Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Namhyung Kim | 2523 | 99.29% | 31 | 93.94% |
Ian Rogers | 18 | 0.71% | 2 | 6.06% |
Total | 2541 | 33 |
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) // Copyright (c) 2022 Google #include "vmlinux.h" #include <bpf/bpf_helpers.h> #include <bpf/bpf_tracing.h> #include <bpf/bpf_core_read.h> #include <asm-generic/errno-base.h> #include "lock_data.h" /* for collect_lock_syms(). 4096 was rejected by the verifier */ #define MAX_CPUS 1024 /* lock contention flags from include/trace/events/lock.h */ #define LCB_F_SPIN (1U << 0) #define LCB_F_READ (1U << 1) #define LCB_F_WRITE (1U << 2) #define LCB_F_RT (1U << 3) #define LCB_F_PERCPU (1U << 4) #define LCB_F_MUTEX (1U << 5) /* callstack storage */ struct { __uint(type, BPF_MAP_TYPE_STACK_TRACE); __uint(key_size, sizeof(__u32)); __uint(value_size, sizeof(__u64)); __uint(max_entries, MAX_ENTRIES); } stacks SEC(".maps"); /* maintain timestamp at the beginning of contention */ struct { __uint(type, BPF_MAP_TYPE_HASH); __type(key, int); __type(value, struct tstamp_data); __uint(max_entries, MAX_ENTRIES); } tstamp SEC(".maps"); /* maintain per-CPU timestamp at the beginning of contention */ struct { __uint(type, BPF_MAP_TYPE_PERCPU_ARRAY); __uint(key_size, sizeof(__u32)); __uint(value_size, sizeof(struct tstamp_data)); __uint(max_entries, 1); } tstamp_cpu SEC(".maps"); /* actual lock contention statistics */ struct { __uint(type, BPF_MAP_TYPE_HASH); __uint(key_size, sizeof(struct contention_key)); __uint(value_size, sizeof(struct contention_data)); __uint(max_entries, MAX_ENTRIES); } lock_stat SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_HASH); __uint(key_size, sizeof(__u32)); __uint(value_size, sizeof(struct contention_task_data)); __uint(max_entries, MAX_ENTRIES); } task_data SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_HASH); __uint(key_size, sizeof(__u64)); __uint(value_size, sizeof(__u32)); __uint(max_entries, MAX_ENTRIES); } lock_syms SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_HASH); __uint(key_size, sizeof(__u32)); __uint(value_size, sizeof(__u8)); __uint(max_entries, 1); } cpu_filter SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_HASH); __uint(key_size, sizeof(__u32)); __uint(value_size, sizeof(__u8)); __uint(max_entries, 1); } task_filter SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_HASH); __uint(key_size, sizeof(__u32)); __uint(value_size, sizeof(__u8)); __uint(max_entries, 1); } type_filter SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_HASH); __uint(key_size, sizeof(__u64)); __uint(value_size, sizeof(__u8)); __uint(max_entries, 1); } addr_filter SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_HASH); __uint(key_size, sizeof(__u64)); __uint(value_size, sizeof(__u8)); __uint(max_entries, 1); } cgroup_filter SEC(".maps"); struct rw_semaphore___old { struct task_struct *owner; } __attribute__((preserve_access_index)); struct rw_semaphore___new { atomic_long_t owner; } __attribute__((preserve_access_index)); struct mm_struct___old { struct rw_semaphore mmap_sem; } __attribute__((preserve_access_index)); struct mm_struct___new { struct rw_semaphore mmap_lock; } __attribute__((preserve_access_index)); /* control flags */ int enabled; int has_cpu; int has_task; int has_type; int has_addr; int has_cgroup; int needs_callstack; int stack_skip; int lock_owner; int use_cgroup_v2; int perf_subsys_id = -1; /* determine the key of lock stat */ int aggr_mode; __u64 end_ts; /* error stat */ int task_fail; int stack_fail; int time_fail; int data_fail; int task_map_full; int data_map_full; static inline __u64 get_current_cgroup_id(void) { struct task_struct *task; struct cgroup *cgrp; if (use_cgroup_v2) return bpf_get_current_cgroup_id(); task = bpf_get_current_task_btf(); if (perf_subsys_id == -1) { #if __has_builtin(__builtin_preserve_enum_value) perf_subsys_id = bpf_core_enum_value(enum cgroup_subsys_id, perf_event_cgrp_id); #else perf_subsys_id = perf_event_cgrp_id; #endif } cgrp = BPF_CORE_READ(task, cgroups, subsys[perf_subsys_id], cgroup); return BPF_CORE_READ(cgrp, kn, id); } static inline int can_record(u64 *ctx) { if (has_cpu) { __u32 cpu = bpf_get_smp_processor_id(); __u8 *ok; ok = bpf_map_lookup_elem(&cpu_filter, &cpu); if (!ok) return 0; } if (has_task) { __u8 *ok; __u32 pid = bpf_get_current_pid_tgid(); ok = bpf_map_lookup_elem(&task_filter, &pid); if (!ok) return 0; } if (has_type) { __u8 *ok; __u32 flags = (__u32)ctx[1]; ok = bpf_map_lookup_elem(&type_filter, &flags); if (!ok) return 0; } if (has_addr) { __u8 *ok; __u64 addr = ctx[0]; ok = bpf_map_lookup_elem(&addr_filter, &addr); if (!ok) return 0; } if (has_cgroup) { __u8 *ok; __u64 cgrp = get_current_cgroup_id(); ok = bpf_map_lookup_elem(&cgroup_filter, &cgrp); if (!ok) return 0; } return 1; } static inline int update_task_data(struct task_struct *task) { struct contention_task_data *p; int pid, err; err = bpf_core_read(&pid, sizeof(pid), &task->pid); if (err) return -1; p = bpf_map_lookup_elem(&task_data, &pid); if (p == NULL && !task_map_full) { struct contention_task_data data = {}; BPF_CORE_READ_STR_INTO(&data.comm, task, comm); if (bpf_map_update_elem(&task_data, &pid, &data, BPF_NOEXIST) == -E2BIG) task_map_full = 1; } return 0; } #ifndef __has_builtin # define __has_builtin(x) 0 #endif static inline struct task_struct *get_lock_owner(__u64 lock, __u32 flags) { struct task_struct *task; __u64 owner = 0; if (flags & LCB_F_MUTEX) { struct mutex *mutex = (void *)lock; owner = BPF_CORE_READ(mutex, owner.counter); } else if (flags == LCB_F_READ || flags == LCB_F_WRITE) { /* * Support for the BPF_TYPE_MATCHES argument to the * __builtin_preserve_type_info builtin was added at some point during * development of clang 15 and it's what is needed for * bpf_core_type_matches. */ #if __has_builtin(__builtin_preserve_type_info) && __clang_major__ >= 15 if (bpf_core_type_matches(struct rw_semaphore___old)) { struct rw_semaphore___old *rwsem = (void *)lock; owner = (unsigned long)BPF_CORE_READ(rwsem, owner); } else if (bpf_core_type_matches(struct rw_semaphore___new)) { struct rw_semaphore___new *rwsem = (void *)lock; owner = BPF_CORE_READ(rwsem, owner.counter); } #else /* assume new struct */ struct rw_semaphore *rwsem = (void *)lock; owner = BPF_CORE_READ(rwsem, owner.counter); #endif } if (!owner) return NULL; task = (void *)(owner & ~7UL); return task; } static inline __u32 check_lock_type(__u64 lock, __u32 flags) { struct task_struct *curr; struct mm_struct___old *mm_old; struct mm_struct___new *mm_new; struct sighand_struct *sighand; switch (flags) { case LCB_F_READ: /* rwsem */ case LCB_F_WRITE: curr = bpf_get_current_task_btf(); if (curr->mm == NULL) break; mm_new = (void *)curr->mm; if (bpf_core_field_exists(mm_new->mmap_lock)) { if (&mm_new->mmap_lock == (void *)lock) return LCD_F_MMAP_LOCK; break; } mm_old = (void *)curr->mm; if (bpf_core_field_exists(mm_old->mmap_sem)) { if (&mm_old->mmap_sem == (void *)lock) return LCD_F_MMAP_LOCK; } break; case LCB_F_SPIN: /* spinlock */ curr = bpf_get_current_task_btf(); sighand = curr->sighand; if (sighand && &sighand->siglock == (void *)lock) return LCD_F_SIGHAND_LOCK; break; default: break; } return 0; } static inline struct tstamp_data *get_tstamp_elem(__u32 flags) { __u32 pid; struct tstamp_data *pelem; /* Use per-cpu array map for spinlock and rwlock */ if (flags == (LCB_F_SPIN | LCB_F_READ) || flags == LCB_F_SPIN || flags == (LCB_F_SPIN | LCB_F_WRITE)) { __u32 idx = 0; pelem = bpf_map_lookup_elem(&tstamp_cpu, &idx); /* Do not update the element for nested locks */ if (pelem && pelem->lock) pelem = NULL; return pelem; } pid = bpf_get_current_pid_tgid(); pelem = bpf_map_lookup_elem(&tstamp, &pid); /* Do not update the element for nested locks */ if (pelem && pelem->lock) return NULL; if (pelem == NULL) { struct tstamp_data zero = {}; if (bpf_map_update_elem(&tstamp, &pid, &zero, BPF_NOEXIST) < 0) { __sync_fetch_and_add(&task_fail, 1); return NULL; } pelem = bpf_map_lookup_elem(&tstamp, &pid); if (pelem == NULL) { __sync_fetch_and_add(&task_fail, 1); return NULL; } } return pelem; } SEC("tp_btf/contention_begin") int contention_begin(u64 *ctx) { struct tstamp_data *pelem; if (!enabled || !can_record(ctx)) return 0; pelem = get_tstamp_elem(ctx[1]); if (pelem == NULL) return 0; pelem->timestamp = bpf_ktime_get_ns(); pelem->lock = (__u64)ctx[0]; pelem->flags = (__u32)ctx[1]; if (needs_callstack) { pelem->stack_id = bpf_get_stackid(ctx, &stacks, BPF_F_FAST_STACK_CMP | stack_skip); if (pelem->stack_id < 0) __sync_fetch_and_add(&stack_fail, 1); } else if (aggr_mode == LOCK_AGGR_TASK) { struct task_struct *task; if (lock_owner) { task = get_lock_owner(pelem->lock, pelem->flags); /* The flags is not used anymore. Pass the owner pid. */ if (task) pelem->flags = BPF_CORE_READ(task, pid); else pelem->flags = -1U; } else { task = bpf_get_current_task_btf(); } if (task) { if (update_task_data(task) < 0 && lock_owner) pelem->flags = -1U; } } return 0; } SEC("tp_btf/contention_end") int contention_end(u64 *ctx) { __u32 pid = 0, idx = 0; struct tstamp_data *pelem; struct contention_key key = {}; struct contention_data *data; __u64 duration; bool need_delete = false; if (!enabled) return 0; /* * For spinlock and rwlock, it needs to get the timestamp for the * per-cpu map. However, contention_end does not have the flags * so it cannot know whether it reads percpu or hash map. * * Try per-cpu map first and check if there's active contention. * If it is, do not read hash map because it cannot go to sleeping * locks before releasing the spinning locks. */ pelem = bpf_map_lookup_elem(&tstamp_cpu, &idx); if (pelem && pelem->lock) { if (pelem->lock != ctx[0]) return 0; } else { pid = bpf_get_current_pid_tgid(); pelem = bpf_map_lookup_elem(&tstamp, &pid); if (!pelem || pelem->lock != ctx[0]) return 0; need_delete = true; } duration = bpf_ktime_get_ns() - pelem->timestamp; if ((__s64)duration < 0) { pelem->lock = 0; if (need_delete) bpf_map_delete_elem(&tstamp, &pid); __sync_fetch_and_add(&time_fail, 1); return 0; } switch (aggr_mode) { case LOCK_AGGR_CALLER: key.stack_id = pelem->stack_id; break; case LOCK_AGGR_TASK: if (lock_owner) key.pid = pelem->flags; else { if (!need_delete) pid = bpf_get_current_pid_tgid(); key.pid = pid; } if (needs_callstack) key.stack_id = pelem->stack_id; break; case LOCK_AGGR_ADDR: key.lock_addr_or_cgroup = pelem->lock; if (needs_callstack) key.stack_id = pelem->stack_id; break; case LOCK_AGGR_CGROUP: key.lock_addr_or_cgroup = get_current_cgroup_id(); break; default: /* should not happen */ return 0; } data = bpf_map_lookup_elem(&lock_stat, &key); if (!data) { if (data_map_full) { pelem->lock = 0; if (need_delete) bpf_map_delete_elem(&tstamp, &pid); __sync_fetch_and_add(&data_fail, 1); return 0; } struct contention_data first = { .total_time = duration, .max_time = duration, .min_time = duration, .count = 1, .flags = pelem->flags, }; int err; if (aggr_mode == LOCK_AGGR_ADDR) first.flags |= check_lock_type(pelem->lock, pelem->flags); err = bpf_map_update_elem(&lock_stat, &key, &first, BPF_NOEXIST); if (err < 0) { if (err == -E2BIG) data_map_full = 1; __sync_fetch_and_add(&data_fail, 1); } pelem->lock = 0; if (need_delete) bpf_map_delete_elem(&tstamp, &pid); return 0; } __sync_fetch_and_add(&data->total_time, duration); __sync_fetch_and_add(&data->count, 1); /* FIXME: need atomic operations */ if (data->max_time < duration) data->max_time = duration; if (data->min_time > duration) data->min_time = duration; pelem->lock = 0; if (need_delete) bpf_map_delete_elem(&tstamp, &pid); return 0; } extern struct rq runqueues __ksym; struct rq___old { raw_spinlock_t lock; } __attribute__((preserve_access_index)); struct rq___new { raw_spinlock_t __lock; } __attribute__((preserve_access_index)); SEC("raw_tp/bpf_test_finish") int BPF_PROG(collect_lock_syms) { __u64 lock_addr, lock_off; __u32 lock_flag; if (bpf_core_field_exists(struct rq___new, __lock)) lock_off = offsetof(struct rq___new, __lock); else lock_off = offsetof(struct rq___old, lock); for (int i = 0; i < MAX_CPUS; i++) { struct rq *rq = bpf_per_cpu_ptr(&runqueues, i); if (rq == NULL) break; lock_addr = (__u64)(void *)rq + lock_off; lock_flag = LOCK_CLASS_RQLOCK; bpf_map_update_elem(&lock_syms, &lock_addr, &lock_flag, BPF_ANY); } return 0; } SEC("raw_tp/bpf_test_finish") int BPF_PROG(end_timestamp) { end_ts = bpf_ktime_get_ns(); return 0; } char LICENSE[] SEC("license") = "Dual BSD/GPL";
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1