Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Arnaldo Carvalho de Melo | 3343 | 30.09% | 150 | 36.23% |
Adrian Hunter | 2661 | 23.95% | 45 | 10.87% |
Jiri Olsa | 1795 | 16.16% | 94 | 22.71% |
Alexey Budankov | 798 | 7.18% | 10 | 2.42% |
Ian Rogers | 562 | 5.06% | 15 | 3.62% |
Wang Nan | 462 | 4.16% | 17 | 4.11% |
Andi Kleen | 329 | 2.96% | 10 | 2.42% |
Namhyung Kim | 271 | 2.44% | 23 | 5.56% |
David Ahern | 211 | 1.90% | 8 | 1.93% |
Jin Yao | 171 | 1.54% | 6 | 1.45% |
Frédéric Weisbecker | 146 | 1.31% | 4 | 0.97% |
Kan Liang | 106 | 0.95% | 7 | 1.69% |
Yang Jihong | 86 | 0.77% | 2 | 0.48% |
Song Liu | 36 | 0.32% | 2 | 0.48% |
John Garry | 30 | 0.27% | 1 | 0.24% |
James Clark | 26 | 0.23% | 1 | 0.24% |
Ingo Molnar | 18 | 0.16% | 3 | 0.72% |
Roberto Agostino Vitillo | 14 | 0.13% | 1 | 0.24% |
Changbin Du | 6 | 0.05% | 1 | 0.24% |
Stéphane Eranian | 6 | 0.05% | 2 | 0.48% |
Yanmin Zhang | 6 | 0.05% | 1 | 0.24% |
Peter Zijlstra | 5 | 0.05% | 1 | 0.24% |
Mark Rutland | 4 | 0.04% | 1 | 0.24% |
Igor Lubashev | 3 | 0.03% | 1 | 0.24% |
Mike Galbraith | 3 | 0.03% | 1 | 0.24% |
Alexander Yarygin | 3 | 0.03% | 1 | 0.24% |
Masami Hiramatsu | 2 | 0.02% | 1 | 0.24% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.24% |
Haowen Bai | 2 | 0.02% | 1 | 0.24% |
Dongsheng Yang | 1 | 0.01% | 1 | 0.24% |
Soramichi Akiyama | 1 | 0.01% | 1 | 0.24% |
Josh Poimboeuf | 1 | 0.01% | 1 | 0.24% |
Total | 11110 | 414 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> * * Parts came from builtin-{top,stat,record}.c, see those files for further * copyright notes. */ #include <api/fs/fs.h> #include <errno.h> #include <inttypes.h> #include <poll.h> #include "cpumap.h" #include "util/mmap.h" #include "thread_map.h" #include "target.h" #include "evlist.h" #include "evsel.h" #include "record.h" #include "debug.h" #include "units.h" #include "bpf_counter.h" #include <internal/lib.h> // page_size #include "affinity.h" #include "../perf.h" #include "asm/bug.h" #include "bpf-event.h" #include "util/event.h" #include "util/string2.h" #include "util/perf_api_probe.h" #include "util/evsel_fprintf.h" #include "util/pmu.h" #include "util/sample.h" #include "util/bpf-filter.h" #include "util/stat.h" #include "util/util.h" #include <signal.h> #include <unistd.h> #include <sched.h> #include <stdlib.h> #include "parse-events.h" #include <subcmd/parse-options.h> #include <fcntl.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <sys/prctl.h> #include <sys/timerfd.h> #include <linux/bitops.h> #include <linux/hash.h> #include <linux/log2.h> #include <linux/err.h> #include <linux/string.h> #include <linux/time64.h> #include <linux/zalloc.h> #include <perf/evlist.h> #include <perf/evsel.h> #include <perf/cpumap.h> #include <perf/mmap.h> #include <internal/xyarray.h> #ifdef LACKS_SIGQUEUE_PROTOTYPE int sigqueue(pid_t pid, int sig, const union sigval value); #endif #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y)) #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y) void evlist__init(struct evlist *evlist, struct perf_cpu_map *cpus, struct perf_thread_map *threads) { perf_evlist__init(&evlist->core); perf_evlist__set_maps(&evlist->core, cpus, threads); evlist->workload.pid = -1; evlist->bkw_mmap_state = BKW_MMAP_NOTREADY; evlist->ctl_fd.fd = -1; evlist->ctl_fd.ack = -1; evlist->ctl_fd.pos = -1; } struct evlist *evlist__new(void) { struct evlist *evlist = zalloc(sizeof(*evlist)); if (evlist != NULL) evlist__init(evlist, NULL, NULL); return evlist; } struct evlist *evlist__new_default(void) { struct evlist *evlist = evlist__new(); bool can_profile_kernel; int err; if (!evlist) return NULL; can_profile_kernel = perf_event_paranoid_check(1); err = parse_event(evlist, can_profile_kernel ? "cycles:P" : "cycles:Pu"); if (err) { evlist__delete(evlist); return NULL; } if (evlist->core.nr_entries > 1) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) evsel__set_sample_id(evsel, /*can_sample_identifier=*/false); } return evlist; } struct evlist *evlist__new_dummy(void) { struct evlist *evlist = evlist__new(); if (evlist && evlist__add_dummy(evlist)) { evlist__delete(evlist); evlist = NULL; } return evlist; } /** * evlist__set_id_pos - set the positions of event ids. * @evlist: selected event list * * Events with compatible sample types all have the same id_pos * and is_pos. For convenience, put a copy on evlist. */ void evlist__set_id_pos(struct evlist *evlist) { struct evsel *first = evlist__first(evlist); evlist->id_pos = first->id_pos; evlist->is_pos = first->is_pos; } static void evlist__update_id_pos(struct evlist *evlist) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) evsel__calc_id_pos(evsel); evlist__set_id_pos(evlist); } static void evlist__purge(struct evlist *evlist) { struct evsel *pos, *n; evlist__for_each_entry_safe(evlist, n, pos) { list_del_init(&pos->core.node); pos->evlist = NULL; evsel__delete(pos); } evlist->core.nr_entries = 0; } void evlist__exit(struct evlist *evlist) { event_enable_timer__exit(&evlist->eet); zfree(&evlist->mmap); zfree(&evlist->overwrite_mmap); perf_evlist__exit(&evlist->core); } void evlist__delete(struct evlist *evlist) { if (evlist == NULL) return; evlist__free_stats(evlist); evlist__munmap(evlist); evlist__close(evlist); evlist__purge(evlist); evlist__exit(evlist); free(evlist); } void evlist__add(struct evlist *evlist, struct evsel *entry) { perf_evlist__add(&evlist->core, &entry->core); entry->evlist = evlist; entry->tracking = !entry->core.idx; if (evlist->core.nr_entries == 1) evlist__set_id_pos(evlist); } void evlist__remove(struct evlist *evlist, struct evsel *evsel) { evsel->evlist = NULL; perf_evlist__remove(&evlist->core, &evsel->core); } void evlist__splice_list_tail(struct evlist *evlist, struct list_head *list) { while (!list_empty(list)) { struct evsel *evsel, *temp, *leader = NULL; __evlist__for_each_entry_safe(list, temp, evsel) { list_del_init(&evsel->core.node); evlist__add(evlist, evsel); leader = evsel; break; } __evlist__for_each_entry_safe(list, temp, evsel) { if (evsel__has_leader(evsel, leader)) { list_del_init(&evsel->core.node); evlist__add(evlist, evsel); } } } } int __evlist__set_tracepoints_handlers(struct evlist *evlist, const struct evsel_str_handler *assocs, size_t nr_assocs) { size_t i; int err; for (i = 0; i < nr_assocs; i++) { // Adding a handler for an event not in this evlist, just ignore it. struct evsel *evsel = evlist__find_tracepoint_by_name(evlist, assocs[i].name); if (evsel == NULL) continue; err = -EEXIST; if (evsel->handler != NULL) goto out; evsel->handler = assocs[i].handler; } err = 0; out: return err; } static void evlist__set_leader(struct evlist *evlist) { perf_evlist__set_leader(&evlist->core); } static struct evsel *evlist__dummy_event(struct evlist *evlist) { struct perf_event_attr attr = { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_DUMMY, .size = sizeof(attr), /* to capture ABI version */ /* Avoid frequency mode for dummy events to avoid associated timers. */ .freq = 0, .sample_period = 1, }; return evsel__new_idx(&attr, evlist->core.nr_entries); } int evlist__add_dummy(struct evlist *evlist) { struct evsel *evsel = evlist__dummy_event(evlist); if (evsel == NULL) return -ENOMEM; evlist__add(evlist, evsel); return 0; } struct evsel *evlist__add_aux_dummy(struct evlist *evlist, bool system_wide) { struct evsel *evsel = evlist__dummy_event(evlist); if (!evsel) return NULL; evsel->core.attr.exclude_kernel = 1; evsel->core.attr.exclude_guest = 1; evsel->core.attr.exclude_hv = 1; evsel->core.system_wide = system_wide; evsel->no_aux_samples = true; evsel->name = strdup("dummy:u"); evlist__add(evlist, evsel); return evsel; } #ifdef HAVE_LIBTRACEEVENT struct evsel *evlist__add_sched_switch(struct evlist *evlist, bool system_wide) { struct evsel *evsel = evsel__newtp_idx("sched", "sched_switch", 0); if (IS_ERR(evsel)) return evsel; evsel__set_sample_bit(evsel, CPU); evsel__set_sample_bit(evsel, TIME); evsel->core.system_wide = system_wide; evsel->no_aux_samples = true; evlist__add(evlist, evsel); return evsel; } #endif int evlist__add_attrs(struct evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs) { struct evsel *evsel, *n; LIST_HEAD(head); size_t i; for (i = 0; i < nr_attrs; i++) { evsel = evsel__new_idx(attrs + i, evlist->core.nr_entries + i); if (evsel == NULL) goto out_delete_partial_list; list_add_tail(&evsel->core.node, &head); } evlist__splice_list_tail(evlist, &head); return 0; out_delete_partial_list: __evlist__for_each_entry_safe(&head, n, evsel) evsel__delete(evsel); return -1; } int __evlist__add_default_attrs(struct evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs) { size_t i; for (i = 0; i < nr_attrs; i++) event_attr_init(attrs + i); return evlist__add_attrs(evlist, attrs, nr_attrs); } __weak int arch_evlist__add_default_attrs(struct evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs) { if (!nr_attrs) return 0; return __evlist__add_default_attrs(evlist, attrs, nr_attrs); } struct evsel *evlist__find_tracepoint_by_id(struct evlist *evlist, int id) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { if (evsel->core.attr.type == PERF_TYPE_TRACEPOINT && (int)evsel->core.attr.config == id) return evsel; } return NULL; } struct evsel *evlist__find_tracepoint_by_name(struct evlist *evlist, const char *name) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { if ((evsel->core.attr.type == PERF_TYPE_TRACEPOINT) && (strcmp(evsel->name, name) == 0)) return evsel; } return NULL; } #ifdef HAVE_LIBTRACEEVENT int evlist__add_newtp(struct evlist *evlist, const char *sys, const char *name, void *handler) { struct evsel *evsel = evsel__newtp(sys, name); if (IS_ERR(evsel)) return -1; evsel->handler = handler; evlist__add(evlist, evsel); return 0; } #endif struct evlist_cpu_iterator evlist__cpu_begin(struct evlist *evlist, struct affinity *affinity) { struct evlist_cpu_iterator itr = { .container = evlist, .evsel = NULL, .cpu_map_idx = 0, .evlist_cpu_map_idx = 0, .evlist_cpu_map_nr = perf_cpu_map__nr(evlist->core.all_cpus), .cpu = (struct perf_cpu){ .cpu = -1}, .affinity = affinity, }; if (evlist__empty(evlist)) { /* Ensure the empty list doesn't iterate. */ itr.evlist_cpu_map_idx = itr.evlist_cpu_map_nr; } else { itr.evsel = evlist__first(evlist); if (itr.affinity) { itr.cpu = perf_cpu_map__cpu(evlist->core.all_cpus, 0); affinity__set(itr.affinity, itr.cpu.cpu); itr.cpu_map_idx = perf_cpu_map__idx(itr.evsel->core.cpus, itr.cpu); /* * If this CPU isn't in the evsel's cpu map then advance * through the list. */ if (itr.cpu_map_idx == -1) evlist_cpu_iterator__next(&itr); } } return itr; } void evlist_cpu_iterator__next(struct evlist_cpu_iterator *evlist_cpu_itr) { while (evlist_cpu_itr->evsel != evlist__last(evlist_cpu_itr->container)) { evlist_cpu_itr->evsel = evsel__next(evlist_cpu_itr->evsel); evlist_cpu_itr->cpu_map_idx = perf_cpu_map__idx(evlist_cpu_itr->evsel->core.cpus, evlist_cpu_itr->cpu); if (evlist_cpu_itr->cpu_map_idx != -1) return; } evlist_cpu_itr->evlist_cpu_map_idx++; if (evlist_cpu_itr->evlist_cpu_map_idx < evlist_cpu_itr->evlist_cpu_map_nr) { evlist_cpu_itr->evsel = evlist__first(evlist_cpu_itr->container); evlist_cpu_itr->cpu = perf_cpu_map__cpu(evlist_cpu_itr->container->core.all_cpus, evlist_cpu_itr->evlist_cpu_map_idx); if (evlist_cpu_itr->affinity) affinity__set(evlist_cpu_itr->affinity, evlist_cpu_itr->cpu.cpu); evlist_cpu_itr->cpu_map_idx = perf_cpu_map__idx(evlist_cpu_itr->evsel->core.cpus, evlist_cpu_itr->cpu); /* * If this CPU isn't in the evsel's cpu map then advance through * the list. */ if (evlist_cpu_itr->cpu_map_idx == -1) evlist_cpu_iterator__next(evlist_cpu_itr); } } bool evlist_cpu_iterator__end(const struct evlist_cpu_iterator *evlist_cpu_itr) { return evlist_cpu_itr->evlist_cpu_map_idx >= evlist_cpu_itr->evlist_cpu_map_nr; } static int evsel__strcmp(struct evsel *pos, char *evsel_name) { if (!evsel_name) return 0; if (evsel__is_dummy_event(pos)) return 1; return !evsel__name_is(pos, evsel_name); } static int evlist__is_enabled(struct evlist *evlist) { struct evsel *pos; evlist__for_each_entry(evlist, pos) { if (!evsel__is_group_leader(pos) || !pos->core.fd) continue; /* If at least one event is enabled, evlist is enabled. */ if (!pos->disabled) return true; } return false; } static void __evlist__disable(struct evlist *evlist, char *evsel_name, bool excl_dummy) { struct evsel *pos; struct evlist_cpu_iterator evlist_cpu_itr; struct affinity saved_affinity, *affinity = NULL; bool has_imm = false; // See explanation in evlist__close() if (!cpu_map__is_dummy(evlist->core.user_requested_cpus)) { if (affinity__setup(&saved_affinity) < 0) return; affinity = &saved_affinity; } /* Disable 'immediate' events last */ for (int imm = 0; imm <= 1; imm++) { evlist__for_each_cpu(evlist_cpu_itr, evlist, affinity) { pos = evlist_cpu_itr.evsel; if (evsel__strcmp(pos, evsel_name)) continue; if (pos->disabled || !evsel__is_group_leader(pos) || !pos->core.fd) continue; if (excl_dummy && evsel__is_dummy_event(pos)) continue; if (pos->immediate) has_imm = true; if (pos->immediate != imm) continue; evsel__disable_cpu(pos, evlist_cpu_itr.cpu_map_idx); } if (!has_imm) break; } affinity__cleanup(affinity); evlist__for_each_entry(evlist, pos) { if (evsel__strcmp(pos, evsel_name)) continue; if (!evsel__is_group_leader(pos) || !pos->core.fd) continue; if (excl_dummy && evsel__is_dummy_event(pos)) continue; pos->disabled = true; } /* * If we disabled only single event, we need to check * the enabled state of the evlist manually. */ if (evsel_name) evlist->enabled = evlist__is_enabled(evlist); else evlist->enabled = false; } void evlist__disable(struct evlist *evlist) { __evlist__disable(evlist, NULL, false); } void evlist__disable_non_dummy(struct evlist *evlist) { __evlist__disable(evlist, NULL, true); } void evlist__disable_evsel(struct evlist *evlist, char *evsel_name) { __evlist__disable(evlist, evsel_name, false); } static void __evlist__enable(struct evlist *evlist, char *evsel_name, bool excl_dummy) { struct evsel *pos; struct evlist_cpu_iterator evlist_cpu_itr; struct affinity saved_affinity, *affinity = NULL; // See explanation in evlist__close() if (!cpu_map__is_dummy(evlist->core.user_requested_cpus)) { if (affinity__setup(&saved_affinity) < 0) return; affinity = &saved_affinity; } evlist__for_each_cpu(evlist_cpu_itr, evlist, affinity) { pos = evlist_cpu_itr.evsel; if (evsel__strcmp(pos, evsel_name)) continue; if (!evsel__is_group_leader(pos) || !pos->core.fd) continue; if (excl_dummy && evsel__is_dummy_event(pos)) continue; evsel__enable_cpu(pos, evlist_cpu_itr.cpu_map_idx); } affinity__cleanup(affinity); evlist__for_each_entry(evlist, pos) { if (evsel__strcmp(pos, evsel_name)) continue; if (!evsel__is_group_leader(pos) || !pos->core.fd) continue; if (excl_dummy && evsel__is_dummy_event(pos)) continue; pos->disabled = false; } /* * Even single event sets the 'enabled' for evlist, * so the toggle can work properly and toggle to * 'disabled' state. */ evlist->enabled = true; } void evlist__enable(struct evlist *evlist) { __evlist__enable(evlist, NULL, false); } void evlist__enable_non_dummy(struct evlist *evlist) { __evlist__enable(evlist, NULL, true); } void evlist__enable_evsel(struct evlist *evlist, char *evsel_name) { __evlist__enable(evlist, evsel_name, false); } void evlist__toggle_enable(struct evlist *evlist) { (evlist->enabled ? evlist__disable : evlist__enable)(evlist); } int evlist__add_pollfd(struct evlist *evlist, int fd) { return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN, fdarray_flag__default); } int evlist__filter_pollfd(struct evlist *evlist, short revents_and_mask) { return perf_evlist__filter_pollfd(&evlist->core, revents_and_mask); } #ifdef HAVE_EVENTFD_SUPPORT int evlist__add_wakeup_eventfd(struct evlist *evlist, int fd) { return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN, fdarray_flag__nonfilterable | fdarray_flag__non_perf_event); } #endif int evlist__poll(struct evlist *evlist, int timeout) { return perf_evlist__poll(&evlist->core, timeout); } struct perf_sample_id *evlist__id2sid(struct evlist *evlist, u64 id) { struct hlist_head *head; struct perf_sample_id *sid; int hash; hash = hash_64(id, PERF_EVLIST__HLIST_BITS); head = &evlist->core.heads[hash]; hlist_for_each_entry(sid, head, node) if (sid->id == id) return sid; return NULL; } struct evsel *evlist__id2evsel(struct evlist *evlist, u64 id) { struct perf_sample_id *sid; if (evlist->core.nr_entries == 1 || !id) return evlist__first(evlist); sid = evlist__id2sid(evlist, id); if (sid) return container_of(sid->evsel, struct evsel, core); if (!evlist__sample_id_all(evlist)) return evlist__first(evlist); return NULL; } struct evsel *evlist__id2evsel_strict(struct evlist *evlist, u64 id) { struct perf_sample_id *sid; if (!id) return NULL; sid = evlist__id2sid(evlist, id); if (sid) return container_of(sid->evsel, struct evsel, core); return NULL; } static int evlist__event2id(struct evlist *evlist, union perf_event *event, u64 *id) { const __u64 *array = event->sample.array; ssize_t n; n = (event->header.size - sizeof(event->header)) >> 3; if (event->header.type == PERF_RECORD_SAMPLE) { if (evlist->id_pos >= n) return -1; *id = array[evlist->id_pos]; } else { if (evlist->is_pos > n) return -1; n -= evlist->is_pos; *id = array[n]; } return 0; } struct evsel *evlist__event2evsel(struct evlist *evlist, union perf_event *event) { struct evsel *first = evlist__first(evlist); struct hlist_head *head; struct perf_sample_id *sid; int hash; u64 id; if (evlist->core.nr_entries == 1) return first; if (!first->core.attr.sample_id_all && event->header.type != PERF_RECORD_SAMPLE) return first; if (evlist__event2id(evlist, event, &id)) return NULL; /* Synthesized events have an id of zero */ if (!id) return first; hash = hash_64(id, PERF_EVLIST__HLIST_BITS); head = &evlist->core.heads[hash]; hlist_for_each_entry(sid, head, node) { if (sid->id == id) return container_of(sid->evsel, struct evsel, core); } return NULL; } static int evlist__set_paused(struct evlist *evlist, bool value) { int i; if (!evlist->overwrite_mmap) return 0; for (i = 0; i < evlist->core.nr_mmaps; i++) { int fd = evlist->overwrite_mmap[i].core.fd; int err; if (fd < 0) continue; err = ioctl(fd, PERF_EVENT_IOC_PAUSE_OUTPUT, value ? 1 : 0); if (err) return err; } return 0; } static int evlist__pause(struct evlist *evlist) { return evlist__set_paused(evlist, true); } static int evlist__resume(struct evlist *evlist) { return evlist__set_paused(evlist, false); } static void evlist__munmap_nofree(struct evlist *evlist) { int i; if (evlist->mmap) for (i = 0; i < evlist->core.nr_mmaps; i++) perf_mmap__munmap(&evlist->mmap[i].core); if (evlist->overwrite_mmap) for (i = 0; i < evlist->core.nr_mmaps; i++) perf_mmap__munmap(&evlist->overwrite_mmap[i].core); } void evlist__munmap(struct evlist *evlist) { evlist__munmap_nofree(evlist); zfree(&evlist->mmap); zfree(&evlist->overwrite_mmap); } static void perf_mmap__unmap_cb(struct perf_mmap *map) { struct mmap *m = container_of(map, struct mmap, core); mmap__munmap(m); } static struct mmap *evlist__alloc_mmap(struct evlist *evlist, bool overwrite) { int i; struct mmap *map; map = zalloc(evlist->core.nr_mmaps * sizeof(struct mmap)); if (!map) return NULL; for (i = 0; i < evlist->core.nr_mmaps; i++) { struct perf_mmap *prev = i ? &map[i - 1].core : NULL; /* * When the perf_mmap() call is made we grab one refcount, plus * one extra to let perf_mmap__consume() get the last * events after all real references (perf_mmap__get()) are * dropped. * * Each PERF_EVENT_IOC_SET_OUTPUT points to this mmap and * thus does perf_mmap__get() on it. */ perf_mmap__init(&map[i].core, prev, overwrite, perf_mmap__unmap_cb); } return map; } static void perf_evlist__mmap_cb_idx(struct perf_evlist *_evlist, struct perf_evsel *_evsel, struct perf_mmap_param *_mp, int idx) { struct evlist *evlist = container_of(_evlist, struct evlist, core); struct mmap_params *mp = container_of(_mp, struct mmap_params, core); struct evsel *evsel = container_of(_evsel, struct evsel, core); auxtrace_mmap_params__set_idx(&mp->auxtrace_mp, evlist, evsel, idx); } static struct perf_mmap* perf_evlist__mmap_cb_get(struct perf_evlist *_evlist, bool overwrite, int idx) { struct evlist *evlist = container_of(_evlist, struct evlist, core); struct mmap *maps; maps = overwrite ? evlist->overwrite_mmap : evlist->mmap; if (!maps) { maps = evlist__alloc_mmap(evlist, overwrite); if (!maps) return NULL; if (overwrite) { evlist->overwrite_mmap = maps; if (evlist->bkw_mmap_state == BKW_MMAP_NOTREADY) evlist__toggle_bkw_mmap(evlist, BKW_MMAP_RUNNING); } else { evlist->mmap = maps; } } return &maps[idx].core; } static int perf_evlist__mmap_cb_mmap(struct perf_mmap *_map, struct perf_mmap_param *_mp, int output, struct perf_cpu cpu) { struct mmap *map = container_of(_map, struct mmap, core); struct mmap_params *mp = container_of(_mp, struct mmap_params, core); return mmap__mmap(map, mp, output, cpu); } unsigned long perf_event_mlock_kb_in_pages(void) { unsigned long pages; int max; if (sysctl__read_int("kernel/perf_event_mlock_kb", &max) < 0) { /* * Pick a once upon a time good value, i.e. things look * strange since we can't read a sysctl value, but lets not * die yet... */ max = 512; } else { max -= (page_size / 1024); } pages = (max * 1024) / page_size; if (!is_power_of_2(pages)) pages = rounddown_pow_of_two(pages); return pages; } size_t evlist__mmap_size(unsigned long pages) { if (pages == UINT_MAX) pages = perf_event_mlock_kb_in_pages(); else if (!is_power_of_2(pages)) return 0; return (pages + 1) * page_size; } static long parse_pages_arg(const char *str, unsigned long min, unsigned long max) { unsigned long pages, val; static struct parse_tag tags[] = { { .tag = 'B', .mult = 1 }, { .tag = 'K', .mult = 1 << 10 }, { .tag = 'M', .mult = 1 << 20 }, { .tag = 'G', .mult = 1 << 30 }, { .tag = 0 }, }; if (str == NULL) return -EINVAL; val = parse_tag_value(str, tags); if (val != (unsigned long) -1) { /* we got file size value */ pages = PERF_ALIGN(val, page_size) / page_size; } else { /* we got pages count value */ char *eptr; pages = strtoul(str, &eptr, 10); if (*eptr != '\0') return -EINVAL; } if (pages == 0 && min == 0) { /* leave number of pages at 0 */ } else if (!is_power_of_2(pages)) { char buf[100]; /* round pages up to next power of 2 */ pages = roundup_pow_of_two(pages); if (!pages) return -EINVAL; unit_number__scnprintf(buf, sizeof(buf), pages * page_size); pr_info("rounding mmap pages size to %s (%lu pages)\n", buf, pages); } if (pages > max) return -EINVAL; return pages; } int __evlist__parse_mmap_pages(unsigned int *mmap_pages, const char *str) { unsigned long max = UINT_MAX; long pages; if (max > SIZE_MAX / page_size) max = SIZE_MAX / page_size; pages = parse_pages_arg(str, 1, max); if (pages < 0) { pr_err("Invalid argument for --mmap_pages/-m\n"); return -1; } *mmap_pages = pages; return 0; } int evlist__parse_mmap_pages(const struct option *opt, const char *str, int unset __maybe_unused) { return __evlist__parse_mmap_pages(opt->value, str); } /** * evlist__mmap_ex - Create mmaps to receive events. * @evlist: list of events * @pages: map length in pages * @overwrite: overwrite older events? * @auxtrace_pages - auxtrace map length in pages * @auxtrace_overwrite - overwrite older auxtrace data? * * If @overwrite is %false the user needs to signal event consumption using * perf_mmap__write_tail(). Using evlist__mmap_read() does this * automatically. * * Similarly, if @auxtrace_overwrite is %false the user needs to signal data * consumption using auxtrace_mmap__write_tail(). * * Return: %0 on success, negative error code otherwise. */ int evlist__mmap_ex(struct evlist *evlist, unsigned int pages, unsigned int auxtrace_pages, bool auxtrace_overwrite, int nr_cblocks, int affinity, int flush, int comp_level) { /* * Delay setting mp.prot: set it before calling perf_mmap__mmap. * Its value is decided by evsel's write_backward. * So &mp should not be passed through const pointer. */ struct mmap_params mp = { .nr_cblocks = nr_cblocks, .affinity = affinity, .flush = flush, .comp_level = comp_level }; struct perf_evlist_mmap_ops ops = { .idx = perf_evlist__mmap_cb_idx, .get = perf_evlist__mmap_cb_get, .mmap = perf_evlist__mmap_cb_mmap, }; evlist->core.mmap_len = evlist__mmap_size(pages); pr_debug("mmap size %zuB\n", evlist->core.mmap_len); auxtrace_mmap_params__init(&mp.auxtrace_mp, evlist->core.mmap_len, auxtrace_pages, auxtrace_overwrite); return perf_evlist__mmap_ops(&evlist->core, &ops, &mp.core); } int evlist__mmap(struct evlist *evlist, unsigned int pages) { return evlist__mmap_ex(evlist, pages, 0, false, 0, PERF_AFFINITY_SYS, 1, 0); } int evlist__create_maps(struct evlist *evlist, struct target *target) { bool all_threads = (target->per_thread && target->system_wide); struct perf_cpu_map *cpus; struct perf_thread_map *threads; /* * If specify '-a' and '--per-thread' to perf record, perf record * will override '--per-thread'. target->per_thread = false and * target->system_wide = true. * * If specify '--per-thread' only to perf record, * target->per_thread = true and target->system_wide = false. * * So target->per_thread && target->system_wide is false. * For perf record, thread_map__new_str doesn't call * thread_map__new_all_cpus. That will keep perf record's * current behavior. * * For perf stat, it allows the case that target->per_thread and * target->system_wide are all true. It means to collect system-wide * per-thread data. thread_map__new_str will call * thread_map__new_all_cpus to enumerate all threads. */ threads = thread_map__new_str(target->pid, target->tid, target->uid, all_threads); if (!threads) return -1; if (target__uses_dummy_map(target)) cpus = perf_cpu_map__new_any_cpu(); else cpus = perf_cpu_map__new(target->cpu_list); if (!cpus) goto out_delete_threads; evlist->core.has_user_cpus = !!target->cpu_list; perf_evlist__set_maps(&evlist->core, cpus, threads); /* as evlist now has references, put count here */ perf_cpu_map__put(cpus); perf_thread_map__put(threads); return 0; out_delete_threads: perf_thread_map__put(threads); return -1; } int evlist__apply_filters(struct evlist *evlist, struct evsel **err_evsel) { struct evsel *evsel; int err = 0; evlist__for_each_entry(evlist, evsel) { /* * filters only work for tracepoint event, which doesn't have cpu limit. * So evlist and evsel should always be same. */ if (evsel->filter) { err = perf_evsel__apply_filter(&evsel->core, evsel->filter); if (err) { *err_evsel = evsel; break; } } /* * non-tracepoint events can have BPF filters. */ if (!list_empty(&evsel->bpf_filters)) { err = perf_bpf_filter__prepare(evsel); if (err) { *err_evsel = evsel; break; } } } return err; } int evlist__set_tp_filter(struct evlist *evlist, const char *filter) { struct evsel *evsel; int err = 0; if (filter == NULL) return -1; evlist__for_each_entry(evlist, evsel) { if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT) continue; err = evsel__set_filter(evsel, filter); if (err) break; } return err; } int evlist__append_tp_filter(struct evlist *evlist, const char *filter) { struct evsel *evsel; int err = 0; if (filter == NULL) return -1; evlist__for_each_entry(evlist, evsel) { if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT) continue; err = evsel__append_tp_filter(evsel, filter); if (err) break; } return err; } char *asprintf__tp_filter_pids(size_t npids, pid_t *pids) { char *filter; size_t i; for (i = 0; i < npids; ++i) { if (i == 0) { if (asprintf(&filter, "common_pid != %d", pids[i]) < 0) return NULL; } else { char *tmp; if (asprintf(&tmp, "%s && common_pid != %d", filter, pids[i]) < 0) goto out_free; free(filter); filter = tmp; } } return filter; out_free: free(filter); return NULL; } int evlist__set_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids) { char *filter = asprintf__tp_filter_pids(npids, pids); int ret = evlist__set_tp_filter(evlist, filter); free(filter); return ret; } int evlist__set_tp_filter_pid(struct evlist *evlist, pid_t pid) { return evlist__set_tp_filter_pids(evlist, 1, &pid); } int evlist__append_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids) { char *filter = asprintf__tp_filter_pids(npids, pids); int ret = evlist__append_tp_filter(evlist, filter); free(filter); return ret; } int evlist__append_tp_filter_pid(struct evlist *evlist, pid_t pid) { return evlist__append_tp_filter_pids(evlist, 1, &pid); } bool evlist__valid_sample_type(struct evlist *evlist) { struct evsel *pos; if (evlist->core.nr_entries == 1) return true; if (evlist->id_pos < 0 || evlist->is_pos < 0) return false; evlist__for_each_entry(evlist, pos) { if (pos->id_pos != evlist->id_pos || pos->is_pos != evlist->is_pos) return false; } return true; } u64 __evlist__combined_sample_type(struct evlist *evlist) { struct evsel *evsel; if (evlist->combined_sample_type) return evlist->combined_sample_type; evlist__for_each_entry(evlist, evsel) evlist->combined_sample_type |= evsel->core.attr.sample_type; return evlist->combined_sample_type; } u64 evlist__combined_sample_type(struct evlist *evlist) { evlist->combined_sample_type = 0; return __evlist__combined_sample_type(evlist); } u64 evlist__combined_branch_type(struct evlist *evlist) { struct evsel *evsel; u64 branch_type = 0; evlist__for_each_entry(evlist, evsel) branch_type |= evsel->core.attr.branch_sample_type; return branch_type; } bool evlist__valid_read_format(struct evlist *evlist) { struct evsel *first = evlist__first(evlist), *pos = first; u64 read_format = first->core.attr.read_format; u64 sample_type = first->core.attr.sample_type; evlist__for_each_entry(evlist, pos) { if (read_format != pos->core.attr.read_format) { pr_debug("Read format differs %#" PRIx64 " vs %#" PRIx64 "\n", read_format, (u64)pos->core.attr.read_format); } } /* PERF_SAMPLE_READ implies PERF_FORMAT_ID. */ if ((sample_type & PERF_SAMPLE_READ) && !(read_format & PERF_FORMAT_ID)) { return false; } return true; } u16 evlist__id_hdr_size(struct evlist *evlist) { struct evsel *first = evlist__first(evlist); return first->core.attr.sample_id_all ? evsel__id_hdr_size(first) : 0; } bool evlist__valid_sample_id_all(struct evlist *evlist) { struct evsel *first = evlist__first(evlist), *pos = first; evlist__for_each_entry_continue(evlist, pos) { if (first->core.attr.sample_id_all != pos->core.attr.sample_id_all) return false; } return true; } bool evlist__sample_id_all(struct evlist *evlist) { struct evsel *first = evlist__first(evlist); return first->core.attr.sample_id_all; } void evlist__set_selected(struct evlist *evlist, struct evsel *evsel) { evlist->selected = evsel; } void evlist__close(struct evlist *evlist) { struct evsel *evsel; struct evlist_cpu_iterator evlist_cpu_itr; struct affinity affinity; /* * With perf record core.user_requested_cpus is usually NULL. * Use the old method to handle this for now. */ if (!evlist->core.user_requested_cpus || cpu_map__is_dummy(evlist->core.user_requested_cpus)) { evlist__for_each_entry_reverse(evlist, evsel) evsel__close(evsel); return; } if (affinity__setup(&affinity) < 0) return; evlist__for_each_cpu(evlist_cpu_itr, evlist, &affinity) { perf_evsel__close_cpu(&evlist_cpu_itr.evsel->core, evlist_cpu_itr.cpu_map_idx); } affinity__cleanup(&affinity); evlist__for_each_entry_reverse(evlist, evsel) { perf_evsel__free_fd(&evsel->core); perf_evsel__free_id(&evsel->core); } perf_evlist__reset_id_hash(&evlist->core); } static int evlist__create_syswide_maps(struct evlist *evlist) { struct perf_cpu_map *cpus; struct perf_thread_map *threads; /* * Try reading /sys/devices/system/cpu/online to get * an all cpus map. * * FIXME: -ENOMEM is the best we can do here, the cpu_map * code needs an overhaul to properly forward the * error, and we may not want to do that fallback to a * default cpu identity map :-\ */ cpus = perf_cpu_map__new_online_cpus(); if (!cpus) goto out; threads = perf_thread_map__new_dummy(); if (!threads) goto out_put; perf_evlist__set_maps(&evlist->core, cpus, threads); perf_thread_map__put(threads); out_put: perf_cpu_map__put(cpus); out: return -ENOMEM; } int evlist__open(struct evlist *evlist) { struct evsel *evsel; int err; /* * Default: one fd per CPU, all threads, aka systemwide * as sys_perf_event_open(cpu = -1, thread = -1) is EINVAL */ if (evlist->core.threads == NULL && evlist->core.user_requested_cpus == NULL) { err = evlist__create_syswide_maps(evlist); if (err < 0) goto out_err; } evlist__update_id_pos(evlist); evlist__for_each_entry(evlist, evsel) { err = evsel__open(evsel, evsel->core.cpus, evsel->core.threads); if (err < 0) goto out_err; } return 0; out_err: evlist__close(evlist); errno = -err; return err; } int evlist__prepare_workload(struct evlist *evlist, struct target *target, const char *argv[], bool pipe_output, void (*exec_error)(int signo, siginfo_t *info, void *ucontext)) { int child_ready_pipe[2], go_pipe[2]; char bf; if (pipe(child_ready_pipe) < 0) { perror("failed to create 'ready' pipe"); return -1; } if (pipe(go_pipe) < 0) { perror("failed to create 'go' pipe"); goto out_close_ready_pipe; } evlist->workload.pid = fork(); if (evlist->workload.pid < 0) { perror("failed to fork"); goto out_close_pipes; } if (!evlist->workload.pid) { int ret; if (pipe_output) dup2(2, 1); signal(SIGTERM, SIG_DFL); close(child_ready_pipe[0]); close(go_pipe[1]); fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC); /* * Change the name of this process not to confuse --exclude-perf users * that sees 'perf' in the window up to the execvp() and thinks that * perf samples are not being excluded. */ prctl(PR_SET_NAME, "perf-exec"); /* * Tell the parent we're ready to go */ close(child_ready_pipe[1]); /* * Wait until the parent tells us to go. */ ret = read(go_pipe[0], &bf, 1); /* * The parent will ask for the execvp() to be performed by * writing exactly one byte, in workload.cork_fd, usually via * evlist__start_workload(). * * For cancelling the workload without actually running it, * the parent will just close workload.cork_fd, without writing * anything, i.e. read will return zero and we just exit() * here. */ if (ret != 1) { if (ret == -1) perror("unable to read pipe"); exit(ret); } execvp(argv[0], (char **)argv); if (exec_error) { union sigval val; val.sival_int = errno; if (sigqueue(getppid(), SIGUSR1, val)) perror(argv[0]); } else perror(argv[0]); exit(-1); } if (exec_error) { struct sigaction act = { .sa_flags = SA_SIGINFO, .sa_sigaction = exec_error, }; sigaction(SIGUSR1, &act, NULL); } if (target__none(target)) { if (evlist->core.threads == NULL) { fprintf(stderr, "FATAL: evlist->threads need to be set at this point (%s:%d).\n", __func__, __LINE__); goto out_close_pipes; } perf_thread_map__set_pid(evlist->core.threads, 0, evlist->workload.pid); } close(child_ready_pipe[1]); close(go_pipe[0]); /* * wait for child to settle */ if (read(child_ready_pipe[0], &bf, 1) == -1) { perror("unable to read pipe"); goto out_close_pipes; } fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC); evlist->workload.cork_fd = go_pipe[1]; close(child_ready_pipe[0]); return 0; out_close_pipes: close(go_pipe[0]); close(go_pipe[1]); out_close_ready_pipe: close(child_ready_pipe[0]); close(child_ready_pipe[1]); return -1; } int evlist__start_workload(struct evlist *evlist) { if (evlist->workload.cork_fd > 0) { char bf = 0; int ret; /* * Remove the cork, let it rip! */ ret = write(evlist->workload.cork_fd, &bf, 1); if (ret < 0) perror("unable to write to pipe"); close(evlist->workload.cork_fd); return ret; } return 0; } int evlist__parse_sample(struct evlist *evlist, union perf_event *event, struct perf_sample *sample) { struct evsel *evsel = evlist__event2evsel(evlist, event); int ret; if (!evsel) return -EFAULT; ret = evsel__parse_sample(evsel, event, sample); if (ret) return ret; if (perf_guest && sample->id) { struct perf_sample_id *sid = evlist__id2sid(evlist, sample->id); if (sid) { sample->machine_pid = sid->machine_pid; sample->vcpu = sid->vcpu.cpu; } } return 0; } int evlist__parse_sample_timestamp(struct evlist *evlist, union perf_event *event, u64 *timestamp) { struct evsel *evsel = evlist__event2evsel(evlist, event); if (!evsel) return -EFAULT; return evsel__parse_sample_timestamp(evsel, event, timestamp); } int evlist__strerror_open(struct evlist *evlist, int err, char *buf, size_t size) { int printed, value; char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf)); switch (err) { case EACCES: case EPERM: printed = scnprintf(buf, size, "Error:\t%s.\n" "Hint:\tCheck /proc/sys/kernel/perf_event_paranoid setting.", emsg); value = perf_event_paranoid(); printed += scnprintf(buf + printed, size - printed, "\nHint:\t"); if (value >= 2) { printed += scnprintf(buf + printed, size - printed, "For your workloads it needs to be <= 1\nHint:\t"); } printed += scnprintf(buf + printed, size - printed, "For system wide tracing it needs to be set to -1.\n"); printed += scnprintf(buf + printed, size - printed, "Hint:\tTry: 'sudo sh -c \"echo -1 > /proc/sys/kernel/perf_event_paranoid\"'\n" "Hint:\tThe current value is %d.", value); break; case EINVAL: { struct evsel *first = evlist__first(evlist); int max_freq; if (sysctl__read_int("kernel/perf_event_max_sample_rate", &max_freq) < 0) goto out_default; if (first->core.attr.sample_freq < (u64)max_freq) goto out_default; printed = scnprintf(buf, size, "Error:\t%s.\n" "Hint:\tCheck /proc/sys/kernel/perf_event_max_sample_rate.\n" "Hint:\tThe current value is %d and %" PRIu64 " is being requested.", emsg, max_freq, first->core.attr.sample_freq); break; } default: out_default: scnprintf(buf, size, "%s", emsg); break; } return 0; } int evlist__strerror_mmap(struct evlist *evlist, int err, char *buf, size_t size) { char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf)); int pages_attempted = evlist->core.mmap_len / 1024, pages_max_per_user, printed = 0; switch (err) { case EPERM: sysctl__read_int("kernel/perf_event_mlock_kb", &pages_max_per_user); printed += scnprintf(buf + printed, size - printed, "Error:\t%s.\n" "Hint:\tCheck /proc/sys/kernel/perf_event_mlock_kb (%d kB) setting.\n" "Hint:\tTried using %zd kB.\n", emsg, pages_max_per_user, pages_attempted); if (pages_attempted >= pages_max_per_user) { printed += scnprintf(buf + printed, size - printed, "Hint:\tTry 'sudo sh -c \"echo %d > /proc/sys/kernel/perf_event_mlock_kb\"', or\n", pages_max_per_user + pages_attempted); } printed += scnprintf(buf + printed, size - printed, "Hint:\tTry using a smaller -m/--mmap-pages value."); break; default: scnprintf(buf, size, "%s", emsg); break; } return 0; } void evlist__to_front(struct evlist *evlist, struct evsel *move_evsel) { struct evsel *evsel, *n; LIST_HEAD(move); if (move_evsel == evlist__first(evlist)) return; evlist__for_each_entry_safe(evlist, n, evsel) { if (evsel__leader(evsel) == evsel__leader(move_evsel)) list_move_tail(&evsel->core.node, &move); } list_splice(&move, &evlist->core.entries); } struct evsel *evlist__get_tracking_event(struct evlist *evlist) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { if (evsel->tracking) return evsel; } return evlist__first(evlist); } void evlist__set_tracking_event(struct evlist *evlist, struct evsel *tracking_evsel) { struct evsel *evsel; if (tracking_evsel->tracking) return; evlist__for_each_entry(evlist, evsel) { if (evsel != tracking_evsel) evsel->tracking = false; } tracking_evsel->tracking = true; } struct evsel *evlist__findnew_tracking_event(struct evlist *evlist, bool system_wide) { struct evsel *evsel; evsel = evlist__get_tracking_event(evlist); if (!evsel__is_dummy_event(evsel)) { evsel = evlist__add_aux_dummy(evlist, system_wide); if (!evsel) return NULL; evlist__set_tracking_event(evlist, evsel); } else if (system_wide) { perf_evlist__go_system_wide(&evlist->core, &evsel->core); } return evsel; } struct evsel *evlist__find_evsel_by_str(struct evlist *evlist, const char *str) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { if (!evsel->name) continue; if (evsel__name_is(evsel, str)) return evsel; } return NULL; } void evlist__toggle_bkw_mmap(struct evlist *evlist, enum bkw_mmap_state state) { enum bkw_mmap_state old_state = evlist->bkw_mmap_state; enum action { NONE, PAUSE, RESUME, } action = NONE; if (!evlist->overwrite_mmap) return; switch (old_state) { case BKW_MMAP_NOTREADY: { if (state != BKW_MMAP_RUNNING) goto state_err; break; } case BKW_MMAP_RUNNING: { if (state != BKW_MMAP_DATA_PENDING) goto state_err; action = PAUSE; break; } case BKW_MMAP_DATA_PENDING: { if (state != BKW_MMAP_EMPTY) goto state_err; break; } case BKW_MMAP_EMPTY: { if (state != BKW_MMAP_RUNNING) goto state_err; action = RESUME; break; } default: WARN_ONCE(1, "Shouldn't get there\n"); } evlist->bkw_mmap_state = state; switch (action) { case PAUSE: evlist__pause(evlist); break; case RESUME: evlist__resume(evlist); break; case NONE: default: break; } state_err: return; } bool evlist__exclude_kernel(struct evlist *evlist) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { if (!evsel->core.attr.exclude_kernel) return false; } return true; } /* * Events in data file are not collect in groups, but we still want * the group display. Set the artificial group and set the leader's * forced_leader flag to notify the display code. */ void evlist__force_leader(struct evlist *evlist) { if (evlist__nr_groups(evlist) == 0) { struct evsel *leader = evlist__first(evlist); evlist__set_leader(evlist); leader->forced_leader = true; } } struct evsel *evlist__reset_weak_group(struct evlist *evsel_list, struct evsel *evsel, bool close) { struct evsel *c2, *leader; bool is_open = true; leader = evsel__leader(evsel); pr_debug("Weak group for %s/%d failed\n", leader->name, leader->core.nr_members); /* * for_each_group_member doesn't work here because it doesn't * include the first entry. */ evlist__for_each_entry(evsel_list, c2) { if (c2 == evsel) is_open = false; if (evsel__has_leader(c2, leader)) { if (is_open && close) perf_evsel__close(&c2->core); /* * We want to close all members of the group and reopen * them. Some events, like Intel topdown, require being * in a group and so keep these in the group. */ evsel__remove_from_group(c2, leader); /* * Set this for all former members of the group * to indicate they get reopened. */ c2->reset_group = true; } } /* Reset the leader count if all entries were removed. */ if (leader->core.nr_members == 1) leader->core.nr_members = 0; return leader; } static int evlist__parse_control_fifo(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close) { char *s, *p; int ret = 0, fd; if (strncmp(str, "fifo:", 5)) return -EINVAL; str += 5; if (!*str || *str == ',') return -EINVAL; s = strdup(str); if (!s) return -ENOMEM; p = strchr(s, ','); if (p) *p = '\0'; /* * O_RDWR avoids POLLHUPs which is necessary to allow the other * end of a FIFO to be repeatedly opened and closed. */ fd = open(s, O_RDWR | O_NONBLOCK | O_CLOEXEC); if (fd < 0) { pr_err("Failed to open '%s'\n", s); ret = -errno; goto out_free; } *ctl_fd = fd; *ctl_fd_close = true; if (p && *++p) { /* O_RDWR | O_NONBLOCK means the other end need not be open */ fd = open(p, O_RDWR | O_NONBLOCK | O_CLOEXEC); if (fd < 0) { pr_err("Failed to open '%s'\n", p); ret = -errno; goto out_free; } *ctl_fd_ack = fd; } out_free: free(s); return ret; } int evlist__parse_control(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close) { char *comma = NULL, *endptr = NULL; *ctl_fd_close = false; if (strncmp(str, "fd:", 3)) return evlist__parse_control_fifo(str, ctl_fd, ctl_fd_ack, ctl_fd_close); *ctl_fd = strtoul(&str[3], &endptr, 0); if (endptr == &str[3]) return -EINVAL; comma = strchr(str, ','); if (comma) { if (endptr != comma) return -EINVAL; *ctl_fd_ack = strtoul(comma + 1, &endptr, 0); if (endptr == comma + 1 || *endptr != '\0') return -EINVAL; } return 0; } void evlist__close_control(int ctl_fd, int ctl_fd_ack, bool *ctl_fd_close) { if (*ctl_fd_close) { *ctl_fd_close = false; close(ctl_fd); if (ctl_fd_ack >= 0) close(ctl_fd_ack); } } int evlist__initialize_ctlfd(struct evlist *evlist, int fd, int ack) { if (fd == -1) { pr_debug("Control descriptor is not initialized\n"); return 0; } evlist->ctl_fd.pos = perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN, fdarray_flag__nonfilterable | fdarray_flag__non_perf_event); if (evlist->ctl_fd.pos < 0) { evlist->ctl_fd.pos = -1; pr_err("Failed to add ctl fd entry: %m\n"); return -1; } evlist->ctl_fd.fd = fd; evlist->ctl_fd.ack = ack; return 0; } bool evlist__ctlfd_initialized(struct evlist *evlist) { return evlist->ctl_fd.pos >= 0; } int evlist__finalize_ctlfd(struct evlist *evlist) { struct pollfd *entries = evlist->core.pollfd.entries; if (!evlist__ctlfd_initialized(evlist)) return 0; entries[evlist->ctl_fd.pos].fd = -1; entries[evlist->ctl_fd.pos].events = 0; entries[evlist->ctl_fd.pos].revents = 0; evlist->ctl_fd.pos = -1; evlist->ctl_fd.ack = -1; evlist->ctl_fd.fd = -1; return 0; } static int evlist__ctlfd_recv(struct evlist *evlist, enum evlist_ctl_cmd *cmd, char *cmd_data, size_t data_size) { int err; char c; size_t bytes_read = 0; *cmd = EVLIST_CTL_CMD_UNSUPPORTED; memset(cmd_data, 0, data_size); data_size--; do { err = read(evlist->ctl_fd.fd, &c, 1); if (err > 0) { if (c == '\n' || c == '\0') break; cmd_data[bytes_read++] = c; if (bytes_read == data_size) break; continue; } else if (err == -1) { if (errno == EINTR) continue; if (errno == EAGAIN || errno == EWOULDBLOCK) err = 0; else pr_err("Failed to read from ctlfd %d: %m\n", evlist->ctl_fd.fd); } break; } while (1); pr_debug("Message from ctl_fd: \"%s%s\"\n", cmd_data, bytes_read == data_size ? "" : c == '\n' ? "\\n" : "\\0"); if (bytes_read > 0) { if (!strncmp(cmd_data, EVLIST_CTL_CMD_ENABLE_TAG, (sizeof(EVLIST_CTL_CMD_ENABLE_TAG)-1))) { *cmd = EVLIST_CTL_CMD_ENABLE; } else if (!strncmp(cmd_data, EVLIST_CTL_CMD_DISABLE_TAG, (sizeof(EVLIST_CTL_CMD_DISABLE_TAG)-1))) { *cmd = EVLIST_CTL_CMD_DISABLE; } else if (!strncmp(cmd_data, EVLIST_CTL_CMD_SNAPSHOT_TAG, (sizeof(EVLIST_CTL_CMD_SNAPSHOT_TAG)-1))) { *cmd = EVLIST_CTL_CMD_SNAPSHOT; pr_debug("is snapshot\n"); } else if (!strncmp(cmd_data, EVLIST_CTL_CMD_EVLIST_TAG, (sizeof(EVLIST_CTL_CMD_EVLIST_TAG)-1))) { *cmd = EVLIST_CTL_CMD_EVLIST; } else if (!strncmp(cmd_data, EVLIST_CTL_CMD_STOP_TAG, (sizeof(EVLIST_CTL_CMD_STOP_TAG)-1))) { *cmd = EVLIST_CTL_CMD_STOP; } else if (!strncmp(cmd_data, EVLIST_CTL_CMD_PING_TAG, (sizeof(EVLIST_CTL_CMD_PING_TAG)-1))) { *cmd = EVLIST_CTL_CMD_PING; } } return bytes_read ? (int)bytes_read : err; } int evlist__ctlfd_ack(struct evlist *evlist) { int err; if (evlist->ctl_fd.ack == -1) return 0; err = write(evlist->ctl_fd.ack, EVLIST_CTL_CMD_ACK_TAG, sizeof(EVLIST_CTL_CMD_ACK_TAG)); if (err == -1) pr_err("failed to write to ctl_ack_fd %d: %m\n", evlist->ctl_fd.ack); return err; } static int get_cmd_arg(char *cmd_data, size_t cmd_size, char **arg) { char *data = cmd_data + cmd_size; /* no argument */ if (!*data) return 0; /* there's argument */ if (*data == ' ') { *arg = data + 1; return 1; } /* malformed */ return -1; } static int evlist__ctlfd_enable(struct evlist *evlist, char *cmd_data, bool enable) { struct evsel *evsel; char *name; int err; err = get_cmd_arg(cmd_data, enable ? sizeof(EVLIST_CTL_CMD_ENABLE_TAG) - 1 : sizeof(EVLIST_CTL_CMD_DISABLE_TAG) - 1, &name); if (err < 0) { pr_info("failed: wrong command\n"); return -1; } if (err) { evsel = evlist__find_evsel_by_str(evlist, name); if (evsel) { if (enable) evlist__enable_evsel(evlist, name); else evlist__disable_evsel(evlist, name); pr_info("Event %s %s\n", evsel->name, enable ? "enabled" : "disabled"); } else { pr_info("failed: can't find '%s' event\n", name); } } else { if (enable) { evlist__enable(evlist); pr_info(EVLIST_ENABLED_MSG); } else { evlist__disable(evlist); pr_info(EVLIST_DISABLED_MSG); } } return 0; } static int evlist__ctlfd_list(struct evlist *evlist, char *cmd_data) { struct perf_attr_details details = { .verbose = false, }; struct evsel *evsel; char *arg; int err; err = get_cmd_arg(cmd_data, sizeof(EVLIST_CTL_CMD_EVLIST_TAG) - 1, &arg); if (err < 0) { pr_info("failed: wrong command\n"); return -1; } if (err) { if (!strcmp(arg, "-v")) { details.verbose = true; } else if (!strcmp(arg, "-g")) { details.event_group = true; } else if (!strcmp(arg, "-F")) { details.freq = true; } else { pr_info("failed: wrong command\n"); return -1; } } evlist__for_each_entry(evlist, evsel) evsel__fprintf(evsel, &details, stderr); return 0; } int evlist__ctlfd_process(struct evlist *evlist, enum evlist_ctl_cmd *cmd) { int err = 0; char cmd_data[EVLIST_CTL_CMD_MAX_LEN]; int ctlfd_pos = evlist->ctl_fd.pos; struct pollfd *entries = evlist->core.pollfd.entries; if (!evlist__ctlfd_initialized(evlist) || !entries[ctlfd_pos].revents) return 0; if (entries[ctlfd_pos].revents & POLLIN) { err = evlist__ctlfd_recv(evlist, cmd, cmd_data, EVLIST_CTL_CMD_MAX_LEN); if (err > 0) { switch (*cmd) { case EVLIST_CTL_CMD_ENABLE: case EVLIST_CTL_CMD_DISABLE: err = evlist__ctlfd_enable(evlist, cmd_data, *cmd == EVLIST_CTL_CMD_ENABLE); break; case EVLIST_CTL_CMD_EVLIST: err = evlist__ctlfd_list(evlist, cmd_data); break; case EVLIST_CTL_CMD_SNAPSHOT: case EVLIST_CTL_CMD_STOP: case EVLIST_CTL_CMD_PING: break; case EVLIST_CTL_CMD_ACK: case EVLIST_CTL_CMD_UNSUPPORTED: default: pr_debug("ctlfd: unsupported %d\n", *cmd); break; } if (!(*cmd == EVLIST_CTL_CMD_ACK || *cmd == EVLIST_CTL_CMD_UNSUPPORTED || *cmd == EVLIST_CTL_CMD_SNAPSHOT)) evlist__ctlfd_ack(evlist); } } if (entries[ctlfd_pos].revents & (POLLHUP | POLLERR)) evlist__finalize_ctlfd(evlist); else entries[ctlfd_pos].revents = 0; return err; } /** * struct event_enable_time - perf record -D/--delay single time range. * @start: start of time range to enable events in milliseconds * @end: end of time range to enable events in milliseconds * * N.B. this structure is also accessed as an array of int. */ struct event_enable_time { int start; int end; }; static int parse_event_enable_time(const char *str, struct event_enable_time *range, bool first) { const char *fmt = first ? "%u - %u %n" : " , %u - %u %n"; int ret, start, end, n; ret = sscanf(str, fmt, &start, &end, &n); if (ret != 2 || end <= start) return -EINVAL; if (range) { range->start = start; range->end = end; } return n; } static ssize_t parse_event_enable_times(const char *str, struct event_enable_time *range) { int incr = !!range; bool first = true; ssize_t ret, cnt; for (cnt = 0; *str; cnt++) { ret = parse_event_enable_time(str, range, first); if (ret < 0) return ret; /* Check no overlap */ if (!first && range && range->start <= range[-1].end) return -EINVAL; str += ret; range += incr; first = false; } return cnt; } /** * struct event_enable_timer - control structure for perf record -D/--delay. * @evlist: event list * @times: time ranges that events are enabled (N.B. this is also accessed as an * array of int) * @times_cnt: number of time ranges * @timerfd: timer file descriptor * @pollfd_pos: position in @evlist array of file descriptors to poll (fdarray) * @times_step: current position in (int *)@times)[], * refer event_enable_timer__process() * * Note, this structure is only used when there are time ranges, not when there * is only an initial delay. */ struct event_enable_timer { struct evlist *evlist; struct event_enable_time *times; size_t times_cnt; int timerfd; int pollfd_pos; size_t times_step; }; static int str_to_delay(const char *str) { char *endptr; long d; d = strtol(str, &endptr, 10); if (*endptr || d > INT_MAX || d < -1) return 0; return d; } int evlist__parse_event_enable_time(struct evlist *evlist, struct record_opts *opts, const char *str, int unset) { enum fdarray_flags flags = fdarray_flag__nonfilterable | fdarray_flag__non_perf_event; struct event_enable_timer *eet; ssize_t times_cnt; ssize_t ret; int err; if (unset) return 0; opts->target.initial_delay = str_to_delay(str); if (opts->target.initial_delay) return 0; ret = parse_event_enable_times(str, NULL); if (ret < 0) return ret; times_cnt = ret; if (times_cnt == 0) return -EINVAL; eet = zalloc(sizeof(*eet)); if (!eet) return -ENOMEM; eet->times = calloc(times_cnt, sizeof(*eet->times)); if (!eet->times) { err = -ENOMEM; goto free_eet; } if (parse_event_enable_times(str, eet->times) != times_cnt) { err = -EINVAL; goto free_eet_times; } eet->times_cnt = times_cnt; eet->timerfd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC); if (eet->timerfd == -1) { err = -errno; pr_err("timerfd_create failed: %s\n", strerror(errno)); goto free_eet_times; } eet->pollfd_pos = perf_evlist__add_pollfd(&evlist->core, eet->timerfd, NULL, POLLIN, flags); if (eet->pollfd_pos < 0) { err = eet->pollfd_pos; goto close_timerfd; } eet->evlist = evlist; evlist->eet = eet; opts->target.initial_delay = eet->times[0].start; return 0; close_timerfd: close(eet->timerfd); free_eet_times: zfree(&eet->times); free_eet: free(eet); return err; } static int event_enable_timer__set_timer(struct event_enable_timer *eet, int ms) { struct itimerspec its = { .it_value.tv_sec = ms / MSEC_PER_SEC, .it_value.tv_nsec = (ms % MSEC_PER_SEC) * NSEC_PER_MSEC, }; int err = 0; if (timerfd_settime(eet->timerfd, 0, &its, NULL) < 0) { err = -errno; pr_err("timerfd_settime failed: %s\n", strerror(errno)); } return err; } int event_enable_timer__start(struct event_enable_timer *eet) { int ms; if (!eet) return 0; ms = eet->times[0].end - eet->times[0].start; eet->times_step = 1; return event_enable_timer__set_timer(eet, ms); } int event_enable_timer__process(struct event_enable_timer *eet) { struct pollfd *entries; short revents; if (!eet) return 0; entries = eet->evlist->core.pollfd.entries; revents = entries[eet->pollfd_pos].revents; entries[eet->pollfd_pos].revents = 0; if (revents & POLLIN) { size_t step = eet->times_step; size_t pos = step / 2; if (step & 1) { evlist__disable_non_dummy(eet->evlist); pr_info(EVLIST_DISABLED_MSG); if (pos >= eet->times_cnt - 1) { /* Disarm timer */ event_enable_timer__set_timer(eet, 0); return 1; /* Stop */ } } else { evlist__enable_non_dummy(eet->evlist); pr_info(EVLIST_ENABLED_MSG); } step += 1; pos = step / 2; if (pos < eet->times_cnt) { int *times = (int *)eet->times; /* Accessing 'times' as array of int */ int ms = times[step] - times[step - 1]; eet->times_step = step; return event_enable_timer__set_timer(eet, ms); } } return 0; } void event_enable_timer__exit(struct event_enable_timer **ep) { if (!ep || !*ep) return; zfree(&(*ep)->times); zfree(ep); } struct evsel *evlist__find_evsel(struct evlist *evlist, int idx) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { if (evsel->core.idx == idx) return evsel; } return NULL; } int evlist__scnprintf_evsels(struct evlist *evlist, size_t size, char *bf) { struct evsel *evsel; int printed = 0; evlist__for_each_entry(evlist, evsel) { if (evsel__is_dummy_event(evsel)) continue; if (size > (strlen(evsel__name(evsel)) + (printed ? 2 : 1))) { printed += scnprintf(bf + printed, size - printed, "%s%s", printed ? "," : "", evsel__name(evsel)); } else { printed += scnprintf(bf + printed, size - printed, "%s...", printed ? "," : ""); break; } } return printed; } void evlist__check_mem_load_aux(struct evlist *evlist) { struct evsel *leader, *evsel, *pos; /* * For some platforms, the 'mem-loads' event is required to use * together with 'mem-loads-aux' within a group and 'mem-loads-aux' * must be the group leader. Now we disable this group before reporting * because 'mem-loads-aux' is just an auxiliary event. It doesn't carry * any valid memory load information. */ evlist__for_each_entry(evlist, evsel) { leader = evsel__leader(evsel); if (leader == evsel) continue; if (leader->name && strstr(leader->name, "mem-loads-aux")) { for_each_group_evsel(pos, leader) { evsel__set_leader(pos, pos); pos->core.nr_members = 0; } } } } /** * evlist__warn_user_requested_cpus() - Check each evsel against requested CPUs * and warn if the user CPU list is inapplicable for the event's PMU's * CPUs. Not core PMUs list a CPU in sysfs, but this may be overwritten by a * user requested CPU and so any online CPU is applicable. Core PMUs handle * events on the CPUs in their list and otherwise the event isn't supported. * @evlist: The list of events being checked. * @cpu_list: The user provided list of CPUs. */ void evlist__warn_user_requested_cpus(struct evlist *evlist, const char *cpu_list) { struct perf_cpu_map *user_requested_cpus; struct evsel *pos; if (!cpu_list) return; user_requested_cpus = perf_cpu_map__new(cpu_list); if (!user_requested_cpus) return; evlist__for_each_entry(evlist, pos) { struct perf_cpu_map *intersect, *to_test; const struct perf_pmu *pmu = evsel__find_pmu(pos); to_test = pmu && pmu->is_core ? pmu->cpus : cpu_map__online(); intersect = perf_cpu_map__intersect(to_test, user_requested_cpus); if (!perf_cpu_map__equal(intersect, user_requested_cpus)) { char buf[128]; cpu_map__snprint(to_test, buf, sizeof(buf)); pr_warning("WARNING: A requested CPU in '%s' is not supported by PMU '%s' (CPUs %s) for event '%s'\n", cpu_list, pmu ? pmu->name : "cpu", buf, evsel__name(pos)); } perf_cpu_map__put(intersect); } perf_cpu_map__put(user_requested_cpus); } void evlist__uniquify_name(struct evlist *evlist) { char *new_name, empty_attributes[2] = ":", *attributes; struct evsel *pos; if (perf_pmus__num_core_pmus() == 1) return; evlist__for_each_entry(evlist, pos) { if (!evsel__is_hybrid(pos)) continue; if (strchr(pos->name, '/')) continue; attributes = strchr(pos->name, ':'); if (attributes) *attributes = '\0'; else attributes = empty_attributes; if (asprintf(&new_name, "%s/%s/%s", pos->pmu_name, pos->name, attributes + 1)) { free(pos->name); pos->name = new_name; } else { *attributes = ':'; } } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1