overridden
 * with DSM (%128) configuration
 */
static struct cs42l51_ratios master_ratios[] = {
	{ 128, CS42L51_SSM_MODE, 0 }, { 256, CS42L51_SSM_MODE, 1 },
};

static int cs42l51_set_dai_sysclk(struct snd_soc_dai *codec_dai,
		int clk_id, unsigned int freq, int dir)
{
	struct snd_soc_component *component = codec_dai->component;
	struct cs42l51_private *cs42l51 = snd_soc_component_get_drvdata(component);

	cs42l51->mclk = freq;
	return 0;
}

static int cs42l51_hw_params(struct snd_pcm_substream *substream,
		struct snd_pcm_hw_params *params,
		struct snd_soc_dai *dai)
{
	struct snd_soc_component *component = dai->component;
	struct cs42l51_private *cs42l51 = snd_soc_component_get_drvdata(component);
	int ret;
	unsigned int i;
	unsigned int rate;
	unsigned int ratio;
	struct cs42l51_ratios *ratios = NULL;
	int nr_ratios = 0;
	int intf_ctl, power_ctl, fmt, mode;

	switch (cs42l51->func) {
	case MODE_MASTER:
		ratios = master_ratios;
		nr_ratios = ARRAY_SIZE(master_ratios);
		break;
	case MODE_SLAVE:
		ratios = slave_ratios;
		nr_ratios = ARRAY_SIZE(slave_ratios);
		break;
	case MODE_SLAVE_AUTO:
		ratios = slave_auto_ratios;
		nr_ratios = ARRAY_SIZE(slave_auto_ratios);
		break;
	}

	/* Figure out which MCLK/LRCK ratio to use */
	rate = params_rate(params);     /* Sampling rate, in Hz */
	ratio = cs42l51->mclk / rate;    /* MCLK/LRCK ratio */
	for (i = 0; i < nr_ratios; i++) {
		if (ratios[i].ratio == ratio)
			break;
	}

	if (i == nr_ratios) {
		/* We did not find a matching ratio */
		dev_err(component->dev, "could not find matching ratio\n");
		return -EINVAL;
	}

	intf_ctl = snd_soc_component_read(component, CS42L51_INTF_CTL);
	power_ctl = snd_soc_component_read(component, CS42L51_MIC_POWER_CTL);

	intf_ctl &= ~(CS42L51_INTF_CTL_MASTER | CS42L51_INTF_CTL_ADC_I2S
			| CS42L51_INTF_CTL_DAC_FORMAT(7));
	power_ctl &= ~(CS42L51_MIC_POWER_CTL_SPEED(3)
			| CS42L51_MIC_POWER_CTL_MCLK_DIV2);

	switch (cs42l51->func) {
	case MODE_MASTER:
		intf_ctl |= CS42L51_INTF_CTL_MASTER;
		mode = ratios[i].speed_mode;
		/* Force DSM mode if sampling rate is above 50kHz */
		if (rate > 50000)
			mode = CS42L51_DSM_MODE;
		power_ctl |= CS42L51_MIC_POWER_CTL_SPEED(mode);
		/*
		 * Auto detect mode is not applicable for master mode and has to
		 * be disabled. Otherwise SPEED[1:0] bits will be ignored.
		 */
		power_ctl &= ~CS42L51_MIC_POWER_CTL_AUTO;
		break;
	case MODE_SLAVE:
		power_ctl |= CS42L51_MIC_POWER_CTL_SPEED(ratios[i].speed_mode);
		break;
	case MODE_SLAVE_AUTO:
		power_ctl |= CS42L51_MIC_POWER_CTL_AUTO;
		break;
	}

	switch (cs42l51->audio_mode) {
	case SND_SOC_DAIFMT_I2S:
		intf_ctl |= CS42L51_INTF_CTL_ADC_I2S;
		intf_ctl |= CS42L51_INTF_CTL_DAC_FORMAT(CS42L51_DAC_DIF_I2S);
		break;
	case SND_SOC_DAIFMT_LEFT_J:
		intf_ctl |= CS42L51_INTF_CTL_DAC_FORMAT(CS42L51_DAC_DIF_LJ24);
		break;
	case SND_SOC_DAIFMT_RIGHT_J:
		switch (params_width(params)) {
		case 16:
			fmt = CS42L51_DAC_DIF_RJ16;
			break;
		case 18:
			fmt = CS42L51_DAC_DIF_RJ18;
			break;
		case 20:
			fmt = CS42L51_DAC_DIF_RJ20;
			break;
		case 24:
			fmt = CS42L51_DAC_DIF_RJ24;
			break;
		default:
			dev_err(component->dev, "unknown format\n");
			return -EINVAL;
		}
		intf_ctl |= CS42L51_INTF_CTL_DAC_FORMAT(fmt);
		break;
	default:
		dev_err(component->dev, "unknown format\n");
		return -EINVAL;
	}

	if (ratios[i].mclk)
		power_ctl |= CS42L51_MIC_POWER_CTL_MCLK_DIV2;

	ret = snd_soc_component_write(component, CS42L51_INTF_CTL, intf_ctl);
	if (ret < 0)
		return ret;

	ret = snd_soc_component_write(component, CS42L51_MIC_POWER_CTL, power_ctl);
	if (ret < 0)
		return ret;

	return 0;
}

static int cs42l51_dai_mute(struct snd_soc_dai *dai, int mute, int direction)
{
	struct snd_soc_component *component = dai->component;
	int reg;
	int mask = CS42L51_DAC_OUT_CTL_DACA_MUTE|CS42L51_DAC_OUT_CTL_DACB_MUTE;

	reg = snd_soc_component_read(component, CS42L51_DAC_OUT_CTL);

	if (mute)
		reg |= mask;
	else
		reg &= ~mask;

	return snd_soc_component_write(component, CS42L51_DAC_OUT_CTL, reg);
}

static int cs42l51_of_xlate_dai_id(struct snd_soc_component *component,
				   struct device_node *endpoint)
{
	/* return dai id 0, whatever the endpoint index */
	return 0;
}

static const struct snd_soc_dai_ops cs42l51_dai_ops = {
	.hw_params      = cs42l51_hw_params,
	.set_sysclk     = cs42l51_set_dai_sysclk,
	.set_fmt        = cs42l51_set_dai_fmt,
	.mute_stream    = cs42l51_dai_mute,
	.no_capture_mute = 1,
};

static struct snd_soc_dai_driver cs42l51_dai = {
	.name = "cs42l51-hifi",
	.playback = {
		.stream_name = "Playback",
		.channels_min = 1,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_96000,
		.formats = CS42L51_FORMATS,
	},
	.capture = {
		.stream_name = "Capture",
		.channels_min = 1,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_96000,
		.formats = CS42L51_FORMATS,
	},
	.ops = &cs42l51_dai_ops,
};

static int cs42l51_component_probe(struct snd_soc_component *component)
{
	int ret, reg;
	struct snd_soc_dapm_context *dapm;
	struct cs42l51_private *cs42l51;

	cs42l51 = snd_soc_component_get_drvdata(component);
	dapm = snd_soc_component_get_dapm(component);

	if (cs42l51->mclk_handle)
		snd_soc_dapm_new_controls(dapm, cs42l51_dapm_mclk_widgets, 1);

	/*
	 * DAC configuration
	 * - Use signal processor
	 * - auto mute
	 * - vol changes immediate
	 * - no de-emphasize
	 */
	reg = CS42L51_DAC_CTL_DATA_SEL(1)
		| CS42L51_DAC_CTL_AMUTE | CS42L51_DAC_CTL_DACSZ(0);
	ret = snd_soc_component_write(component, CS42L51_DAC_CTL, reg);
	if (ret < 0)
		return ret;

	return 0;
}

static const struct snd_soc_component_driver soc_component_device_cs42l51 = {
	.probe			= cs42l51_component_probe,
	.controls		= cs42l51_snd_controls,
	.num_controls		= ARRAY_SIZE(cs42l51_snd_controls),
	.dapm_widgets		= cs42l51_dapm_widgets,
	.num_dapm_widgets	= ARRAY_SIZE(cs42l51_dapm_widgets),
	.dapm_routes		= cs42l51_routes,
	.num_dapm_routes	= ARRAY_SIZE(cs42l51_routes),
	.of_xlate_dai_id	= cs42l51_of_xlate_dai_id,
	.idle_bias_on		= 1,
	.use_pmdown_time	= 1,
	.endianness		= 1,
};

static bool cs42l51_writeable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case CS42L51_POWER_CTL1:
	case CS42L51_MIC_POWER_CTL:
	case CS42L51_INTF_CTL:
	case CS42L51_MIC_CTL:
	case CS42L51_ADC_CTL:
	case CS42L51_ADC_INPUT:
	case CS42L51_DAC_OUT_CTL:
	case CS42L51_DAC_CTL:
	case CS42L51_ALC_PGA_CTL:
	case CS42L51_ALC_PGB_CTL:
	case CS42L51_ADCA_ATT:
	case CS42L51_ADCB_ATT:
	case CS42L51_ADCA_VOL:
	case CS42L51_ADCB_VOL:
	case CS42L51_PCMA_VOL:
	case CS42L51_PCMB_VOL:
	case CS42L51_BEEP_FREQ:
	case CS42L51_BEEP_VOL:
	case CS42L51_BEEP_CONF:
	case CS42L51_TONE_CTL:
	case CS42L51_AOUTA_VOL:
	case CS42L51_AOUTB_VOL:
	case CS42L51_PCM_MIXER:
	case CS42L51_LIMIT_THRES_DIS:
	case CS42L51_LIMIT_REL:
	case CS42L51_LIMIT_ATT:
	case CS42L51_ALC_EN:
	case CS42L51_ALC_REL:
	case CS42L51_ALC_THRES:
	case CS42L51_NOISE_CONF:
	case CS42L51_CHARGE_FREQ:
		return true;
	default:
		return false;
	}
}

static bool cs42l51_volatile_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case CS42L51_STATUS:
		return true;
	default:
		return false;
	}
}

static bool cs42l51_readable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case CS42L51_CHIP_REV_ID:
	case CS42L51_POWER_CTL1:
	case CS42L51_MIC_POWER_CTL:
	case CS42L51_INTF_CTL:
	case CS42L51_MIC_CTL:
	case CS42L51_ADC_CTL:
	case CS42L51_ADC_INPUT:
	case CS42L51_DAC_OUT_CTL:
	case CS42L51_DAC_CTL:
	case CS42L51_ALC_PGA_CTL:
	case CS42L51_ALC_PGB_CTL:
	case CS42L51_ADCA_ATT:
	case CS42L51_ADCB_ATT:
	case CS42L51_ADCA_VOL:
	case CS42L51_ADCB_VOL:
	case CS42L51_PCMA_VOL:
	case CS42L51_PCMB_VOL:
	case CS42L51_BEEP_FREQ:
	case CS42L51_BEEP_VOL:
	case CS42L51_BEEP_CONF:
	case CS42L51_TONE_CTL:
	case CS42L51_AOUTA_VOL:
	case CS42L51_AOUTB_VOL:
	case CS42L51_PCM_MIXER:
	case CS42L51_LIMIT_THRES_DIS:
	case CS42L51_LIMIT_REL:
	case CS42L51_LIMIT_ATT:
	case CS42L51_ALC_EN:
	case CS42L51_ALC_REL:
	case CS42L51_ALC_THRES:
	case CS42L51_NOISE_CONF:
	case CS42L51_STATUS:
	case CS42L51_CHARGE_FREQ:
		return true;
	default:
		return false;
	}
}

const struct regmap_config cs42l51_regmap = {
	.reg_bits = 8,
	.reg_stride = 1,
	.val_bits = 8,
	.use_single_write = true,
	.readable_reg = cs42l51_readable_reg,
	.volatile_reg = cs42l51_volatile_reg,
	.writeable_reg = cs42l51_writeable_reg,
	.max_register = CS42L51_CHARGE_FREQ,
	.cache_type = REGCACHE_MAPLE,
};
EXPORT_SYMBOL_GPL(cs42l51_regmap);

int cs42l51_probe(struct device *dev, struct regmap *regmap)
{
	struct cs42l51_private *cs42l51;
	unsigned int val;
	int ret, i;

	if (IS_ERR(regmap))
		return PTR_ERR(regmap);

	cs42l51 = devm_kzalloc(dev, sizeof(struct cs42l51_private),
			       GFP_KERNEL);
	if (!cs42l51)
		return -ENOMEM;

	dev_set_drvdata(dev, cs42l51);
	cs42l51->regmap = regmap;

	cs42l51->mclk_handle = devm_clk_get_optional(dev, "MCLK");
	if (IS_ERR(cs42l51->mclk_handle))
		return PTR_ERR(cs42l51->mclk_handle);

	for (i = 0; i < ARRAY_SIZE(cs42l51->supplies); i++)
		cs42l51->supplies[i].supply = cs42l51_supply_names[i];

	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(cs42l51->supplies),
				      cs42l51->supplies);
	if (ret != 0) {
		dev_err(dev, "Failed to request supplies: %d\n", ret);
		return ret;
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(cs42l51->supplies),
				    cs42l51->supplies);
	if (ret != 0) {
		dev_err(dev, "Failed to enable supplies: %d\n", ret);
		return ret;
	}

	cs42l51->reset_gpio = devm_gpiod_get_optional(dev, "reset",
						      GPIOD_OUT_LOW);
	if (IS_ERR(cs42l51->reset_gpio))
		return PTR_ERR(cs42l51->reset_gpio);

	if (cs42l51->reset_gpio) {
		dev_dbg(dev, "Release reset gpio\n");
		gpiod_set_value_cansleep(cs42l51->reset_gpio, 0);
		mdelay(2);
	}

	/* Verify that we have a CS42L51 */
	ret = regmap_read(regmap, CS42L51_CHIP_REV_ID, &val);
	if (ret < 0) {
		dev_err(dev, "failed to read I2C\n");
		goto error;
	}

	if ((val != CS42L51_MK_CHIP_REV(CS42L51_CHIP_ID, CS42L51_CHIP_REV_A)) &&
	    (val != CS42L51_MK_CHIP_REV(CS42L51_CHIP_ID, CS42L51_CHIP_REV_B))) {
		dev_err(dev, "Invalid chip id: %x\n", val);
		ret = -ENODEV;
		goto error;
	}
	dev_info(dev, "Cirrus Logic CS42L51, Revision: %02X\n",
		 val & CS42L51_CHIP_REV_MASK);

	ret = devm_snd_soc_register_component(dev,
			&soc_component_device_cs42l51, &cs42l51_dai, 1);
	if (ret < 0)
		goto error;

	return 0;

error:
	regulator_bulk_disable(ARRAY_SIZE(cs42l51->supplies),
			       cs42l51->supplies);
	return ret;
}
EXPORT_SYMBOL_GPL(cs42l51_probe);

void cs42l51_remove(struct device *dev)
{
	struct cs42l51_private *cs42l51 = dev_get_drvdata(dev);
	int ret;

	gpiod_set_value_cansleep(cs42l51->reset_gpio, 1);

	ret = regulator_bulk_disable(ARRAY_SIZE(cs42l51->supplies),
				     cs42l51->supplies);
	if (ret)
		dev_warn(dev, "Failed to disable all regulators (%pe)\n",
			 ERR_PTR(ret));

}
EXPORT_SYMBOL_GPL(cs42l51_remove);

int __maybe_unused cs42l51_suspend(struct device *dev)
{
	struct cs42l51_private *cs42l51 = dev_get_drvdata(dev);

	regcache_cache_only(cs42l51->regmap, true);
	regcache_mark_dirty(cs42l51->regmap);

	return 0;
}
EXPORT_SYMBOL_GPL(cs42l51_suspend);

int __maybe_unused cs42l51_resume(struct device *dev)
{
	struct cs42l51_private *cs42l51 = dev_get_drvdata(dev);

	regcache_cache_only(cs42l51->regmap, false);

	return regcache_sync(cs42l51->regmap);
}
EXPORT_SYMBOL_GPL(cs42l51_resume);

MODULE_AUTHOR("Arnaud Patard <arnaud.patard@rtp-net.org>");
MODULE_DESCRIPTION("Cirrus Logic CS42L51 ALSA SoC Codec Driver");
MODULE_LICENSE("GPL");