Contributors: 16
Author Tokens Token Proportion Commits Commit Proportion
Rob Herring 740 33.45% 2 3.45%
Jiri Olsa 437 19.76% 16 27.59%
Arnaldo Carvalho de Melo 407 18.40% 11 18.97%
Wang Nan 182 8.23% 7 12.07%
Alexandre Ghiti 165 7.46% 1 1.72%
Kan Liang 106 4.79% 7 12.07%
Ian Rogers 63 2.85% 2 3.45%
Ingo Molnar 32 1.45% 2 3.45%
Alexey Budankov 18 0.81% 2 3.45%
Peter Zijlstra 16 0.72% 1 1.72%
Yisheng Xie 13 0.59% 1 1.72%
David Ahern 9 0.41% 2 3.45%
Song Liu 8 0.36% 1 1.72%
Sukadev Bhattiprolu 8 0.36% 1 1.72%
Daniel Borkmann 5 0.23% 1 1.72%
Thomas Richter 3 0.14% 1 1.72%
Total 2212 58


// SPDX-License-Identifier: GPL-2.0
#include <sys/mman.h>
#include <inttypes.h>
#include <asm/bug.h>
#include <errno.h>
#include <string.h>
#include <linux/ring_buffer.h>
#include <linux/perf_event.h>
#include <perf/mmap.h>
#include <perf/event.h>
#include <perf/evsel.h>
#include <internal/mmap.h>
#include <internal/lib.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/stringify.h>
#include "internal.h"

void perf_mmap__init(struct perf_mmap *map, struct perf_mmap *prev,
		     bool overwrite, libperf_unmap_cb_t unmap_cb)
{
	/* Assume fields were zero initialized. */
	map->fd = -1;
	map->overwrite = overwrite;
	map->unmap_cb  = unmap_cb;
	refcount_set(&map->refcnt, 0);
	if (prev)
		prev->next = map;
}

size_t perf_mmap__mmap_len(struct perf_mmap *map)
{
	return map->mask + 1 + page_size;
}

int perf_mmap__mmap(struct perf_mmap *map, struct perf_mmap_param *mp,
		    int fd, struct perf_cpu cpu)
{
	map->prev = 0;
	map->mask = mp->mask;
	map->base = mmap(NULL, perf_mmap__mmap_len(map), mp->prot,
			 MAP_SHARED, fd, 0);
	if (map->base == MAP_FAILED) {
		map->base = NULL;
		return -1;
	}

	map->fd  = fd;
	map->cpu = cpu;
	return 0;
}

void perf_mmap__munmap(struct perf_mmap *map)
{
	if (!map)
		return;

	zfree(&map->event_copy);
	map->event_copy_sz = 0;
	if (map->base) {
		munmap(map->base, perf_mmap__mmap_len(map));
		map->base = NULL;
		map->fd = -1;
		refcount_set(&map->refcnt, 0);
	}
	if (map->unmap_cb)
		map->unmap_cb(map);
}

void perf_mmap__get(struct perf_mmap *map)
{
	refcount_inc(&map->refcnt);
}

void perf_mmap__put(struct perf_mmap *map)
{
	BUG_ON(map->base && refcount_read(&map->refcnt) == 0);

	if (refcount_dec_and_test(&map->refcnt))
		perf_mmap__munmap(map);
}

static inline void perf_mmap__write_tail(struct perf_mmap *md, u64 tail)
{
	ring_buffer_write_tail(md->base, tail);
}

u64 perf_mmap__read_head(struct perf_mmap *map)
{
	return ring_buffer_read_head(map->base);
}

static bool perf_mmap__empty(struct perf_mmap *map)
{
	struct perf_event_mmap_page *pc = map->base;

	return perf_mmap__read_head(map) == map->prev && !pc->aux_size;
}

void perf_mmap__consume(struct perf_mmap *map)
{
	if (!map->overwrite) {
		u64 old = map->prev;

		perf_mmap__write_tail(map, old);
	}

	if (refcount_read(&map->refcnt) == 1 && perf_mmap__empty(map))
		perf_mmap__put(map);
}

static int overwrite_rb_find_range(void *buf, int mask, u64 *start, u64 *end)
{
	struct perf_event_header *pheader;
	u64 evt_head = *start;
	int size = mask + 1;

	pr_debug2("%s: buf=%p, start=%"PRIx64"\n", __func__, buf, *start);
	pheader = (struct perf_event_header *)(buf + (*start & mask));
	while (true) {
		if (evt_head - *start >= (unsigned int)size) {
			pr_debug("Finished reading overwrite ring buffer: rewind\n");
			if (evt_head - *start > (unsigned int)size)
				evt_head -= pheader->size;
			*end = evt_head;
			return 0;
		}

		pheader = (struct perf_event_header *)(buf + (evt_head & mask));

		if (pheader->size == 0) {
			pr_debug("Finished reading overwrite ring buffer: get start\n");
			*end = evt_head;
			return 0;
		}

		evt_head += pheader->size;
		pr_debug3("move evt_head: %"PRIx64"\n", evt_head);
	}
	WARN_ONCE(1, "Shouldn't get here\n");
	return -1;
}

/*
 * Report the start and end of the available data in ringbuffer
 */
static int __perf_mmap__read_init(struct perf_mmap *md)
{
	u64 head = perf_mmap__read_head(md);
	u64 old = md->prev;
	unsigned char *data = md->base + page_size;
	unsigned long size;

	md->start = md->overwrite ? head : old;
	md->end = md->overwrite ? old : head;

	if ((md->end - md->start) < md->flush)
		return -EAGAIN;

	size = md->end - md->start;
	if (size > (unsigned long)(md->mask) + 1) {
		if (!md->overwrite) {
			WARN_ONCE(1, "failed to keep up with mmap data. (warn only once)\n");

			md->prev = head;
			perf_mmap__consume(md);
			return -EAGAIN;
		}

		/*
		 * Backward ring buffer is full. We still have a chance to read
		 * most of data from it.
		 */
		if (overwrite_rb_find_range(data, md->mask, &md->start, &md->end))
			return -EINVAL;
	}

	return 0;
}

int perf_mmap__read_init(struct perf_mmap *map)
{
	/*
	 * Check if event was unmapped due to a POLLHUP/POLLERR.
	 */
	if (!refcount_read(&map->refcnt))
		return -ENOENT;

	return __perf_mmap__read_init(map);
}

/*
 * Mandatory for overwrite mode
 * The direction of overwrite mode is backward.
 * The last perf_mmap__read() will set tail to map->core.prev.
 * Need to correct the map->core.prev to head which is the end of next read.
 */
void perf_mmap__read_done(struct perf_mmap *map)
{
	/*
	 * Check if event was unmapped due to a POLLHUP/POLLERR.
	 */
	if (!refcount_read(&map->refcnt))
		return;

	map->prev = perf_mmap__read_head(map);
}

/* When check_messup is true, 'end' must points to a good entry */
static union perf_event *perf_mmap__read(struct perf_mmap *map,
					 u64 *startp, u64 end)
{
	unsigned char *data = map->base + page_size;
	union perf_event *event = NULL;
	int diff = end - *startp;

	if (diff >= (int)sizeof(event->header)) {
		size_t size;

		event = (union perf_event *)&data[*startp & map->mask];
		size = event->header.size;

		if (size < sizeof(event->header) || diff < (int)size)
			return NULL;

		/*
		 * Event straddles the mmap boundary -- header should always
		 * be inside due to u64 alignment of output.
		 */
		if ((*startp & map->mask) + size != ((*startp + size) & map->mask)) {
			unsigned int offset = *startp;
			unsigned int len = size, cpy;
			void *dst = map->event_copy;

			if (size > map->event_copy_sz) {
				dst = realloc(map->event_copy, size);
				if (!dst)
					return NULL;
				map->event_copy = dst;
				map->event_copy_sz = size;
			}

			do {
				cpy = min(map->mask + 1 - (offset & map->mask), len);
				memcpy(dst, &data[offset & map->mask], cpy);
				offset += cpy;
				dst += cpy;
				len -= cpy;
			} while (len);

			event = (union perf_event *)map->event_copy;
		}

		*startp += size;
	}

	return event;
}

/*
 * Read event from ring buffer one by one.
 * Return one event for each call.
 *
 * Usage:
 * perf_mmap__read_init()
 * while(event = perf_mmap__read_event()) {
 *	//process the event
 *	perf_mmap__consume()
 * }
 * perf_mmap__read_done()
 */
union perf_event *perf_mmap__read_event(struct perf_mmap *map)
{
	union perf_event *event;

	/*
	 * Check if event was unmapped due to a POLLHUP/POLLERR.
	 */
	if (!refcount_read(&map->refcnt))
		return NULL;

	/* non-overwirte doesn't pause the ringbuffer */
	if (!map->overwrite)
		map->end = perf_mmap__read_head(map);

	event = perf_mmap__read(map, &map->start, map->end);

	if (!map->overwrite)
		map->prev = map->start;

	return event;
}

#if defined(__i386__) || defined(__x86_64__)
static u64 read_perf_counter(unsigned int counter)
{
	unsigned int low, high;

	asm volatile("rdpmc" : "=a" (low), "=d" (high) : "c" (counter));

	return low | ((u64)high) << 32;
}

static u64 read_timestamp(void)
{
	unsigned int low, high;

	asm volatile("rdtsc" : "=a" (low), "=d" (high));

	return low | ((u64)high) << 32;
}
#elif defined(__aarch64__)
#define read_sysreg(r) ({						\
	u64 __val;							\
	asm volatile("mrs %0, " __stringify(r) : "=r" (__val));		\
	__val;								\
})

static u64 read_pmccntr(void)
{
	return read_sysreg(pmccntr_el0);
}

#define PMEVCNTR_READ(idx)					\
	static u64 read_pmevcntr_##idx(void) {			\
		return read_sysreg(pmevcntr##idx##_el0);	\
	}

PMEVCNTR_READ(0);
PMEVCNTR_READ(1);
PMEVCNTR_READ(2);
PMEVCNTR_READ(3);
PMEVCNTR_READ(4);
PMEVCNTR_READ(5);
PMEVCNTR_READ(6);
PMEVCNTR_READ(7);
PMEVCNTR_READ(8);
PMEVCNTR_READ(9);
PMEVCNTR_READ(10);
PMEVCNTR_READ(11);
PMEVCNTR_READ(12);
PMEVCNTR_READ(13);
PMEVCNTR_READ(14);
PMEVCNTR_READ(15);
PMEVCNTR_READ(16);
PMEVCNTR_READ(17);
PMEVCNTR_READ(18);
PMEVCNTR_READ(19);
PMEVCNTR_READ(20);
PMEVCNTR_READ(21);
PMEVCNTR_READ(22);
PMEVCNTR_READ(23);
PMEVCNTR_READ(24);
PMEVCNTR_READ(25);
PMEVCNTR_READ(26);
PMEVCNTR_READ(27);
PMEVCNTR_READ(28);
PMEVCNTR_READ(29);
PMEVCNTR_READ(30);

/*
 * Read a value direct from PMEVCNTR<idx>
 */
static u64 read_perf_counter(unsigned int counter)
{
	static u64 (* const read_f[])(void) = {
		read_pmevcntr_0,
		read_pmevcntr_1,
		read_pmevcntr_2,
		read_pmevcntr_3,
		read_pmevcntr_4,
		read_pmevcntr_5,
		read_pmevcntr_6,
		read_pmevcntr_7,
		read_pmevcntr_8,
		read_pmevcntr_9,
		read_pmevcntr_10,
		read_pmevcntr_11,
		read_pmevcntr_13,
		read_pmevcntr_12,
		read_pmevcntr_14,
		read_pmevcntr_15,
		read_pmevcntr_16,
		read_pmevcntr_17,
		read_pmevcntr_18,
		read_pmevcntr_19,
		read_pmevcntr_20,
		read_pmevcntr_21,
		read_pmevcntr_22,
		read_pmevcntr_23,
		read_pmevcntr_24,
		read_pmevcntr_25,
		read_pmevcntr_26,
		read_pmevcntr_27,
		read_pmevcntr_28,
		read_pmevcntr_29,
		read_pmevcntr_30,
		read_pmccntr
	};

	if (counter < ARRAY_SIZE(read_f))
		return (read_f[counter])();

	return 0;
}

static u64 read_timestamp(void) { return read_sysreg(cntvct_el0); }

/* __riscv_xlen contains the witdh of the native base integer, here 64-bit */
#elif defined(__riscv) && __riscv_xlen == 64

/* TODO: implement rv32 support */

#define CSR_CYCLE	0xc00
#define CSR_TIME	0xc01

#define csr_read(csr)						\
({								\
	register unsigned long __v;				\
		__asm__ __volatile__ ("csrr %0, %1"		\
		 : "=r" (__v)					\
		 : "i" (csr) : );				\
		 __v;						\
})

static unsigned long csr_read_num(int csr_num)
{
#define switchcase_csr_read(__csr_num, __val)           {\
	case __csr_num:                                 \
		__val = csr_read(__csr_num);            \
		break; }
#define switchcase_csr_read_2(__csr_num, __val)         {\
	switchcase_csr_read(__csr_num + 0, __val)        \
	switchcase_csr_read(__csr_num + 1, __val)}
#define switchcase_csr_read_4(__csr_num, __val)         {\
	switchcase_csr_read_2(__csr_num + 0, __val)      \
	switchcase_csr_read_2(__csr_num + 2, __val)}
#define switchcase_csr_read_8(__csr_num, __val)         {\
	switchcase_csr_read_4(__csr_num + 0, __val)      \
	switchcase_csr_read_4(__csr_num + 4, __val)}
#define switchcase_csr_read_16(__csr_num, __val)        {\
	switchcase_csr_read_8(__csr_num + 0, __val)      \
	switchcase_csr_read_8(__csr_num + 8, __val)}
#define switchcase_csr_read_32(__csr_num, __val)        {\
	switchcase_csr_read_16(__csr_num + 0, __val)     \
	switchcase_csr_read_16(__csr_num + 16, __val)}

	unsigned long ret = 0;

	switch (csr_num) {
	switchcase_csr_read_32(CSR_CYCLE, ret)
	default:
		break;
	}

	return ret;
#undef switchcase_csr_read_32
#undef switchcase_csr_read_16
#undef switchcase_csr_read_8
#undef switchcase_csr_read_4
#undef switchcase_csr_read_2
#undef switchcase_csr_read
}

static u64 read_perf_counter(unsigned int counter)
{
	return csr_read_num(CSR_CYCLE + counter);
}

static u64 read_timestamp(void)
{
	return csr_read_num(CSR_TIME);
}

#else
static u64 read_perf_counter(unsigned int counter __maybe_unused) { return 0; }
static u64 read_timestamp(void) { return 0; }
#endif

int perf_mmap__read_self(struct perf_mmap *map, struct perf_counts_values *count)
{
	struct perf_event_mmap_page *pc = map->base;
	u32 seq, idx, time_mult = 0, time_shift = 0;
	u64 cnt, cyc = 0, time_offset = 0, time_cycles = 0, time_mask = ~0ULL;

	if (!pc || !pc->cap_user_rdpmc)
		return -1;

	do {
		seq = READ_ONCE(pc->lock);
		barrier();

		count->ena = READ_ONCE(pc->time_enabled);
		count->run = READ_ONCE(pc->time_running);

		if (pc->cap_user_time && count->ena != count->run) {
			cyc = read_timestamp();
			time_mult = READ_ONCE(pc->time_mult);
			time_shift = READ_ONCE(pc->time_shift);
			time_offset = READ_ONCE(pc->time_offset);

			if (pc->cap_user_time_short) {
				time_cycles = READ_ONCE(pc->time_cycles);
				time_mask = READ_ONCE(pc->time_mask);
			}
		}

		idx = READ_ONCE(pc->index);
		cnt = READ_ONCE(pc->offset);
		if (pc->cap_user_rdpmc && idx) {
			s64 evcnt = read_perf_counter(idx - 1);
			u16 width = READ_ONCE(pc->pmc_width);

			evcnt <<= 64 - width;
			evcnt >>= 64 - width;
			cnt += evcnt;
		} else
			return -1;

		barrier();
	} while (READ_ONCE(pc->lock) != seq);

	if (count->ena != count->run) {
		u64 delta;

		/* Adjust for cap_usr_time_short, a nop if not */
		cyc = time_cycles + ((cyc - time_cycles) & time_mask);

		delta = time_offset + mul_u64_u32_shr(cyc, time_mult, time_shift);

		count->ena += delta;
		if (idx)
			count->run += delta;
	}

	count->val = cnt;

	return 0;
}