Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sven Van Asbroeck | 2707 | 99.78% | 1 | 20.00% |
Mark Brown | 2 | 0.07% | 1 | 20.00% |
Kuninori Morimoto | 2 | 0.07% | 1 | 20.00% |
Krzysztof Kozlowski | 1 | 0.04% | 1 | 20.00% |
Andy Shevchenko | 1 | 0.04% | 1 | 20.00% |
Total | 2713 | 5 |
// SPDX-License-Identifier: GPL-2.0-only // // Codec driver for Microsemi ZL38060 Connected Home Audio Processor. // // Copyright(c) 2020 Sven Van Asbroeck // The ZL38060 is very flexible and configurable. This driver implements only a // tiny subset of the chip's possible configurations: // // - DSP block bypassed: DAI routed straight to DACs // microphone routed straight to DAI // - chip's internal clock is driven by a 12 MHz external crystal // - chip's DAI connected to CPU is I2S, and bit + frame clock master // - chip must be strapped for "host boot": in this mode, firmware will be // provided by this driver. #include <linux/gpio/consumer.h> #include <linux/gpio/driver.h> #include <linux/property.h> #include <linux/spi/spi.h> #include <linux/regmap.h> #include <linux/module.h> #include <linux/ihex.h> #include <sound/pcm_params.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/soc.h> #define DRV_NAME "zl38060" #define ZL38_RATES (SNDRV_PCM_RATE_8000 |\ SNDRV_PCM_RATE_16000 |\ SNDRV_PCM_RATE_48000) #define ZL38_FORMATS SNDRV_PCM_FMTBIT_S16_LE #define HBI_FIRMWARE_PAGE 0xFF #define ZL38_MAX_RAW_XFER 0x100 #define REG_TDMA_CFG_CLK 0x0262 #define CFG_CLK_PCLK_SHIFT 4 #define CFG_CLK_PCLK_MASK (0x7ff << CFG_CLK_PCLK_SHIFT) #define CFG_CLK_PCLK(bits) ((bits - 1) << CFG_CLK_PCLK_SHIFT) #define CFG_CLK_MASTER BIT(15) #define CFG_CLK_FSRATE_MASK 0x7 #define CFG_CLK_FSRATE_8KHZ 0x1 #define CFG_CLK_FSRATE_16KHZ 0x2 #define CFG_CLK_FSRATE_48KHZ 0x6 #define REG_CLK_CFG 0x0016 #define CLK_CFG_SOURCE_XTAL BIT(15) #define REG_CLK_STATUS 0x0014 #define CLK_STATUS_HWRST BIT(0) #define REG_PARAM_RESULT 0x0034 #define PARAM_RESULT_READY 0xD3D3 #define REG_PG255_BASE_HI 0x000C #define REG_PG255_OFFS(addr) ((HBI_FIRMWARE_PAGE << 8) | (addr & 0xFF)) #define REG_FWR_EXEC 0x012C #define REG_CMD 0x0032 #define REG_HW_REV 0x0020 #define REG_FW_PROD 0x0022 #define REG_FW_REV 0x0024 #define REG_SEMA_FLAGS 0x0006 #define SEMA_FLAGS_BOOT_CMD BIT(0) #define SEMA_FLAGS_APP_REBOOT BIT(1) #define REG_HW_REV 0x0020 #define REG_FW_PROD 0x0022 #define REG_FW_REV 0x0024 #define REG_GPIO_DIR 0x02DC #define REG_GPIO_DAT 0x02DA #define BOOTCMD_LOAD_COMPLETE 0x000D #define BOOTCMD_FW_GO 0x0008 #define FIRMWARE_MAJOR 2 #define FIRMWARE_MINOR 2 struct zl38_codec_priv { struct device *dev; struct regmap *regmap; bool is_stream_in_use[2]; struct gpio_chip *gpio_chip; }; static int zl38_fw_issue_command(struct regmap *regmap, u16 cmd) { unsigned int val; int err; err = regmap_read_poll_timeout(regmap, REG_SEMA_FLAGS, val, !(val & SEMA_FLAGS_BOOT_CMD), 10000, 10000 * 100); if (err) return err; err = regmap_write(regmap, REG_CMD, cmd); if (err) return err; err = regmap_update_bits(regmap, REG_SEMA_FLAGS, SEMA_FLAGS_BOOT_CMD, SEMA_FLAGS_BOOT_CMD); if (err) return err; return regmap_read_poll_timeout(regmap, REG_CMD, val, !val, 10000, 10000 * 100); } static int zl38_fw_go(struct regmap *regmap) { int err; err = zl38_fw_issue_command(regmap, BOOTCMD_LOAD_COMPLETE); if (err) return err; return zl38_fw_issue_command(regmap, BOOTCMD_FW_GO); } static int zl38_fw_enter_boot_mode(struct regmap *regmap) { unsigned int val; int err; err = regmap_update_bits(regmap, REG_CLK_STATUS, CLK_STATUS_HWRST, CLK_STATUS_HWRST); if (err) return err; return regmap_read_poll_timeout(regmap, REG_PARAM_RESULT, val, val == PARAM_RESULT_READY, 1000, 50000); } static int zl38_fw_send_data(struct regmap *regmap, u32 addr, const void *data, u16 len) { __be32 addr_base = cpu_to_be32(addr & ~0xFF); int err; err = regmap_raw_write(regmap, REG_PG255_BASE_HI, &addr_base, sizeof(addr_base)); if (err) return err; return regmap_raw_write(regmap, REG_PG255_OFFS(addr), data, len); } static int zl38_fw_send_xaddr(struct regmap *regmap, const void *data) { /* execution address from ihex: 32-bit little endian. * device register expects 32-bit big endian. */ u32 addr = le32_to_cpup(data); __be32 baddr = cpu_to_be32(addr); return regmap_raw_write(regmap, REG_FWR_EXEC, &baddr, sizeof(baddr)); } static int zl38_load_firmware(struct device *dev, struct regmap *regmap) { const struct ihex_binrec *rec; const struct firmware *fw; u32 addr; u16 len; int err; /* how to get this firmware: * 1. request and download chip firmware from Microsemi * (provided by Microsemi in srec format) * 2. convert downloaded firmware from srec to ihex. Simple tool: * https://gitlab.com/TheSven73/s3-to-irec * 3. convert ihex to binary (.fw) using ihex2fw tool which is included * with the Linux kernel sources */ err = request_ihex_firmware(&fw, "zl38060.fw", dev); if (err) return err; err = zl38_fw_enter_boot_mode(regmap); if (err) goto out; rec = (const struct ihex_binrec *)fw->data; while (rec) { addr = be32_to_cpu(rec->addr); len = be16_to_cpu(rec->len); if (addr) { /* regular data ihex record */ err = zl38_fw_send_data(regmap, addr, rec->data, len); } else if (len == 4) { /* execution address ihex record */ err = zl38_fw_send_xaddr(regmap, rec->data); } else { err = -EINVAL; } if (err) goto out; /* next ! */ rec = ihex_next_binrec(rec); } err = zl38_fw_go(regmap); out: release_firmware(fw); return err; } static int zl38_software_reset(struct regmap *regmap) { unsigned int val; int err; err = regmap_update_bits(regmap, REG_SEMA_FLAGS, SEMA_FLAGS_APP_REBOOT, SEMA_FLAGS_APP_REBOOT); if (err) return err; /* wait for host bus interface to settle. * Not sure if this is required: Microsemi's vendor driver does this, * but the firmware manual does not mention it. Leave it in, there's * little downside, apart from a slower reset. */ msleep(50); return regmap_read_poll_timeout(regmap, REG_SEMA_FLAGS, val, !(val & SEMA_FLAGS_APP_REBOOT), 10000, 10000 * 100); } static int zl38_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct zl38_codec_priv *priv = snd_soc_dai_get_drvdata(dai); int err; switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: /* firmware default is normal i2s */ break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: /* firmware default is normal bitclock and frame */ break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_CBP_CFP: /* always 32 bits per frame (= 16 bits/channel, 2 channels) */ err = regmap_update_bits(priv->regmap, REG_TDMA_CFG_CLK, CFG_CLK_MASTER | CFG_CLK_PCLK_MASK, CFG_CLK_MASTER | CFG_CLK_PCLK(32)); if (err) return err; break; default: return -EINVAL; } return 0; } static int zl38_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct zl38_codec_priv *priv = snd_soc_dai_get_drvdata(dai); bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; unsigned int fsrate; int err; /* We cannot change hw_params while the dai is already in use - the * software reset will corrupt the audio. However, this is not required, * as the chip's TDM buses are fully symmetric, which mandates identical * rates, channels, and samplebits for record and playback. */ if (priv->is_stream_in_use[!tx]) goto skip_setup; switch (params_rate(params)) { case 8000: fsrate = CFG_CLK_FSRATE_8KHZ; break; case 16000: fsrate = CFG_CLK_FSRATE_16KHZ; break; case 48000: fsrate = CFG_CLK_FSRATE_48KHZ; break; default: return -EINVAL; } err = regmap_update_bits(priv->regmap, REG_TDMA_CFG_CLK, CFG_CLK_FSRATE_MASK, fsrate); if (err) return err; /* chip requires a software reset to apply audio register changes */ err = zl38_software_reset(priv->regmap); if (err) return err; skip_setup: priv->is_stream_in_use[tx] = true; return 0; } static int zl38_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct zl38_codec_priv *priv = snd_soc_dai_get_drvdata(dai); bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; priv->is_stream_in_use[tx] = false; return 0; } /* stereo bypass with no AEC */ static const struct reg_sequence cp_config_stereo_bypass[] = { /* interconnects must be programmed first */ { 0x0210, 0x0005 }, /* DAC1 in <= I2S1-L */ { 0x0212, 0x0006 }, /* DAC2 in <= I2S1-R */ { 0x0214, 0x0001 }, /* I2S1-L in <= MIC1 */ { 0x0216, 0x0001 }, /* I2S1-R in <= MIC1 */ { 0x0224, 0x0000 }, /* AEC-S in <= n/a */ { 0x0226, 0x0000 }, /* AEC-R in <= n/a */ /* output enables must be programmed next */ { 0x0202, 0x000F }, /* enable I2S1 + DAC */ }; static const struct snd_soc_dai_ops zl38_dai_ops = { .set_fmt = zl38_set_fmt, .hw_params = zl38_hw_params, .hw_free = zl38_hw_free, }; static struct snd_soc_dai_driver zl38_dai = { .name = "zl38060-tdma", .playback = { .stream_name = "Playback", .channels_min = 2, .channels_max = 2, .rates = ZL38_RATES, .formats = ZL38_FORMATS, }, .capture = { .stream_name = "Capture", .channels_min = 2, .channels_max = 2, .rates = ZL38_RATES, .formats = ZL38_FORMATS, }, .ops = &zl38_dai_ops, .symmetric_rate = 1, .symmetric_sample_bits = 1, .symmetric_channels = 1, }; static const struct snd_soc_dapm_widget zl38_dapm_widgets[] = { SND_SOC_DAPM_OUTPUT("DAC1"), SND_SOC_DAPM_OUTPUT("DAC2"), SND_SOC_DAPM_INPUT("DMICL"), }; static const struct snd_soc_dapm_route zl38_dapm_routes[] = { { "DAC1", NULL, "Playback" }, { "DAC2", NULL, "Playback" }, { "Capture", NULL, "DMICL" }, }; static const struct snd_soc_component_driver zl38_component_dev = { .dapm_widgets = zl38_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(zl38_dapm_widgets), .dapm_routes = zl38_dapm_routes, .num_dapm_routes = ARRAY_SIZE(zl38_dapm_routes), .endianness = 1, }; static void chip_gpio_set(struct gpio_chip *c, unsigned int offset, int val) { struct regmap *regmap = gpiochip_get_data(c); unsigned int mask = BIT(offset); regmap_update_bits(regmap, REG_GPIO_DAT, mask, val ? mask : 0); } static int chip_gpio_get(struct gpio_chip *c, unsigned int offset) { struct regmap *regmap = gpiochip_get_data(c); unsigned int mask = BIT(offset); unsigned int val; int err; err = regmap_read(regmap, REG_GPIO_DAT, &val); if (err) return err; return !!(val & mask); } static int chip_direction_input(struct gpio_chip *c, unsigned int offset) { struct regmap *regmap = gpiochip_get_data(c); unsigned int mask = BIT(offset); return regmap_update_bits(regmap, REG_GPIO_DIR, mask, 0); } static int chip_direction_output(struct gpio_chip *c, unsigned int offset, int val) { struct regmap *regmap = gpiochip_get_data(c); unsigned int mask = BIT(offset); chip_gpio_set(c, offset, val); return regmap_update_bits(regmap, REG_GPIO_DIR, mask, mask); } static const struct gpio_chip template_chip = { .owner = THIS_MODULE, .label = DRV_NAME, .base = -1, .ngpio = 14, .direction_input = chip_direction_input, .direction_output = chip_direction_output, .get = chip_gpio_get, .set = chip_gpio_set, .can_sleep = true, }; static int zl38_check_revision(struct device *dev, struct regmap *regmap) { unsigned int hwrev, fwprod, fwrev; int fw_major, fw_minor, fw_micro; int err; err = regmap_read(regmap, REG_HW_REV, &hwrev); if (err) return err; err = regmap_read(regmap, REG_FW_PROD, &fwprod); if (err) return err; err = regmap_read(regmap, REG_FW_REV, &fwrev); if (err) return err; fw_major = (fwrev >> 12) & 0xF; fw_minor = (fwrev >> 8) & 0xF; fw_micro = fwrev & 0xFF; dev_info(dev, "hw rev 0x%x, fw product code %d, firmware rev %d.%d.%d", hwrev & 0x1F, fwprod, fw_major, fw_minor, fw_micro); if (fw_major != FIRMWARE_MAJOR || fw_minor < FIRMWARE_MINOR) { dev_err(dev, "unsupported firmware. driver supports %d.%d", FIRMWARE_MAJOR, FIRMWARE_MINOR); return -EINVAL; } return 0; } static int zl38_bus_read(void *context, const void *reg_buf, size_t reg_size, void *val_buf, size_t val_size) { struct spi_device *spi = context; const u8 *reg_buf8 = reg_buf; size_t len = 0; u8 offs, page; u8 txbuf[4]; if (reg_size != 2 || val_size > ZL38_MAX_RAW_XFER) return -EINVAL; offs = reg_buf8[1] >> 1; page = reg_buf8[0]; if (page) { txbuf[len++] = 0xFE; txbuf[len++] = page == HBI_FIRMWARE_PAGE ? 0xFF : page - 1; txbuf[len++] = offs; txbuf[len++] = val_size / 2 - 1; } else { txbuf[len++] = offs | 0x80; txbuf[len++] = val_size / 2 - 1; } return spi_write_then_read(spi, txbuf, len, val_buf, val_size); } static int zl38_bus_write(void *context, const void *data, size_t count) { struct spi_device *spi = context; u8 buf[4 + ZL38_MAX_RAW_XFER]; size_t val_len, len = 0; const u8 *data8 = data; u8 offs, page; if (count > (2 + ZL38_MAX_RAW_XFER) || count < 4) return -EINVAL; val_len = count - 2; offs = data8[1] >> 1; page = data8[0]; if (page) { buf[len++] = 0xFE; buf[len++] = page == HBI_FIRMWARE_PAGE ? 0xFF : page - 1; buf[len++] = offs; buf[len++] = (val_len / 2 - 1) | 0x80; } else { buf[len++] = offs | 0x80; buf[len++] = (val_len / 2 - 1) | 0x80; } memcpy(buf + len, data8 + 2, val_len); len += val_len; return spi_write(spi, buf, len); } static const struct regmap_bus zl38_regmap_bus = { .read = zl38_bus_read, .write = zl38_bus_write, .max_raw_write = ZL38_MAX_RAW_XFER, .max_raw_read = ZL38_MAX_RAW_XFER, }; static const struct regmap_config zl38_regmap_conf = { .reg_bits = 16, .val_bits = 16, .reg_stride = 2, .use_single_read = true, .use_single_write = true, }; static int zl38_spi_probe(struct spi_device *spi) { struct device *dev = &spi->dev; struct zl38_codec_priv *priv; struct gpio_desc *reset_gpio; int err; /* get the chip to a known state by putting it in reset */ reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(reset_gpio)) return PTR_ERR(reset_gpio); if (reset_gpio) { /* datasheet: need > 10us for a digital + analog reset */ usleep_range(15, 50); /* take the chip out of reset */ gpiod_set_value_cansleep(reset_gpio, 0); /* datasheet: need > 3ms for digital section to become stable */ usleep_range(3000, 10000); } priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; dev_set_drvdata(dev, priv); priv->regmap = devm_regmap_init(dev, &zl38_regmap_bus, spi, &zl38_regmap_conf); if (IS_ERR(priv->regmap)) return PTR_ERR(priv->regmap); err = zl38_load_firmware(dev, priv->regmap); if (err) return err; err = zl38_check_revision(dev, priv->regmap); if (err) return err; priv->gpio_chip = devm_kmemdup(dev, &template_chip, sizeof(template_chip), GFP_KERNEL); if (!priv->gpio_chip) return -ENOMEM; priv->gpio_chip->parent = dev; err = devm_gpiochip_add_data(dev, priv->gpio_chip, priv->regmap); if (err) return err; /* setup the cross-point switch for stereo bypass */ err = regmap_multi_reg_write(priv->regmap, cp_config_stereo_bypass, ARRAY_SIZE(cp_config_stereo_bypass)); if (err) return err; /* setup for 12MHz crystal connected to the chip */ err = regmap_update_bits(priv->regmap, REG_CLK_CFG, CLK_CFG_SOURCE_XTAL, CLK_CFG_SOURCE_XTAL); if (err) return err; return devm_snd_soc_register_component(dev, &zl38_component_dev, &zl38_dai, 1); } static const struct of_device_id zl38_dt_ids[] __maybe_unused = { { .compatible = "mscc,zl38060", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, zl38_dt_ids); static const struct spi_device_id zl38_spi_ids[] = { { "zl38060", 0 }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(spi, zl38_spi_ids); static struct spi_driver zl38060_spi_driver = { .driver = { .name = DRV_NAME, .of_match_table = of_match_ptr(zl38_dt_ids), }, .probe = zl38_spi_probe, .id_table = zl38_spi_ids, }; module_spi_driver(zl38060_spi_driver); MODULE_DESCRIPTION("ASoC ZL38060 driver"); MODULE_AUTHOR("Sven Van Asbroeck <TheSven73@gmail.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1