Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sven Brandau | 5502 | 94.18% | 1 | 6.25% |
Daniel Mack | 176 | 3.01% | 1 | 6.25% |
Kuninori Morimoto | 92 | 1.57% | 1 | 6.25% |
Rob Herring | 50 | 0.86% | 2 | 12.50% |
Uwe Kleine-König | 9 | 0.15% | 3 | 18.75% |
Lars-Peter Clausen | 4 | 0.07% | 2 | 12.50% |
Mark Brown | 3 | 0.05% | 2 | 12.50% |
Thomas Gleixner | 2 | 0.03% | 1 | 6.25% |
Gustavo A. R. Silva | 2 | 0.03% | 1 | 6.25% |
Charles Keepax | 1 | 0.02% | 1 | 6.25% |
Axel Lin | 1 | 0.02% | 1 | 6.25% |
Total | 5842 | 16 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system * * Copyright: 2014 Raumfeld GmbH * Author: Sven Brandau <info@brandau.biz> * * based on code from: * Raumfeld GmbH * Johannes Stezenbach <js@sig21.net> * Wolfson Microelectronics PLC. * Mark Brown <broonie@opensource.wolfsonmicro.com> * Freescale Semiconductor, Inc. * Timur Tabi <timur@freescale.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/pm.h> #include <linux/i2c.h> #include <linux/of.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/gpio/consumer.h> #include <linux/slab.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-dapm.h> #include <sound/initval.h> #include <sound/tlv.h> #include <sound/sta350.h> #include "sta350.h" #define STA350_RATES (SNDRV_PCM_RATE_32000 | \ SNDRV_PCM_RATE_44100 | \ SNDRV_PCM_RATE_48000 | \ SNDRV_PCM_RATE_88200 | \ SNDRV_PCM_RATE_96000 | \ SNDRV_PCM_RATE_176400 | \ SNDRV_PCM_RATE_192000) #define STA350_FORMATS \ (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S18_3LE | \ SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_3LE | \ SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) /* Power-up register defaults */ static const struct reg_default sta350_regs[] = { { 0x0, 0x63 }, { 0x1, 0x80 }, { 0x2, 0xdf }, { 0x3, 0x40 }, { 0x4, 0xc2 }, { 0x5, 0x5c }, { 0x6, 0x00 }, { 0x7, 0xff }, { 0x8, 0x60 }, { 0x9, 0x60 }, { 0xa, 0x60 }, { 0xb, 0x00 }, { 0xc, 0x00 }, { 0xd, 0x00 }, { 0xe, 0x00 }, { 0xf, 0x40 }, { 0x10, 0x80 }, { 0x11, 0x77 }, { 0x12, 0x6a }, { 0x13, 0x69 }, { 0x14, 0x6a }, { 0x15, 0x69 }, { 0x16, 0x00 }, { 0x17, 0x00 }, { 0x18, 0x00 }, { 0x19, 0x00 }, { 0x1a, 0x00 }, { 0x1b, 0x00 }, { 0x1c, 0x00 }, { 0x1d, 0x00 }, { 0x1e, 0x00 }, { 0x1f, 0x00 }, { 0x20, 0x00 }, { 0x21, 0x00 }, { 0x22, 0x00 }, { 0x23, 0x00 }, { 0x24, 0x00 }, { 0x25, 0x00 }, { 0x26, 0x00 }, { 0x27, 0x2a }, { 0x28, 0xc0 }, { 0x29, 0xf3 }, { 0x2a, 0x33 }, { 0x2b, 0x00 }, { 0x2c, 0x0c }, { 0x31, 0x00 }, { 0x36, 0x00 }, { 0x37, 0x00 }, { 0x38, 0x00 }, { 0x39, 0x01 }, { 0x3a, 0xee }, { 0x3b, 0xff }, { 0x3c, 0x7e }, { 0x3d, 0xc0 }, { 0x3e, 0x26 }, { 0x3f, 0x00 }, { 0x48, 0x00 }, { 0x49, 0x00 }, { 0x4a, 0x00 }, { 0x4b, 0x04 }, { 0x4c, 0x00 }, }; static const struct regmap_range sta350_write_regs_range[] = { regmap_reg_range(STA350_CONFA, STA350_AUTO2), regmap_reg_range(STA350_C1CFG, STA350_FDRC2), regmap_reg_range(STA350_EQCFG, STA350_EVOLRES), regmap_reg_range(STA350_NSHAPE, STA350_MISC2), }; static const struct regmap_range sta350_read_regs_range[] = { regmap_reg_range(STA350_CONFA, STA350_AUTO2), regmap_reg_range(STA350_C1CFG, STA350_STATUS), regmap_reg_range(STA350_EQCFG, STA350_EVOLRES), regmap_reg_range(STA350_NSHAPE, STA350_MISC2), }; static const struct regmap_range sta350_volatile_regs_range[] = { regmap_reg_range(STA350_CFADDR2, STA350_CFUD), regmap_reg_range(STA350_STATUS, STA350_STATUS), }; static const struct regmap_access_table sta350_write_regs = { .yes_ranges = sta350_write_regs_range, .n_yes_ranges = ARRAY_SIZE(sta350_write_regs_range), }; static const struct regmap_access_table sta350_read_regs = { .yes_ranges = sta350_read_regs_range, .n_yes_ranges = ARRAY_SIZE(sta350_read_regs_range), }; static const struct regmap_access_table sta350_volatile_regs = { .yes_ranges = sta350_volatile_regs_range, .n_yes_ranges = ARRAY_SIZE(sta350_volatile_regs_range), }; /* regulator power supply names */ static const char * const sta350_supply_names[] = { "vdd-dig", /* digital supply, 3.3V */ "vdd-pll", /* pll supply, 3.3V */ "vcc" /* power amp supply, 5V - 26V */ }; /* codec private data */ struct sta350_priv { struct regmap *regmap; struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)]; struct sta350_platform_data *pdata; unsigned int mclk; unsigned int format; u32 coef_shadow[STA350_COEF_COUNT]; int shutdown; struct gpio_desc *gpiod_nreset; struct gpio_desc *gpiod_power_down; struct mutex coeff_lock; }; static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1); static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1); static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0); static const char * const sta350_drc_ac[] = { "Anti-Clipping", "Dynamic Range Compression" }; static const char * const sta350_auto_gc_mode[] = { "User", "AC no clipping", "AC limited clipping (10%)", "DRC nighttime listening mode" }; static const char * const sta350_auto_xo_mode[] = { "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" }; static const char * const sta350_binary_output[] = { "FFX 3-state output - normal operation", "Binary output" }; static const char * const sta350_limiter_select[] = { "Limiter Disabled", "Limiter #1", "Limiter #2" }; static const char * const sta350_limiter_attack_rate[] = { "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024", "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752", "0.0645", "0.0564", "0.0501", "0.0451" }; static const char * const sta350_limiter_release_rate[] = { "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299", "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137", "0.0134", "0.0117", "0.0110", "0.0104" }; static const char * const sta350_noise_shaper_type[] = { "Third order", "Fourth order" }; static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv, 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0), 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0), ); static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv, 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0), 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0), 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0), 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0), 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0), ); static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv, 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0), 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0), 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0), ); static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv, 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0), 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0), 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0), 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0), 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0), ); static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum, STA350_CONFD, STA350_CONFD_DRC_SHIFT, sta350_drc_ac); static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum, STA350_CONFE, STA350_CONFE_NSBW_SHIFT, sta350_noise_shaper_type); static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum, STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT, sta350_auto_gc_mode); static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum, STA350_AUTO2, STA350_AUTO2_XO_SHIFT, sta350_auto_xo_mode); static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum, STA350_C1CFG, STA350_CxCFG_BO_SHIFT, sta350_binary_output); static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum, STA350_C2CFG, STA350_CxCFG_BO_SHIFT, sta350_binary_output); static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum, STA350_C3CFG, STA350_CxCFG_BO_SHIFT, sta350_binary_output); static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum, STA350_C1CFG, STA350_CxCFG_LS_SHIFT, sta350_limiter_select); static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum, STA350_C2CFG, STA350_CxCFG_LS_SHIFT, sta350_limiter_select); static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum, STA350_C3CFG, STA350_CxCFG_LS_SHIFT, sta350_limiter_select); static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum, STA350_L1AR, STA350_LxA_SHIFT, sta350_limiter_attack_rate); static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum, STA350_L2AR, STA350_LxA_SHIFT, sta350_limiter_attack_rate); static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum, STA350_L1AR, STA350_LxR_SHIFT, sta350_limiter_release_rate); static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum, STA350_L2AR, STA350_LxR_SHIFT, sta350_limiter_release_rate); /* * byte array controls for setting biquad, mixer, scaling coefficients; * for biquads all five coefficients need to be set in one go, * mixer and pre/postscale coefs can be set individually; * each coef is 24bit, the bytes are ordered in the same way * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0) */ static int sta350_coefficient_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int numcoef = kcontrol->private_value >> 16; uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = 3 * numcoef; return 0; } static int sta350_coefficient_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); int numcoef = kcontrol->private_value >> 16; int index = kcontrol->private_value & 0xffff; unsigned int cfud, val; int i, ret = 0; mutex_lock(&sta350->coeff_lock); /* preserve reserved bits in STA350_CFUD */ regmap_read(sta350->regmap, STA350_CFUD, &cfud); cfud &= 0xf0; /* * chip documentation does not say if the bits are self clearing, * so do it explicitly */ regmap_write(sta350->regmap, STA350_CFUD, cfud); regmap_write(sta350->regmap, STA350_CFADDR2, index); if (numcoef == 1) { regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04); } else if (numcoef == 5) { regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08); } else { ret = -EINVAL; goto exit_unlock; } for (i = 0; i < 3 * numcoef; i++) { regmap_read(sta350->regmap, STA350_B1CF1 + i, &val); ucontrol->value.bytes.data[i] = val; } exit_unlock: mutex_unlock(&sta350->coeff_lock); return ret; } static int sta350_coefficient_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); int numcoef = kcontrol->private_value >> 16; int index = kcontrol->private_value & 0xffff; unsigned int cfud; int i; /* preserve reserved bits in STA350_CFUD */ regmap_read(sta350->regmap, STA350_CFUD, &cfud); cfud &= 0xf0; /* * chip documentation does not say if the bits are self clearing, * so do it explicitly */ regmap_write(sta350->regmap, STA350_CFUD, cfud); regmap_write(sta350->regmap, STA350_CFADDR2, index); for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++) sta350->coef_shadow[index + i] = (ucontrol->value.bytes.data[3 * i] << 16) | (ucontrol->value.bytes.data[3 * i + 1] << 8) | (ucontrol->value.bytes.data[3 * i + 2]); for (i = 0; i < 3 * numcoef; i++) regmap_write(sta350->regmap, STA350_B1CF1 + i, ucontrol->value.bytes.data[i]); if (numcoef == 1) regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01); else if (numcoef == 5) regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02); else return -EINVAL; return 0; } static int sta350_sync_coef_shadow(struct snd_soc_component *component) { struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); unsigned int cfud; int i; /* preserve reserved bits in STA350_CFUD */ regmap_read(sta350->regmap, STA350_CFUD, &cfud); cfud &= 0xf0; for (i = 0; i < STA350_COEF_COUNT; i++) { regmap_write(sta350->regmap, STA350_CFADDR2, i); regmap_write(sta350->regmap, STA350_B1CF1, (sta350->coef_shadow[i] >> 16) & 0xff); regmap_write(sta350->regmap, STA350_B1CF2, (sta350->coef_shadow[i] >> 8) & 0xff); regmap_write(sta350->regmap, STA350_B1CF3, (sta350->coef_shadow[i]) & 0xff); /* * chip documentation does not say if the bits are * self-clearing, so do it explicitly */ regmap_write(sta350->regmap, STA350_CFUD, cfud); regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01); } return 0; } static int sta350_cache_sync(struct snd_soc_component *component) { struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); unsigned int mute; int rc; /* mute during register sync */ regmap_read(sta350->regmap, STA350_CFUD, &mute); regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE); sta350_sync_coef_shadow(component); rc = regcache_sync(sta350->regmap); regmap_write(sta350->regmap, STA350_MMUTE, mute); return rc; } #define SINGLE_COEF(xname, index) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = sta350_coefficient_info, \ .get = sta350_coefficient_get,\ .put = sta350_coefficient_put, \ .private_value = index | (1 << 16) } #define BIQUAD_COEFS(xname, index) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = sta350_coefficient_info, \ .get = sta350_coefficient_get,\ .put = sta350_coefficient_put, \ .private_value = index | (5 << 16) } static const struct snd_kcontrol_new sta350_snd_controls[] = { SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv), /* VOL */ SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv), SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv), SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv), /* CONFD */ SOC_SINGLE("High Pass Filter Bypass Switch", STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1), SOC_SINGLE("De-emphasis Filter Switch", STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0), SOC_SINGLE("DSP Bypass Switch", STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0), SOC_SINGLE("Post-scale Link Switch", STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0), SOC_SINGLE("Biquad Coefficient Link Switch", STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0), SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum), SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum), SOC_SINGLE("Zero-detect Mute Enable Switch", STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0), SOC_SINGLE("Submix Mode Switch", STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0), /* CONFE */ SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0), SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0), /* MUTE */ SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1), SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1), SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1), SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1), /* AUTOx */ SOC_ENUM("Automode GC", sta350_auto_gc_enum), SOC_ENUM("Automode XO", sta350_auto_xo_enum), /* CxCFG */ SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0), SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0), SOC_SINGLE("Ch1 EQ Bypass Switch", STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0), SOC_SINGLE("Ch2 EQ Bypass Switch", STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0), SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0), SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0), SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0), SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum), SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum), SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum), SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum), SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum), SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum), /* TONE */ SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume", STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv), SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume", STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv), SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum), SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum), SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum), SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum), /* * depending on mode, the attack/release thresholds have * two different enum definitions; provide both */ SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA350_L1ATRT, STA350_LxA_SHIFT, 16, 0, sta350_limiter_ac_attack_tlv), SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA350_L2ATRT, STA350_LxA_SHIFT, 16, 0, sta350_limiter_ac_attack_tlv), SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA350_L1ATRT, STA350_LxR_SHIFT, 16, 0, sta350_limiter_ac_release_tlv), SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA350_L2ATRT, STA350_LxR_SHIFT, 16, 0, sta350_limiter_ac_release_tlv), SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA350_L1ATRT, STA350_LxA_SHIFT, 16, 0, sta350_limiter_drc_attack_tlv), SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA350_L2ATRT, STA350_LxA_SHIFT, 16, 0, sta350_limiter_drc_attack_tlv), SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA350_L1ATRT, STA350_LxR_SHIFT, 16, 0, sta350_limiter_drc_release_tlv), SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA350_L2ATRT, STA350_LxR_SHIFT, 16, 0, sta350_limiter_drc_release_tlv), BIQUAD_COEFS("Ch1 - Biquad 1", 0), BIQUAD_COEFS("Ch1 - Biquad 2", 5), BIQUAD_COEFS("Ch1 - Biquad 3", 10), BIQUAD_COEFS("Ch1 - Biquad 4", 15), BIQUAD_COEFS("Ch2 - Biquad 1", 20), BIQUAD_COEFS("Ch2 - Biquad 2", 25), BIQUAD_COEFS("Ch2 - Biquad 3", 30), BIQUAD_COEFS("Ch2 - Biquad 4", 35), BIQUAD_COEFS("High-pass", 40), BIQUAD_COEFS("Low-pass", 45), SINGLE_COEF("Ch1 - Prescale", 50), SINGLE_COEF("Ch2 - Prescale", 51), SINGLE_COEF("Ch1 - Postscale", 52), SINGLE_COEF("Ch2 - Postscale", 53), SINGLE_COEF("Ch3 - Postscale", 54), SINGLE_COEF("Thermal warning - Postscale", 55), SINGLE_COEF("Ch1 - Mix 1", 56), SINGLE_COEF("Ch1 - Mix 2", 57), SINGLE_COEF("Ch2 - Mix 1", 58), SINGLE_COEF("Ch2 - Mix 2", 59), SINGLE_COEF("Ch3 - Mix 1", 60), SINGLE_COEF("Ch3 - Mix 2", 61), }; static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = { SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_OUTPUT("LEFT"), SND_SOC_DAPM_OUTPUT("RIGHT"), SND_SOC_DAPM_OUTPUT("SUB"), }; static const struct snd_soc_dapm_route sta350_dapm_routes[] = { { "LEFT", NULL, "DAC" }, { "RIGHT", NULL, "DAC" }, { "SUB", NULL, "DAC" }, { "DAC", NULL, "Playback" }, }; /* MCLK interpolation ratio per fs */ static struct { int fs; int ir; } interpolation_ratios[] = { { 32000, 0 }, { 44100, 0 }, { 48000, 0 }, { 88200, 1 }, { 96000, 1 }, { 176400, 2 }, { 192000, 2 }, }; /* MCLK to fs clock ratios */ static int mcs_ratio_table[3][6] = { { 768, 512, 384, 256, 128, 576 }, { 384, 256, 192, 128, 64, 0 }, { 192, 128, 96, 64, 32, 0 }, }; /** * sta350_set_dai_sysclk - configure MCLK * @codec_dai: the codec DAI * @clk_id: the clock ID (ignored) * @freq: the MCLK input frequency * @dir: the clock direction (ignored) * * The value of MCLK is used to determine which sample rates are supported * by the STA350, based on the mcs_ratio_table. * * This function must be called by the machine driver's 'startup' function, * otherwise the list of supported sample rates will not be available in * time for ALSA. */ static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_component *component = codec_dai->component; struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); dev_dbg(component->dev, "mclk=%u\n", freq); sta350->mclk = freq; return 0; } /** * sta350_set_dai_fmt - configure the codec for the selected audio format * @codec_dai: the codec DAI * @fmt: a SND_SOC_DAIFMT_x value indicating the data format * * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the * codec accordingly. */ static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_component *component = codec_dai->component; struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); unsigned int confb = 0; switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_CBC_CFC: break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: case SND_SOC_DAIFMT_RIGHT_J: case SND_SOC_DAIFMT_LEFT_J: sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: confb |= STA350_CONFB_C2IM; break; case SND_SOC_DAIFMT_NB_IF: confb |= STA350_CONFB_C1IM; break; default: return -EINVAL; } return regmap_update_bits(sta350->regmap, STA350_CONFB, STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb); } /** * sta350_hw_params - program the STA350 with the given hardware parameters. * @substream: the audio stream * @params: the hardware parameters to set * @dai: the SOC DAI (ignored) * * This function programs the hardware with the values provided. * Specifically, the sample rate and the data format. */ static int sta350_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); int i, mcs = -EINVAL, ir = -EINVAL; unsigned int confa, confb; unsigned int rate, ratio; int ret; if (!sta350->mclk) { dev_err(component->dev, "sta350->mclk is unset. Unable to determine ratio\n"); return -EIO; } rate = params_rate(params); ratio = sta350->mclk / rate; dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio); for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) { if (interpolation_ratios[i].fs == rate) { ir = interpolation_ratios[i].ir; break; } } if (ir < 0) { dev_err(component->dev, "Unsupported samplerate: %u\n", rate); return -EINVAL; } for (i = 0; i < 6; i++) { if (mcs_ratio_table[ir][i] == ratio) { mcs = i; break; } } if (mcs < 0) { dev_err(component->dev, "Unresolvable ratio: %u\n", ratio); return -EINVAL; } confa = (ir << STA350_CONFA_IR_SHIFT) | (mcs << STA350_CONFA_MCS_SHIFT); confb = 0; switch (params_width(params)) { case 24: dev_dbg(component->dev, "24bit\n"); fallthrough; case 32: dev_dbg(component->dev, "24bit or 32bit\n"); switch (sta350->format) { case SND_SOC_DAIFMT_I2S: confb |= 0x0; break; case SND_SOC_DAIFMT_LEFT_J: confb |= 0x1; break; case SND_SOC_DAIFMT_RIGHT_J: confb |= 0x2; break; } break; case 20: dev_dbg(component->dev, "20bit\n"); switch (sta350->format) { case SND_SOC_DAIFMT_I2S: confb |= 0x4; break; case SND_SOC_DAIFMT_LEFT_J: confb |= 0x5; break; case SND_SOC_DAIFMT_RIGHT_J: confb |= 0x6; break; } break; case 18: dev_dbg(component->dev, "18bit\n"); switch (sta350->format) { case SND_SOC_DAIFMT_I2S: confb |= 0x8; break; case SND_SOC_DAIFMT_LEFT_J: confb |= 0x9; break; case SND_SOC_DAIFMT_RIGHT_J: confb |= 0xa; break; } break; case 16: dev_dbg(component->dev, "16bit\n"); switch (sta350->format) { case SND_SOC_DAIFMT_I2S: confb |= 0x0; break; case SND_SOC_DAIFMT_LEFT_J: confb |= 0xd; break; case SND_SOC_DAIFMT_RIGHT_J: confb |= 0xe; break; } break; default: return -EINVAL; } ret = regmap_update_bits(sta350->regmap, STA350_CONFA, STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK, confa); if (ret < 0) return ret; ret = regmap_update_bits(sta350->regmap, STA350_CONFB, STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB, confb); if (ret < 0) return ret; return 0; } static int sta350_startup_sequence(struct sta350_priv *sta350) { if (sta350->gpiod_power_down) gpiod_set_value(sta350->gpiod_power_down, 1); if (sta350->gpiod_nreset) { gpiod_set_value(sta350->gpiod_nreset, 0); mdelay(1); gpiod_set_value(sta350->gpiod_nreset, 1); mdelay(1); } return 0; } /** * sta350_set_bias_level - DAPM callback * @component: the component device * @level: DAPM power level * * This is called by ALSA to put the component into low power mode * or to wake it up. If the component is powered off completely * all registers must be restored after power on. */ static int sta350_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); int ret; dev_dbg(component->dev, "level = %d\n", level); switch (level) { case SND_SOC_BIAS_ON: break; case SND_SOC_BIAS_PREPARE: /* Full power on */ regmap_update_bits(sta350->regmap, STA350_CONFF, STA350_CONFF_PWDN | STA350_CONFF_EAPD, STA350_CONFF_PWDN | STA350_CONFF_EAPD); break; case SND_SOC_BIAS_STANDBY: if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) { ret = regulator_bulk_enable( ARRAY_SIZE(sta350->supplies), sta350->supplies); if (ret < 0) { dev_err(component->dev, "Failed to enable supplies: %d\n", ret); return ret; } sta350_startup_sequence(sta350); sta350_cache_sync(component); } /* Power down */ regmap_update_bits(sta350->regmap, STA350_CONFF, STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0); break; case SND_SOC_BIAS_OFF: /* The chip runs through the power down sequence for us */ regmap_update_bits(sta350->regmap, STA350_CONFF, STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0); /* power down: low */ if (sta350->gpiod_power_down) gpiod_set_value(sta350->gpiod_power_down, 0); if (sta350->gpiod_nreset) gpiod_set_value(sta350->gpiod_nreset, 0); regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies); break; } return 0; } static const struct snd_soc_dai_ops sta350_dai_ops = { .hw_params = sta350_hw_params, .set_sysclk = sta350_set_dai_sysclk, .set_fmt = sta350_set_dai_fmt, }; static struct snd_soc_dai_driver sta350_dai = { .name = "sta350-hifi", .playback = { .stream_name = "Playback", .channels_min = 2, .channels_max = 2, .rates = STA350_RATES, .formats = STA350_FORMATS, }, .ops = &sta350_dai_ops, }; static int sta350_probe(struct snd_soc_component *component) { struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); struct sta350_platform_data *pdata = sta350->pdata; int i, ret = 0, thermal = 0; ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies), sta350->supplies); if (ret < 0) { dev_err(component->dev, "Failed to enable supplies: %d\n", ret); return ret; } ret = sta350_startup_sequence(sta350); if (ret < 0) { dev_err(component->dev, "Failed to startup device\n"); return ret; } /* CONFA */ if (!pdata->thermal_warning_recovery) thermal |= STA350_CONFA_TWAB; if (!pdata->thermal_warning_adjustment) thermal |= STA350_CONFA_TWRB; if (!pdata->fault_detect_recovery) thermal |= STA350_CONFA_FDRB; regmap_update_bits(sta350->regmap, STA350_CONFA, STA350_CONFA_TWAB | STA350_CONFA_TWRB | STA350_CONFA_FDRB, thermal); /* CONFC */ regmap_update_bits(sta350->regmap, STA350_CONFC, STA350_CONFC_OM_MASK, pdata->ffx_power_output_mode << STA350_CONFC_OM_SHIFT); regmap_update_bits(sta350->regmap, STA350_CONFC, STA350_CONFC_CSZ_MASK, pdata->drop_compensation_ns << STA350_CONFC_CSZ_SHIFT); regmap_update_bits(sta350->regmap, STA350_CONFC, STA350_CONFC_OCRB, pdata->oc_warning_adjustment ? STA350_CONFC_OCRB : 0); /* CONFE */ regmap_update_bits(sta350->regmap, STA350_CONFE, STA350_CONFE_MPCV, pdata->max_power_use_mpcc ? STA350_CONFE_MPCV : 0); regmap_update_bits(sta350->regmap, STA350_CONFE, STA350_CONFE_MPC, pdata->max_power_correction ? STA350_CONFE_MPC : 0); regmap_update_bits(sta350->regmap, STA350_CONFE, STA350_CONFE_AME, pdata->am_reduction_mode ? STA350_CONFE_AME : 0); regmap_update_bits(sta350->regmap, STA350_CONFE, STA350_CONFE_PWMS, pdata->odd_pwm_speed_mode ? STA350_CONFE_PWMS : 0); regmap_update_bits(sta350->regmap, STA350_CONFE, STA350_CONFE_DCCV, pdata->distortion_compensation ? STA350_CONFE_DCCV : 0); /* CONFF */ regmap_update_bits(sta350->regmap, STA350_CONFF, STA350_CONFF_IDE, pdata->invalid_input_detect_mute ? STA350_CONFF_IDE : 0); regmap_update_bits(sta350->regmap, STA350_CONFF, STA350_CONFF_OCFG_MASK, pdata->output_conf << STA350_CONFF_OCFG_SHIFT); /* channel to output mapping */ regmap_update_bits(sta350->regmap, STA350_C1CFG, STA350_CxCFG_OM_MASK, pdata->ch1_output_mapping << STA350_CxCFG_OM_SHIFT); regmap_update_bits(sta350->regmap, STA350_C2CFG, STA350_CxCFG_OM_MASK, pdata->ch2_output_mapping << STA350_CxCFG_OM_SHIFT); regmap_update_bits(sta350->regmap, STA350_C3CFG, STA350_CxCFG_OM_MASK, pdata->ch3_output_mapping << STA350_CxCFG_OM_SHIFT); /* miscellaneous registers */ regmap_update_bits(sta350->regmap, STA350_MISC1, STA350_MISC1_CPWMEN, pdata->activate_mute_output ? STA350_MISC1_CPWMEN : 0); regmap_update_bits(sta350->regmap, STA350_MISC1, STA350_MISC1_BRIDGOFF, pdata->bridge_immediate_off ? STA350_MISC1_BRIDGOFF : 0); regmap_update_bits(sta350->regmap, STA350_MISC1, STA350_MISC1_NSHHPEN, pdata->noise_shape_dc_cut ? STA350_MISC1_NSHHPEN : 0); regmap_update_bits(sta350->regmap, STA350_MISC1, STA350_MISC1_RPDNEN, pdata->powerdown_master_vol ? STA350_MISC1_RPDNEN: 0); regmap_update_bits(sta350->regmap, STA350_MISC2, STA350_MISC2_PNDLSL_MASK, pdata->powerdown_delay_divider << STA350_MISC2_PNDLSL_SHIFT); /* initialize coefficient shadow RAM with reset values */ for (i = 4; i <= 49; i += 5) sta350->coef_shadow[i] = 0x400000; for (i = 50; i <= 54; i++) sta350->coef_shadow[i] = 0x7fffff; sta350->coef_shadow[55] = 0x5a9df7; sta350->coef_shadow[56] = 0x7fffff; sta350->coef_shadow[59] = 0x7fffff; sta350->coef_shadow[60] = 0x400000; sta350->coef_shadow[61] = 0x400000; snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY); /* Bias level configuration will have done an extra enable */ regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies); return 0; } static void sta350_remove(struct snd_soc_component *component) { struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies); } static const struct snd_soc_component_driver sta350_component = { .probe = sta350_probe, .remove = sta350_remove, .set_bias_level = sta350_set_bias_level, .controls = sta350_snd_controls, .num_controls = ARRAY_SIZE(sta350_snd_controls), .dapm_widgets = sta350_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(sta350_dapm_widgets), .dapm_routes = sta350_dapm_routes, .num_dapm_routes = ARRAY_SIZE(sta350_dapm_routes), .suspend_bias_off = 1, .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, }; static const struct regmap_config sta350_regmap = { .reg_bits = 8, .val_bits = 8, .max_register = STA350_MISC2, .reg_defaults = sta350_regs, .num_reg_defaults = ARRAY_SIZE(sta350_regs), .cache_type = REGCACHE_MAPLE, .wr_table = &sta350_write_regs, .rd_table = &sta350_read_regs, .volatile_table = &sta350_volatile_regs, }; #ifdef CONFIG_OF static const struct of_device_id st350_dt_ids[] = { { .compatible = "st,sta350", }, { } }; MODULE_DEVICE_TABLE(of, st350_dt_ids); static const char * const sta350_ffx_modes[] = { [STA350_FFX_PM_DROP_COMP] = "drop-compensation", [STA350_FFX_PM_TAPERED_COMP] = "tapered-compensation", [STA350_FFX_PM_FULL_POWER] = "full-power-mode", [STA350_FFX_PM_VARIABLE_DROP_COMP] = "variable-drop-compensation", }; static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350) { struct device_node *np = dev->of_node; struct sta350_platform_data *pdata; const char *ffx_power_mode; u16 tmp; u8 tmp8; pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; of_property_read_u8(np, "st,output-conf", &pdata->output_conf); of_property_read_u8(np, "st,ch1-output-mapping", &pdata->ch1_output_mapping); of_property_read_u8(np, "st,ch2-output-mapping", &pdata->ch2_output_mapping); of_property_read_u8(np, "st,ch3-output-mapping", &pdata->ch3_output_mapping); pdata->thermal_warning_recovery = of_property_read_bool(np, "st,thermal-warning-recovery"); pdata->thermal_warning_adjustment = of_property_read_bool(np, "st,thermal-warning-adjustment"); pdata->fault_detect_recovery = of_property_read_bool(np, "st,fault-detect-recovery"); pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP; if (!of_property_read_string(np, "st,ffx-power-output-mode", &ffx_power_mode)) { int i, mode = -EINVAL; for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++) if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i])) mode = i; if (mode < 0) dev_warn(dev, "Unsupported ffx output mode: %s\n", ffx_power_mode); else pdata->ffx_power_output_mode = mode; } tmp = 140; of_property_read_u16(np, "st,drop-compensation-ns", &tmp); pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20; pdata->oc_warning_adjustment = of_property_read_bool(np, "st,overcurrent-warning-adjustment"); /* CONFE */ pdata->max_power_use_mpcc = of_property_read_bool(np, "st,max-power-use-mpcc"); pdata->max_power_correction = of_property_read_bool(np, "st,max-power-correction"); pdata->am_reduction_mode = of_property_read_bool(np, "st,am-reduction-mode"); pdata->odd_pwm_speed_mode = of_property_read_bool(np, "st,odd-pwm-speed-mode"); pdata->distortion_compensation = of_property_read_bool(np, "st,distortion-compensation"); /* CONFF */ pdata->invalid_input_detect_mute = of_property_read_bool(np, "st,invalid-input-detect-mute"); /* MISC */ pdata->activate_mute_output = of_property_read_bool(np, "st,activate-mute-output"); pdata->bridge_immediate_off = of_property_read_bool(np, "st,bridge-immediate-off"); pdata->noise_shape_dc_cut = of_property_read_bool(np, "st,noise-shape-dc-cut"); pdata->powerdown_master_vol = of_property_read_bool(np, "st,powerdown-master-volume"); if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) { if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128) pdata->powerdown_delay_divider = ilog2(tmp8); else dev_warn(dev, "Unsupported powerdown delay divider %d\n", tmp8); } sta350->pdata = pdata; return 0; } #endif static int sta350_i2c_probe(struct i2c_client *i2c) { struct device *dev = &i2c->dev; struct sta350_priv *sta350; int ret, i; sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL); if (!sta350) return -ENOMEM; mutex_init(&sta350->coeff_lock); sta350->pdata = dev_get_platdata(dev); #ifdef CONFIG_OF if (dev->of_node) { ret = sta350_probe_dt(dev, sta350); if (ret < 0) return ret; } #endif /* GPIOs */ sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(sta350->gpiod_nreset)) return PTR_ERR(sta350->gpiod_nreset); sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down", GPIOD_OUT_LOW); if (IS_ERR(sta350->gpiod_power_down)) return PTR_ERR(sta350->gpiod_power_down); /* regulators */ for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++) sta350->supplies[i].supply = sta350_supply_names[i]; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies), sta350->supplies); if (ret < 0) { dev_err(dev, "Failed to request supplies: %d\n", ret); return ret; } sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap); if (IS_ERR(sta350->regmap)) { ret = PTR_ERR(sta350->regmap); dev_err(dev, "Failed to init regmap: %d\n", ret); return ret; } i2c_set_clientdata(i2c, sta350); ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1); if (ret < 0) dev_err(dev, "Failed to register component (%d)\n", ret); return ret; } static void sta350_i2c_remove(struct i2c_client *client) {} static const struct i2c_device_id sta350_i2c_id[] = { { "sta350", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, sta350_i2c_id); static struct i2c_driver sta350_i2c_driver = { .driver = { .name = "sta350", .of_match_table = of_match_ptr(st350_dt_ids), }, .probe = sta350_i2c_probe, .remove = sta350_i2c_remove, .id_table = sta350_i2c_id, }; module_i2c_driver(sta350_i2c_driver); MODULE_DESCRIPTION("ASoC STA350 driver"); MODULE_AUTHOR("Sven Brandau <info@brandau.biz>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1