Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Adrian Hunter | 2927 | 19.66% | 59 | 13.23% |
Arnaldo Carvalho de Melo | 2789 | 18.74% | 130 | 29.15% |
Jiri Olsa | 2459 | 16.52% | 67 | 15.02% |
Alexey Bayduraev | 1206 | 8.10% | 11 | 2.47% |
Alexey Budankov | 704 | 4.73% | 7 | 1.57% |
Tom Zanussi | 562 | 3.78% | 8 | 1.79% |
Kan Liang | 558 | 3.75% | 10 | 2.24% |
Stéphane Eranian | 532 | 3.57% | 7 | 1.57% |
Thomas Gleixner | 460 | 3.09% | 13 | 2.91% |
Namhyung Kim | 449 | 3.02% | 17 | 3.81% |
Frédéric Weisbecker | 277 | 1.86% | 7 | 1.57% |
Ian Rogers | 207 | 1.39% | 9 | 2.02% |
David Ahern | 163 | 1.10% | 16 | 3.59% |
Peter Zijlstra | 146 | 0.98% | 7 | 1.57% |
Wang Nan | 145 | 0.97% | 6 | 1.35% |
Leo Yan | 139 | 0.93% | 4 | 0.90% |
Anton Blanchard | 114 | 0.77% | 1 | 0.22% |
Andi Kleen | 105 | 0.71% | 4 | 0.90% |
Alexander Shishkin | 83 | 0.56% | 1 | 0.22% |
Roberto Agostino Vitillo | 68 | 0.46% | 1 | 0.22% |
Chengdong Li | 65 | 0.44% | 1 | 0.22% |
Song Liu | 59 | 0.40% | 3 | 0.67% |
Suzuki K. Poulose | 54 | 0.36% | 1 | 0.22% |
David Carrillo-Cisneros | 50 | 0.34% | 3 | 0.67% |
Thomas Richter | 47 | 0.32% | 2 | 0.45% |
Yanmin Zhang | 42 | 0.28% | 1 | 0.22% |
German Gomez | 40 | 0.27% | 1 | 0.22% |
Ingo Molnar | 37 | 0.25% | 8 | 1.79% |
Mamatha Inamdar | 33 | 0.22% | 1 | 0.22% |
Joerg Roedel | 33 | 0.22% | 1 | 0.22% |
Denis Nikitin | 31 | 0.21% | 1 | 0.22% |
Irina Tirdea | 30 | 0.20% | 2 | 0.45% |
Ameer Hamza | 30 | 0.20% | 1 | 0.22% |
Nikunj A. Dadhania | 29 | 0.19% | 1 | 0.22% |
David S. Miller | 27 | 0.18% | 1 | 0.22% |
Ian Munsie | 25 | 0.17% | 1 | 0.22% |
Masami Hiramatsu | 23 | 0.15% | 7 | 1.57% |
Riccardo Mancini | 20 | 0.13% | 2 | 0.45% |
Stanislav Fomichev | 19 | 0.13% | 1 | 0.22% |
Sandipan Das | 18 | 0.12% | 1 | 0.22% |
Kyle Meyer | 16 | 0.11% | 1 | 0.22% |
Athira Rajeev | 13 | 0.09% | 1 | 0.22% |
Hari Bathini | 11 | 0.07% | 1 | 0.22% |
Mathieu J. Poirier | 8 | 0.05% | 1 | 0.22% |
Steven Rostedt | 5 | 0.03% | 1 | 0.22% |
James Clark | 4 | 0.03% | 1 | 0.22% |
Dmitry Koshelev | 4 | 0.03% | 1 | 0.22% |
Alexander Yarygin | 3 | 0.02% | 1 | 0.22% |
Robert Richter | 3 | 0.02% | 1 | 0.22% |
He Kuang | 2 | 0.01% | 1 | 0.22% |
Don Zickus | 1 | 0.01% | 1 | 0.22% |
Wang YanQing | 1 | 0.01% | 1 | 0.22% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 0.22% |
Soramichi Akiyama | 1 | 0.01% | 1 | 0.22% |
Sean Christopherson | 1 | 0.01% | 1 | 0.22% |
Adam Buchbinder | 1 | 0.01% | 1 | 0.22% |
Paul A. Clarke | 1 | 0.01% | 1 | 0.22% |
Anshuman Khandual | 1 | 0.01% | 1 | 0.22% |
Chris Wilson | 1 | 0.01% | 1 | 0.22% |
Paul Mackerras | 1 | 0.01% | 1 | 0.22% |
OGAWA Hirofumi | 1 | 0.01% | 1 | 0.22% |
Total | 14885 | 446 |
// SPDX-License-Identifier: GPL-2.0 #include <errno.h> #include <signal.h> #include <inttypes.h> #include <linux/err.h> #include <linux/kernel.h> #include <linux/zalloc.h> #include <api/fs/fs.h> #include <byteswap.h> #include <unistd.h> #include <sys/types.h> #include <sys/mman.h> #include <perf/cpumap.h> #include "map_symbol.h" #include "branch.h" #include "debug.h" #include "env.h" #include "evlist.h" #include "evsel.h" #include "memswap.h" #include "map.h" #include "symbol.h" #include "session.h" #include "tool.h" #include "perf_regs.h" #include "asm/bug.h" #include "auxtrace.h" #include "thread.h" #include "thread-stack.h" #include "sample-raw.h" #include "stat.h" #include "tsc.h" #include "ui/progress.h" #include "util.h" #include "arch/common.h" #include "units.h" #include <internal/lib.h> #ifdef HAVE_ZSTD_SUPPORT static int perf_session__process_compressed_event(struct perf_session *session, union perf_event *event, u64 file_offset, const char *file_path) { void *src; size_t decomp_size, src_size; u64 decomp_last_rem = 0; size_t mmap_len, decomp_len = session->header.env.comp_mmap_len; struct decomp *decomp, *decomp_last = session->active_decomp->decomp_last; if (decomp_last) { decomp_last_rem = decomp_last->size - decomp_last->head; decomp_len += decomp_last_rem; } mmap_len = sizeof(struct decomp) + decomp_len; decomp = mmap(NULL, mmap_len, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); if (decomp == MAP_FAILED) { pr_err("Couldn't allocate memory for decompression\n"); return -1; } decomp->file_pos = file_offset; decomp->file_path = file_path; decomp->mmap_len = mmap_len; decomp->head = 0; if (decomp_last_rem) { memcpy(decomp->data, &(decomp_last->data[decomp_last->head]), decomp_last_rem); decomp->size = decomp_last_rem; } src = (void *)event + sizeof(struct perf_record_compressed); src_size = event->pack.header.size - sizeof(struct perf_record_compressed); decomp_size = zstd_decompress_stream(session->active_decomp->zstd_decomp, src, src_size, &(decomp->data[decomp_last_rem]), decomp_len - decomp_last_rem); if (!decomp_size) { munmap(decomp, mmap_len); pr_err("Couldn't decompress data\n"); return -1; } decomp->size += decomp_size; if (session->active_decomp->decomp == NULL) session->active_decomp->decomp = decomp; else session->active_decomp->decomp_last->next = decomp; session->active_decomp->decomp_last = decomp; pr_debug("decomp (B): %zd to %zd\n", src_size, decomp_size); return 0; } #else /* !HAVE_ZSTD_SUPPORT */ #define perf_session__process_compressed_event perf_session__process_compressed_event_stub #endif static int perf_session__deliver_event(struct perf_session *session, union perf_event *event, struct perf_tool *tool, u64 file_offset, const char *file_path); static int perf_session__open(struct perf_session *session, int repipe_fd) { struct perf_data *data = session->data; if (perf_session__read_header(session, repipe_fd) < 0) { pr_err("incompatible file format (rerun with -v to learn more)\n"); return -1; } if (perf_header__has_feat(&session->header, HEADER_AUXTRACE)) { /* Auxiliary events may reference exited threads, hold onto dead ones. */ symbol_conf.keep_exited_threads = true; } if (perf_data__is_pipe(data)) return 0; if (perf_header__has_feat(&session->header, HEADER_STAT)) return 0; if (!evlist__valid_sample_type(session->evlist)) { pr_err("non matching sample_type\n"); return -1; } if (!evlist__valid_sample_id_all(session->evlist)) { pr_err("non matching sample_id_all\n"); return -1; } if (!evlist__valid_read_format(session->evlist)) { pr_err("non matching read_format\n"); return -1; } return 0; } void perf_session__set_id_hdr_size(struct perf_session *session) { u16 id_hdr_size = evlist__id_hdr_size(session->evlist); machines__set_id_hdr_size(&session->machines, id_hdr_size); } int perf_session__create_kernel_maps(struct perf_session *session) { int ret = machine__create_kernel_maps(&session->machines.host); if (ret >= 0) ret = machines__create_guest_kernel_maps(&session->machines); return ret; } static void perf_session__destroy_kernel_maps(struct perf_session *session) { machines__destroy_kernel_maps(&session->machines); } static bool perf_session__has_comm_exec(struct perf_session *session) { struct evsel *evsel; evlist__for_each_entry(session->evlist, evsel) { if (evsel->core.attr.comm_exec) return true; } return false; } static void perf_session__set_comm_exec(struct perf_session *session) { bool comm_exec = perf_session__has_comm_exec(session); machines__set_comm_exec(&session->machines, comm_exec); } static int ordered_events__deliver_event(struct ordered_events *oe, struct ordered_event *event) { struct perf_session *session = container_of(oe, struct perf_session, ordered_events); return perf_session__deliver_event(session, event->event, session->tool, event->file_offset, event->file_path); } struct perf_session *__perf_session__new(struct perf_data *data, bool repipe, int repipe_fd, struct perf_tool *tool) { int ret = -ENOMEM; struct perf_session *session = zalloc(sizeof(*session)); if (!session) goto out; session->repipe = repipe; session->tool = tool; session->decomp_data.zstd_decomp = &session->zstd_data; session->active_decomp = &session->decomp_data; INIT_LIST_HEAD(&session->auxtrace_index); machines__init(&session->machines); ordered_events__init(&session->ordered_events, ordered_events__deliver_event, NULL); perf_env__init(&session->header.env); if (data) { ret = perf_data__open(data); if (ret < 0) goto out_delete; session->data = data; if (perf_data__is_read(data)) { ret = perf_session__open(session, repipe_fd); if (ret < 0) goto out_delete; /* * set session attributes that are present in perf.data * but not in pipe-mode. */ if (!data->is_pipe) { perf_session__set_id_hdr_size(session); perf_session__set_comm_exec(session); } evlist__init_trace_event_sample_raw(session->evlist); /* Open the directory data. */ if (data->is_dir) { ret = perf_data__open_dir(data); if (ret) goto out_delete; } if (!symbol_conf.kallsyms_name && !symbol_conf.vmlinux_name) symbol_conf.kallsyms_name = perf_data__kallsyms_name(data); } } else { session->machines.host.env = &perf_env; } session->machines.host.single_address_space = perf_env__single_address_space(session->machines.host.env); if (!data || perf_data__is_write(data)) { /* * In O_RDONLY mode this will be performed when reading the * kernel MMAP event, in perf_event__process_mmap(). */ if (perf_session__create_kernel_maps(session) < 0) pr_warning("Cannot read kernel map\n"); } /* * In pipe-mode, evlist is empty until PERF_RECORD_HEADER_ATTR is * processed, so evlist__sample_id_all is not meaningful here. */ if ((!data || !data->is_pipe) && tool && tool->ordering_requires_timestamps && tool->ordered_events && !evlist__sample_id_all(session->evlist)) { dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n"); tool->ordered_events = false; } return session; out_delete: perf_session__delete(session); out: return ERR_PTR(ret); } static void perf_decomp__release_events(struct decomp *next) { struct decomp *decomp; size_t mmap_len; do { decomp = next; if (decomp == NULL) break; next = decomp->next; mmap_len = decomp->mmap_len; munmap(decomp, mmap_len); } while (1); } void perf_session__delete(struct perf_session *session) { if (session == NULL) return; auxtrace__free(session); auxtrace_index__free(&session->auxtrace_index); perf_session__destroy_kernel_maps(session); perf_decomp__release_events(session->decomp_data.decomp); perf_env__exit(&session->header.env); machines__exit(&session->machines); if (session->data) { if (perf_data__is_read(session->data)) evlist__delete(session->evlist); perf_data__close(session->data); } #ifdef HAVE_LIBTRACEEVENT trace_event__cleanup(&session->tevent); #endif free(session); } static int process_event_synth_tracing_data_stub(struct perf_session *session __maybe_unused, union perf_event *event __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int process_event_synth_attr_stub(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct evlist **pevlist __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int process_event_synth_event_update_stub(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct evlist **pevlist __maybe_unused) { if (dump_trace) perf_event__fprintf_event_update(event, stdout); dump_printf(": unhandled!\n"); return 0; } static int process_event_sample_stub(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct perf_sample *sample __maybe_unused, struct evsel *evsel __maybe_unused, struct machine *machine __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int process_event_stub(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct perf_sample *sample __maybe_unused, struct machine *machine __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int process_finished_round_stub(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct ordered_events *oe __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int skipn(int fd, off_t n) { char buf[4096]; ssize_t ret; while (n > 0) { ret = read(fd, buf, min(n, (off_t)sizeof(buf))); if (ret <= 0) return ret; n -= ret; } return 0; } static s64 process_event_auxtrace_stub(struct perf_session *session __maybe_unused, union perf_event *event) { dump_printf(": unhandled!\n"); if (perf_data__is_pipe(session->data)) skipn(perf_data__fd(session->data), event->auxtrace.size); return event->auxtrace.size; } static int process_event_op2_stub(struct perf_session *session __maybe_unused, union perf_event *event __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int process_event_thread_map_stub(struct perf_session *session __maybe_unused, union perf_event *event __maybe_unused) { if (dump_trace) perf_event__fprintf_thread_map(event, stdout); dump_printf(": unhandled!\n"); return 0; } static int process_event_cpu_map_stub(struct perf_session *session __maybe_unused, union perf_event *event __maybe_unused) { if (dump_trace) perf_event__fprintf_cpu_map(event, stdout); dump_printf(": unhandled!\n"); return 0; } static int process_event_stat_config_stub(struct perf_session *session __maybe_unused, union perf_event *event __maybe_unused) { if (dump_trace) perf_event__fprintf_stat_config(event, stdout); dump_printf(": unhandled!\n"); return 0; } static int process_stat_stub(struct perf_session *perf_session __maybe_unused, union perf_event *event) { if (dump_trace) perf_event__fprintf_stat(event, stdout); dump_printf(": unhandled!\n"); return 0; } static int process_stat_round_stub(struct perf_session *perf_session __maybe_unused, union perf_event *event) { if (dump_trace) perf_event__fprintf_stat_round(event, stdout); dump_printf(": unhandled!\n"); return 0; } static int process_event_time_conv_stub(struct perf_session *perf_session __maybe_unused, union perf_event *event) { if (dump_trace) perf_event__fprintf_time_conv(event, stdout); dump_printf(": unhandled!\n"); return 0; } static int perf_session__process_compressed_event_stub(struct perf_session *session __maybe_unused, union perf_event *event __maybe_unused, u64 file_offset __maybe_unused, const char *file_path __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } void perf_tool__fill_defaults(struct perf_tool *tool) { if (tool->sample == NULL) tool->sample = process_event_sample_stub; if (tool->mmap == NULL) tool->mmap = process_event_stub; if (tool->mmap2 == NULL) tool->mmap2 = process_event_stub; if (tool->comm == NULL) tool->comm = process_event_stub; if (tool->namespaces == NULL) tool->namespaces = process_event_stub; if (tool->cgroup == NULL) tool->cgroup = process_event_stub; if (tool->fork == NULL) tool->fork = process_event_stub; if (tool->exit == NULL) tool->exit = process_event_stub; if (tool->lost == NULL) tool->lost = perf_event__process_lost; if (tool->lost_samples == NULL) tool->lost_samples = perf_event__process_lost_samples; if (tool->aux == NULL) tool->aux = perf_event__process_aux; if (tool->itrace_start == NULL) tool->itrace_start = perf_event__process_itrace_start; if (tool->context_switch == NULL) tool->context_switch = perf_event__process_switch; if (tool->ksymbol == NULL) tool->ksymbol = perf_event__process_ksymbol; if (tool->bpf == NULL) tool->bpf = perf_event__process_bpf; if (tool->text_poke == NULL) tool->text_poke = perf_event__process_text_poke; if (tool->aux_output_hw_id == NULL) tool->aux_output_hw_id = perf_event__process_aux_output_hw_id; if (tool->read == NULL) tool->read = process_event_sample_stub; if (tool->throttle == NULL) tool->throttle = process_event_stub; if (tool->unthrottle == NULL) tool->unthrottle = process_event_stub; if (tool->attr == NULL) tool->attr = process_event_synth_attr_stub; if (tool->event_update == NULL) tool->event_update = process_event_synth_event_update_stub; if (tool->tracing_data == NULL) tool->tracing_data = process_event_synth_tracing_data_stub; if (tool->build_id == NULL) tool->build_id = process_event_op2_stub; if (tool->finished_round == NULL) { if (tool->ordered_events) tool->finished_round = perf_event__process_finished_round; else tool->finished_round = process_finished_round_stub; } if (tool->id_index == NULL) tool->id_index = process_event_op2_stub; if (tool->auxtrace_info == NULL) tool->auxtrace_info = process_event_op2_stub; if (tool->auxtrace == NULL) tool->auxtrace = process_event_auxtrace_stub; if (tool->auxtrace_error == NULL) tool->auxtrace_error = process_event_op2_stub; if (tool->thread_map == NULL) tool->thread_map = process_event_thread_map_stub; if (tool->cpu_map == NULL) tool->cpu_map = process_event_cpu_map_stub; if (tool->stat_config == NULL) tool->stat_config = process_event_stat_config_stub; if (tool->stat == NULL) tool->stat = process_stat_stub; if (tool->stat_round == NULL) tool->stat_round = process_stat_round_stub; if (tool->time_conv == NULL) tool->time_conv = process_event_time_conv_stub; if (tool->feature == NULL) tool->feature = process_event_op2_stub; if (tool->compressed == NULL) tool->compressed = perf_session__process_compressed_event; if (tool->finished_init == NULL) tool->finished_init = process_event_op2_stub; } static void swap_sample_id_all(union perf_event *event, void *data) { void *end = (void *) event + event->header.size; int size = end - data; BUG_ON(size % sizeof(u64)); mem_bswap_64(data, size); } static void perf_event__all64_swap(union perf_event *event, bool sample_id_all __maybe_unused) { struct perf_event_header *hdr = &event->header; mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr)); } static void perf_event__comm_swap(union perf_event *event, bool sample_id_all) { event->comm.pid = bswap_32(event->comm.pid); event->comm.tid = bswap_32(event->comm.tid); if (sample_id_all) { void *data = &event->comm.comm; data += PERF_ALIGN(strlen(data) + 1, sizeof(u64)); swap_sample_id_all(event, data); } } static void perf_event__mmap_swap(union perf_event *event, bool sample_id_all) { event->mmap.pid = bswap_32(event->mmap.pid); event->mmap.tid = bswap_32(event->mmap.tid); event->mmap.start = bswap_64(event->mmap.start); event->mmap.len = bswap_64(event->mmap.len); event->mmap.pgoff = bswap_64(event->mmap.pgoff); if (sample_id_all) { void *data = &event->mmap.filename; data += PERF_ALIGN(strlen(data) + 1, sizeof(u64)); swap_sample_id_all(event, data); } } static void perf_event__mmap2_swap(union perf_event *event, bool sample_id_all) { event->mmap2.pid = bswap_32(event->mmap2.pid); event->mmap2.tid = bswap_32(event->mmap2.tid); event->mmap2.start = bswap_64(event->mmap2.start); event->mmap2.len = bswap_64(event->mmap2.len); event->mmap2.pgoff = bswap_64(event->mmap2.pgoff); if (!(event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID)) { event->mmap2.maj = bswap_32(event->mmap2.maj); event->mmap2.min = bswap_32(event->mmap2.min); event->mmap2.ino = bswap_64(event->mmap2.ino); event->mmap2.ino_generation = bswap_64(event->mmap2.ino_generation); } if (sample_id_all) { void *data = &event->mmap2.filename; data += PERF_ALIGN(strlen(data) + 1, sizeof(u64)); swap_sample_id_all(event, data); } } static void perf_event__task_swap(union perf_event *event, bool sample_id_all) { event->fork.pid = bswap_32(event->fork.pid); event->fork.tid = bswap_32(event->fork.tid); event->fork.ppid = bswap_32(event->fork.ppid); event->fork.ptid = bswap_32(event->fork.ptid); event->fork.time = bswap_64(event->fork.time); if (sample_id_all) swap_sample_id_all(event, &event->fork + 1); } static void perf_event__read_swap(union perf_event *event, bool sample_id_all) { event->read.pid = bswap_32(event->read.pid); event->read.tid = bswap_32(event->read.tid); event->read.value = bswap_64(event->read.value); event->read.time_enabled = bswap_64(event->read.time_enabled); event->read.time_running = bswap_64(event->read.time_running); event->read.id = bswap_64(event->read.id); if (sample_id_all) swap_sample_id_all(event, &event->read + 1); } static void perf_event__aux_swap(union perf_event *event, bool sample_id_all) { event->aux.aux_offset = bswap_64(event->aux.aux_offset); event->aux.aux_size = bswap_64(event->aux.aux_size); event->aux.flags = bswap_64(event->aux.flags); if (sample_id_all) swap_sample_id_all(event, &event->aux + 1); } static void perf_event__itrace_start_swap(union perf_event *event, bool sample_id_all) { event->itrace_start.pid = bswap_32(event->itrace_start.pid); event->itrace_start.tid = bswap_32(event->itrace_start.tid); if (sample_id_all) swap_sample_id_all(event, &event->itrace_start + 1); } static void perf_event__switch_swap(union perf_event *event, bool sample_id_all) { if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) { event->context_switch.next_prev_pid = bswap_32(event->context_switch.next_prev_pid); event->context_switch.next_prev_tid = bswap_32(event->context_switch.next_prev_tid); } if (sample_id_all) swap_sample_id_all(event, &event->context_switch + 1); } static void perf_event__text_poke_swap(union perf_event *event, bool sample_id_all) { event->text_poke.addr = bswap_64(event->text_poke.addr); event->text_poke.old_len = bswap_16(event->text_poke.old_len); event->text_poke.new_len = bswap_16(event->text_poke.new_len); if (sample_id_all) { size_t len = sizeof(event->text_poke.old_len) + sizeof(event->text_poke.new_len) + event->text_poke.old_len + event->text_poke.new_len; void *data = &event->text_poke.old_len; data += PERF_ALIGN(len, sizeof(u64)); swap_sample_id_all(event, data); } } static void perf_event__throttle_swap(union perf_event *event, bool sample_id_all) { event->throttle.time = bswap_64(event->throttle.time); event->throttle.id = bswap_64(event->throttle.id); event->throttle.stream_id = bswap_64(event->throttle.stream_id); if (sample_id_all) swap_sample_id_all(event, &event->throttle + 1); } static void perf_event__namespaces_swap(union perf_event *event, bool sample_id_all) { u64 i; event->namespaces.pid = bswap_32(event->namespaces.pid); event->namespaces.tid = bswap_32(event->namespaces.tid); event->namespaces.nr_namespaces = bswap_64(event->namespaces.nr_namespaces); for (i = 0; i < event->namespaces.nr_namespaces; i++) { struct perf_ns_link_info *ns = &event->namespaces.link_info[i]; ns->dev = bswap_64(ns->dev); ns->ino = bswap_64(ns->ino); } if (sample_id_all) swap_sample_id_all(event, &event->namespaces.link_info[i]); } static void perf_event__cgroup_swap(union perf_event *event, bool sample_id_all) { event->cgroup.id = bswap_64(event->cgroup.id); if (sample_id_all) { void *data = &event->cgroup.path; data += PERF_ALIGN(strlen(data) + 1, sizeof(u64)); swap_sample_id_all(event, data); } } static u8 revbyte(u8 b) { int rev = (b >> 4) | ((b & 0xf) << 4); rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2); rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1); return (u8) rev; } /* * XXX this is hack in attempt to carry flags bitfield * through endian village. ABI says: * * Bit-fields are allocated from right to left (least to most significant) * on little-endian implementations and from left to right (most to least * significant) on big-endian implementations. * * The above seems to be byte specific, so we need to reverse each * byte of the bitfield. 'Internet' also says this might be implementation * specific and we probably need proper fix and carry perf_event_attr * bitfield flags in separate data file FEAT_ section. Thought this seems * to work for now. */ static void swap_bitfield(u8 *p, unsigned len) { unsigned i; for (i = 0; i < len; i++) { *p = revbyte(*p); p++; } } /* exported for swapping attributes in file header */ void perf_event__attr_swap(struct perf_event_attr *attr) { attr->type = bswap_32(attr->type); attr->size = bswap_32(attr->size); #define bswap_safe(f, n) \ (attr->size > (offsetof(struct perf_event_attr, f) + \ sizeof(attr->f) * (n))) #define bswap_field(f, sz) \ do { \ if (bswap_safe(f, 0)) \ attr->f = bswap_##sz(attr->f); \ } while(0) #define bswap_field_16(f) bswap_field(f, 16) #define bswap_field_32(f) bswap_field(f, 32) #define bswap_field_64(f) bswap_field(f, 64) bswap_field_64(config); bswap_field_64(sample_period); bswap_field_64(sample_type); bswap_field_64(read_format); bswap_field_32(wakeup_events); bswap_field_32(bp_type); bswap_field_64(bp_addr); bswap_field_64(bp_len); bswap_field_64(branch_sample_type); bswap_field_64(sample_regs_user); bswap_field_32(sample_stack_user); bswap_field_32(aux_watermark); bswap_field_16(sample_max_stack); bswap_field_32(aux_sample_size); /* * After read_format are bitfields. Check read_format because * we are unable to use offsetof on bitfield. */ if (bswap_safe(read_format, 1)) swap_bitfield((u8 *) (&attr->read_format + 1), sizeof(u64)); #undef bswap_field_64 #undef bswap_field_32 #undef bswap_field #undef bswap_safe } static void perf_event__hdr_attr_swap(union perf_event *event, bool sample_id_all __maybe_unused) { size_t size; perf_event__attr_swap(&event->attr.attr); size = event->header.size; size -= perf_record_header_attr_id(event) - (void *)event; mem_bswap_64(perf_record_header_attr_id(event), size); } static void perf_event__event_update_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->event_update.type = bswap_64(event->event_update.type); event->event_update.id = bswap_64(event->event_update.id); } static void perf_event__event_type_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->event_type.event_type.event_id = bswap_64(event->event_type.event_type.event_id); } static void perf_event__tracing_data_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->tracing_data.size = bswap_32(event->tracing_data.size); } static void perf_event__auxtrace_info_swap(union perf_event *event, bool sample_id_all __maybe_unused) { size_t size; event->auxtrace_info.type = bswap_32(event->auxtrace_info.type); size = event->header.size; size -= (void *)&event->auxtrace_info.priv - (void *)event; mem_bswap_64(event->auxtrace_info.priv, size); } static void perf_event__auxtrace_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->auxtrace.size = bswap_64(event->auxtrace.size); event->auxtrace.offset = bswap_64(event->auxtrace.offset); event->auxtrace.reference = bswap_64(event->auxtrace.reference); event->auxtrace.idx = bswap_32(event->auxtrace.idx); event->auxtrace.tid = bswap_32(event->auxtrace.tid); event->auxtrace.cpu = bswap_32(event->auxtrace.cpu); } static void perf_event__auxtrace_error_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->auxtrace_error.type = bswap_32(event->auxtrace_error.type); event->auxtrace_error.code = bswap_32(event->auxtrace_error.code); event->auxtrace_error.cpu = bswap_32(event->auxtrace_error.cpu); event->auxtrace_error.pid = bswap_32(event->auxtrace_error.pid); event->auxtrace_error.tid = bswap_32(event->auxtrace_error.tid); event->auxtrace_error.fmt = bswap_32(event->auxtrace_error.fmt); event->auxtrace_error.ip = bswap_64(event->auxtrace_error.ip); if (event->auxtrace_error.fmt) event->auxtrace_error.time = bswap_64(event->auxtrace_error.time); if (event->auxtrace_error.fmt >= 2) { event->auxtrace_error.machine_pid = bswap_32(event->auxtrace_error.machine_pid); event->auxtrace_error.vcpu = bswap_32(event->auxtrace_error.vcpu); } } static void perf_event__thread_map_swap(union perf_event *event, bool sample_id_all __maybe_unused) { unsigned i; event->thread_map.nr = bswap_64(event->thread_map.nr); for (i = 0; i < event->thread_map.nr; i++) event->thread_map.entries[i].pid = bswap_64(event->thread_map.entries[i].pid); } static void perf_event__cpu_map_swap(union perf_event *event, bool sample_id_all __maybe_unused) { struct perf_record_cpu_map_data *data = &event->cpu_map.data; data->type = bswap_16(data->type); switch (data->type) { case PERF_CPU_MAP__CPUS: data->cpus_data.nr = bswap_16(data->cpus_data.nr); for (unsigned i = 0; i < data->cpus_data.nr; i++) data->cpus_data.cpu[i] = bswap_16(data->cpus_data.cpu[i]); break; case PERF_CPU_MAP__MASK: data->mask32_data.long_size = bswap_16(data->mask32_data.long_size); switch (data->mask32_data.long_size) { case 4: data->mask32_data.nr = bswap_16(data->mask32_data.nr); for (unsigned i = 0; i < data->mask32_data.nr; i++) data->mask32_data.mask[i] = bswap_32(data->mask32_data.mask[i]); break; case 8: data->mask64_data.nr = bswap_16(data->mask64_data.nr); for (unsigned i = 0; i < data->mask64_data.nr; i++) data->mask64_data.mask[i] = bswap_64(data->mask64_data.mask[i]); break; default: pr_err("cpu_map swap: unsupported long size\n"); } break; case PERF_CPU_MAP__RANGE_CPUS: data->range_cpu_data.start_cpu = bswap_16(data->range_cpu_data.start_cpu); data->range_cpu_data.end_cpu = bswap_16(data->range_cpu_data.end_cpu); break; default: break; } } static void perf_event__stat_config_swap(union perf_event *event, bool sample_id_all __maybe_unused) { u64 size; size = bswap_64(event->stat_config.nr) * sizeof(event->stat_config.data[0]); size += 1; /* nr item itself */ mem_bswap_64(&event->stat_config.nr, size); } static void perf_event__stat_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->stat.id = bswap_64(event->stat.id); event->stat.thread = bswap_32(event->stat.thread); event->stat.cpu = bswap_32(event->stat.cpu); event->stat.val = bswap_64(event->stat.val); event->stat.ena = bswap_64(event->stat.ena); event->stat.run = bswap_64(event->stat.run); } static void perf_event__stat_round_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->stat_round.type = bswap_64(event->stat_round.type); event->stat_round.time = bswap_64(event->stat_round.time); } static void perf_event__time_conv_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->time_conv.time_shift = bswap_64(event->time_conv.time_shift); event->time_conv.time_mult = bswap_64(event->time_conv.time_mult); event->time_conv.time_zero = bswap_64(event->time_conv.time_zero); if (event_contains(event->time_conv, time_cycles)) { event->time_conv.time_cycles = bswap_64(event->time_conv.time_cycles); event->time_conv.time_mask = bswap_64(event->time_conv.time_mask); } } typedef void (*perf_event__swap_op)(union perf_event *event, bool sample_id_all); static perf_event__swap_op perf_event__swap_ops[] = { [PERF_RECORD_MMAP] = perf_event__mmap_swap, [PERF_RECORD_MMAP2] = perf_event__mmap2_swap, [PERF_RECORD_COMM] = perf_event__comm_swap, [PERF_RECORD_FORK] = perf_event__task_swap, [PERF_RECORD_EXIT] = perf_event__task_swap, [PERF_RECORD_LOST] = perf_event__all64_swap, [PERF_RECORD_READ] = perf_event__read_swap, [PERF_RECORD_THROTTLE] = perf_event__throttle_swap, [PERF_RECORD_UNTHROTTLE] = perf_event__throttle_swap, [PERF_RECORD_SAMPLE] = perf_event__all64_swap, [PERF_RECORD_AUX] = perf_event__aux_swap, [PERF_RECORD_ITRACE_START] = perf_event__itrace_start_swap, [PERF_RECORD_LOST_SAMPLES] = perf_event__all64_swap, [PERF_RECORD_SWITCH] = perf_event__switch_swap, [PERF_RECORD_SWITCH_CPU_WIDE] = perf_event__switch_swap, [PERF_RECORD_NAMESPACES] = perf_event__namespaces_swap, [PERF_RECORD_CGROUP] = perf_event__cgroup_swap, [PERF_RECORD_TEXT_POKE] = perf_event__text_poke_swap, [PERF_RECORD_AUX_OUTPUT_HW_ID] = perf_event__all64_swap, [PERF_RECORD_HEADER_ATTR] = perf_event__hdr_attr_swap, [PERF_RECORD_HEADER_EVENT_TYPE] = perf_event__event_type_swap, [PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap, [PERF_RECORD_HEADER_BUILD_ID] = NULL, [PERF_RECORD_ID_INDEX] = perf_event__all64_swap, [PERF_RECORD_AUXTRACE_INFO] = perf_event__auxtrace_info_swap, [PERF_RECORD_AUXTRACE] = perf_event__auxtrace_swap, [PERF_RECORD_AUXTRACE_ERROR] = perf_event__auxtrace_error_swap, [PERF_RECORD_THREAD_MAP] = perf_event__thread_map_swap, [PERF_RECORD_CPU_MAP] = perf_event__cpu_map_swap, [PERF_RECORD_STAT_CONFIG] = perf_event__stat_config_swap, [PERF_RECORD_STAT] = perf_event__stat_swap, [PERF_RECORD_STAT_ROUND] = perf_event__stat_round_swap, [PERF_RECORD_EVENT_UPDATE] = perf_event__event_update_swap, [PERF_RECORD_TIME_CONV] = perf_event__time_conv_swap, [PERF_RECORD_HEADER_MAX] = NULL, }; /* * When perf record finishes a pass on every buffers, it records this pseudo * event. * We record the max timestamp t found in the pass n. * Assuming these timestamps are monotonic across cpus, we know that if * a buffer still has events with timestamps below t, they will be all * available and then read in the pass n + 1. * Hence when we start to read the pass n + 2, we can safely flush every * events with timestamps below t. * * ============ PASS n ================= * CPU 0 | CPU 1 * | * cnt1 timestamps | cnt2 timestamps * 1 | 2 * 2 | 3 * - | 4 <--- max recorded * * ============ PASS n + 1 ============== * CPU 0 | CPU 1 * | * cnt1 timestamps | cnt2 timestamps * 3 | 5 * 4 | 6 * 5 | 7 <---- max recorded * * Flush every events below timestamp 4 * * ============ PASS n + 2 ============== * CPU 0 | CPU 1 * | * cnt1 timestamps | cnt2 timestamps * 6 | 8 * 7 | 9 * - | 10 * * Flush every events below timestamp 7 * etc... */ int perf_event__process_finished_round(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct ordered_events *oe) { if (dump_trace) fprintf(stdout, "\n"); return ordered_events__flush(oe, OE_FLUSH__ROUND); } int perf_session__queue_event(struct perf_session *s, union perf_event *event, u64 timestamp, u64 file_offset, const char *file_path) { return ordered_events__queue(&s->ordered_events, event, timestamp, file_offset, file_path); } static void callchain__lbr_callstack_printf(struct perf_sample *sample) { struct ip_callchain *callchain = sample->callchain; struct branch_stack *lbr_stack = sample->branch_stack; struct branch_entry *entries = perf_sample__branch_entries(sample); u64 kernel_callchain_nr = callchain->nr; unsigned int i; for (i = 0; i < kernel_callchain_nr; i++) { if (callchain->ips[i] == PERF_CONTEXT_USER) break; } if ((i != kernel_callchain_nr) && lbr_stack->nr) { u64 total_nr; /* * LBR callstack can only get user call chain, * i is kernel call chain number, * 1 is PERF_CONTEXT_USER. * * The user call chain is stored in LBR registers. * LBR are pair registers. The caller is stored * in "from" register, while the callee is stored * in "to" register. * For example, there is a call stack * "A"->"B"->"C"->"D". * The LBR registers will be recorded like * "C"->"D", "B"->"C", "A"->"B". * So only the first "to" register and all "from" * registers are needed to construct the whole stack. */ total_nr = i + 1 + lbr_stack->nr + 1; kernel_callchain_nr = i + 1; printf("... LBR call chain: nr:%" PRIu64 "\n", total_nr); for (i = 0; i < kernel_callchain_nr; i++) printf("..... %2d: %016" PRIx64 "\n", i, callchain->ips[i]); printf("..... %2d: %016" PRIx64 "\n", (int)(kernel_callchain_nr), entries[0].to); for (i = 0; i < lbr_stack->nr; i++) printf("..... %2d: %016" PRIx64 "\n", (int)(i + kernel_callchain_nr + 1), entries[i].from); } } static void callchain__printf(struct evsel *evsel, struct perf_sample *sample) { unsigned int i; struct ip_callchain *callchain = sample->callchain; if (evsel__has_branch_callstack(evsel)) callchain__lbr_callstack_printf(sample); printf("... FP chain: nr:%" PRIu64 "\n", callchain->nr); for (i = 0; i < callchain->nr; i++) printf("..... %2d: %016" PRIx64 "\n", i, callchain->ips[i]); } static void branch_stack__printf(struct perf_sample *sample, struct evsel *evsel) { struct branch_entry *entries = perf_sample__branch_entries(sample); bool callstack = evsel__has_branch_callstack(evsel); u64 *branch_stack_cntr = sample->branch_stack_cntr; struct perf_env *env = evsel__env(evsel); uint64_t i; if (!callstack) { printf("%s: nr:%" PRIu64 "\n", "... branch stack", sample->branch_stack->nr); } else { /* the reason of adding 1 to nr is because after expanding * branch stack it generates nr + 1 callstack records. e.g., * B()->C() * A()->B() * the final callstack should be: * C() * B() * A() */ printf("%s: nr:%" PRIu64 "\n", "... branch callstack", sample->branch_stack->nr+1); } for (i = 0; i < sample->branch_stack->nr; i++) { struct branch_entry *e = &entries[i]; if (!callstack) { printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 " %hu cycles %s%s%s%s %x %s %s\n", i, e->from, e->to, (unsigned short)e->flags.cycles, e->flags.mispred ? "M" : " ", e->flags.predicted ? "P" : " ", e->flags.abort ? "A" : " ", e->flags.in_tx ? "T" : " ", (unsigned)e->flags.reserved, get_branch_type(e), e->flags.spec ? branch_spec_desc(e->flags.spec) : ""); } else { if (i == 0) { printf("..... %2"PRIu64": %016" PRIx64 "\n" "..... %2"PRIu64": %016" PRIx64 "\n", i, e->to, i+1, e->from); } else { printf("..... %2"PRIu64": %016" PRIx64 "\n", i+1, e->from); } } } if (branch_stack_cntr) { printf("... branch stack counters: nr:%" PRIu64 " (counter width: %u max counter nr:%u)\n", sample->branch_stack->nr, env->br_cntr_width, env->br_cntr_nr); for (i = 0; i < sample->branch_stack->nr; i++) printf("..... %2"PRIu64": %016" PRIx64 "\n", i, branch_stack_cntr[i]); } } static void regs_dump__printf(u64 mask, u64 *regs, const char *arch) { unsigned rid, i = 0; for_each_set_bit(rid, (unsigned long *) &mask, sizeof(mask) * 8) { u64 val = regs[i++]; printf(".... %-5s 0x%016" PRIx64 "\n", perf_reg_name(rid, arch), val); } } static const char *regs_abi[] = { [PERF_SAMPLE_REGS_ABI_NONE] = "none", [PERF_SAMPLE_REGS_ABI_32] = "32-bit", [PERF_SAMPLE_REGS_ABI_64] = "64-bit", }; static inline const char *regs_dump_abi(struct regs_dump *d) { if (d->abi > PERF_SAMPLE_REGS_ABI_64) return "unknown"; return regs_abi[d->abi]; } static void regs__printf(const char *type, struct regs_dump *regs, const char *arch) { u64 mask = regs->mask; printf("... %s regs: mask 0x%" PRIx64 " ABI %s\n", type, mask, regs_dump_abi(regs)); regs_dump__printf(mask, regs->regs, arch); } static void regs_user__printf(struct perf_sample *sample, const char *arch) { struct regs_dump *user_regs = &sample->user_regs; if (user_regs->regs) regs__printf("user", user_regs, arch); } static void regs_intr__printf(struct perf_sample *sample, const char *arch) { struct regs_dump *intr_regs = &sample->intr_regs; if (intr_regs->regs) regs__printf("intr", intr_regs, arch); } static void stack_user__printf(struct stack_dump *dump) { printf("... ustack: size %" PRIu64 ", offset 0x%x\n", dump->size, dump->offset); } static void evlist__print_tstamp(struct evlist *evlist, union perf_event *event, struct perf_sample *sample) { u64 sample_type = __evlist__combined_sample_type(evlist); if (event->header.type != PERF_RECORD_SAMPLE && !evlist__sample_id_all(evlist)) { fputs("-1 -1 ", stdout); return; } if ((sample_type & PERF_SAMPLE_CPU)) printf("%u ", sample->cpu); if (sample_type & PERF_SAMPLE_TIME) printf("%" PRIu64 " ", sample->time); } static void sample_read__printf(struct perf_sample *sample, u64 read_format) { printf("... sample_read:\n"); if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) printf("...... time enabled %016" PRIx64 "\n", sample->read.time_enabled); if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) printf("...... time running %016" PRIx64 "\n", sample->read.time_running); if (read_format & PERF_FORMAT_GROUP) { struct sample_read_value *value = sample->read.group.values; printf(".... group nr %" PRIu64 "\n", sample->read.group.nr); sample_read_group__for_each(value, sample->read.group.nr, read_format) { printf("..... id %016" PRIx64 ", value %016" PRIx64, value->id, value->value); if (read_format & PERF_FORMAT_LOST) printf(", lost %" PRIu64, value->lost); printf("\n"); } } else { printf("..... id %016" PRIx64 ", value %016" PRIx64, sample->read.one.id, sample->read.one.value); if (read_format & PERF_FORMAT_LOST) printf(", lost %" PRIu64, sample->read.one.lost); printf("\n"); } } static void dump_event(struct evlist *evlist, union perf_event *event, u64 file_offset, struct perf_sample *sample, const char *file_path) { if (!dump_trace) return; printf("\n%#" PRIx64 "@%s [%#x]: event: %d\n", file_offset, file_path, event->header.size, event->header.type); trace_event(event); if (event->header.type == PERF_RECORD_SAMPLE && evlist->trace_event_sample_raw) evlist->trace_event_sample_raw(evlist, event, sample); if (sample) evlist__print_tstamp(evlist, event, sample); printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset, event->header.size, perf_event__name(event->header.type)); } char *get_page_size_name(u64 size, char *str) { if (!size || !unit_number__scnprintf(str, PAGE_SIZE_NAME_LEN, size)) snprintf(str, PAGE_SIZE_NAME_LEN, "%s", "N/A"); return str; } static void dump_sample(struct evsel *evsel, union perf_event *event, struct perf_sample *sample, const char *arch) { u64 sample_type; char str[PAGE_SIZE_NAME_LEN]; if (!dump_trace) return; printf("(IP, 0x%x): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n", event->header.misc, sample->pid, sample->tid, sample->ip, sample->period, sample->addr); sample_type = evsel->core.attr.sample_type; if (evsel__has_callchain(evsel)) callchain__printf(evsel, sample); if (evsel__has_br_stack(evsel)) branch_stack__printf(sample, evsel); if (sample_type & PERF_SAMPLE_REGS_USER) regs_user__printf(sample, arch); if (sample_type & PERF_SAMPLE_REGS_INTR) regs_intr__printf(sample, arch); if (sample_type & PERF_SAMPLE_STACK_USER) stack_user__printf(&sample->user_stack); if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { printf("... weight: %" PRIu64 "", sample->weight); if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) { printf(",0x%"PRIx16"", sample->ins_lat); printf(",0x%"PRIx16"", sample->p_stage_cyc); } printf("\n"); } if (sample_type & PERF_SAMPLE_DATA_SRC) printf(" . data_src: 0x%"PRIx64"\n", sample->data_src); if (sample_type & PERF_SAMPLE_PHYS_ADDR) printf(" .. phys_addr: 0x%"PRIx64"\n", sample->phys_addr); if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) printf(" .. data page size: %s\n", get_page_size_name(sample->data_page_size, str)); if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) printf(" .. code page size: %s\n", get_page_size_name(sample->code_page_size, str)); if (sample_type & PERF_SAMPLE_TRANSACTION) printf("... transaction: %" PRIx64 "\n", sample->transaction); if (sample_type & PERF_SAMPLE_READ) sample_read__printf(sample, evsel->core.attr.read_format); } static void dump_read(struct evsel *evsel, union perf_event *event) { struct perf_record_read *read_event = &event->read; u64 read_format; if (!dump_trace) return; printf(": %d %d %s %" PRI_lu64 "\n", event->read.pid, event->read.tid, evsel__name(evsel), event->read.value); if (!evsel) return; read_format = evsel->core.attr.read_format; if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) printf("... time enabled : %" PRI_lu64 "\n", read_event->time_enabled); if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) printf("... time running : %" PRI_lu64 "\n", read_event->time_running); if (read_format & PERF_FORMAT_ID) printf("... id : %" PRI_lu64 "\n", read_event->id); if (read_format & PERF_FORMAT_LOST) printf("... lost : %" PRI_lu64 "\n", read_event->lost); } static struct machine *machines__find_for_cpumode(struct machines *machines, union perf_event *event, struct perf_sample *sample) { if (perf_guest && ((sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL) || (sample->cpumode == PERF_RECORD_MISC_GUEST_USER))) { u32 pid; if (sample->machine_pid) pid = sample->machine_pid; else if (event->header.type == PERF_RECORD_MMAP || event->header.type == PERF_RECORD_MMAP2) pid = event->mmap.pid; else pid = sample->pid; /* * Guest code machine is created as needed and does not use * DEFAULT_GUEST_KERNEL_ID. */ if (symbol_conf.guest_code) return machines__findnew(machines, pid); return machines__find_guest(machines, pid); } return &machines->host; } static int deliver_sample_value(struct evlist *evlist, struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct sample_read_value *v, struct machine *machine) { struct perf_sample_id *sid = evlist__id2sid(evlist, v->id); struct evsel *evsel; if (sid) { sample->id = v->id; sample->period = v->value - sid->period; sid->period = v->value; } if (!sid || sid->evsel == NULL) { ++evlist->stats.nr_unknown_id; return 0; } /* * There's no reason to deliver sample * for zero period, bail out. */ if (!sample->period) return 0; evsel = container_of(sid->evsel, struct evsel, core); return tool->sample(tool, event, sample, evsel, machine); } static int deliver_sample_group(struct evlist *evlist, struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct machine *machine, u64 read_format) { int ret = -EINVAL; struct sample_read_value *v = sample->read.group.values; sample_read_group__for_each(v, sample->read.group.nr, read_format) { ret = deliver_sample_value(evlist, tool, event, sample, v, machine); if (ret) break; } return ret; } static int evlist__deliver_sample(struct evlist *evlist, struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct evsel *evsel, struct machine *machine) { /* We know evsel != NULL. */ u64 sample_type = evsel->core.attr.sample_type; u64 read_format = evsel->core.attr.read_format; /* Standard sample delivery. */ if (!(sample_type & PERF_SAMPLE_READ)) return tool->sample(tool, event, sample, evsel, machine); /* For PERF_SAMPLE_READ we have either single or group mode. */ if (read_format & PERF_FORMAT_GROUP) return deliver_sample_group(evlist, tool, event, sample, machine, read_format); else return deliver_sample_value(evlist, tool, event, sample, &sample->read.one, machine); } static int machines__deliver_event(struct machines *machines, struct evlist *evlist, union perf_event *event, struct perf_sample *sample, struct perf_tool *tool, u64 file_offset, const char *file_path) { struct evsel *evsel; struct machine *machine; dump_event(evlist, event, file_offset, sample, file_path); evsel = evlist__id2evsel(evlist, sample->id); machine = machines__find_for_cpumode(machines, event, sample); switch (event->header.type) { case PERF_RECORD_SAMPLE: if (evsel == NULL) { ++evlist->stats.nr_unknown_id; return 0; } if (machine == NULL) { ++evlist->stats.nr_unprocessable_samples; dump_sample(evsel, event, sample, perf_env__arch(NULL)); return 0; } dump_sample(evsel, event, sample, perf_env__arch(machine->env)); return evlist__deliver_sample(evlist, tool, event, sample, evsel, machine); case PERF_RECORD_MMAP: return tool->mmap(tool, event, sample, machine); case PERF_RECORD_MMAP2: if (event->header.misc & PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT) ++evlist->stats.nr_proc_map_timeout; return tool->mmap2(tool, event, sample, machine); case PERF_RECORD_COMM: return tool->comm(tool, event, sample, machine); case PERF_RECORD_NAMESPACES: return tool->namespaces(tool, event, sample, machine); case PERF_RECORD_CGROUP: return tool->cgroup(tool, event, sample, machine); case PERF_RECORD_FORK: return tool->fork(tool, event, sample, machine); case PERF_RECORD_EXIT: return tool->exit(tool, event, sample, machine); case PERF_RECORD_LOST: if (tool->lost == perf_event__process_lost) evlist->stats.total_lost += event->lost.lost; return tool->lost(tool, event, sample, machine); case PERF_RECORD_LOST_SAMPLES: if (tool->lost_samples == perf_event__process_lost_samples && !(event->header.misc & PERF_RECORD_MISC_LOST_SAMPLES_BPF)) evlist->stats.total_lost_samples += event->lost_samples.lost; return tool->lost_samples(tool, event, sample, machine); case PERF_RECORD_READ: dump_read(evsel, event); return tool->read(tool, event, sample, evsel, machine); case PERF_RECORD_THROTTLE: return tool->throttle(tool, event, sample, machine); case PERF_RECORD_UNTHROTTLE: return tool->unthrottle(tool, event, sample, machine); case PERF_RECORD_AUX: if (tool->aux == perf_event__process_aux) { if (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) evlist->stats.total_aux_lost += 1; if (event->aux.flags & PERF_AUX_FLAG_PARTIAL) evlist->stats.total_aux_partial += 1; if (event->aux.flags & PERF_AUX_FLAG_COLLISION) evlist->stats.total_aux_collision += 1; } return tool->aux(tool, event, sample, machine); case PERF_RECORD_ITRACE_START: return tool->itrace_start(tool, event, sample, machine); case PERF_RECORD_SWITCH: case PERF_RECORD_SWITCH_CPU_WIDE: return tool->context_switch(tool, event, sample, machine); case PERF_RECORD_KSYMBOL: return tool->ksymbol(tool, event, sample, machine); case PERF_RECORD_BPF_EVENT: return tool->bpf(tool, event, sample, machine); case PERF_RECORD_TEXT_POKE: return tool->text_poke(tool, event, sample, machine); case PERF_RECORD_AUX_OUTPUT_HW_ID: return tool->aux_output_hw_id(tool, event, sample, machine); default: ++evlist->stats.nr_unknown_events; return -1; } } static int perf_session__deliver_event(struct perf_session *session, union perf_event *event, struct perf_tool *tool, u64 file_offset, const char *file_path) { struct perf_sample sample; int ret = evlist__parse_sample(session->evlist, event, &sample); if (ret) { pr_err("Can't parse sample, err = %d\n", ret); return ret; } ret = auxtrace__process_event(session, event, &sample, tool); if (ret < 0) return ret; if (ret > 0) return 0; ret = machines__deliver_event(&session->machines, session->evlist, event, &sample, tool, file_offset, file_path); if (dump_trace && sample.aux_sample.size) auxtrace__dump_auxtrace_sample(session, &sample); return ret; } static s64 perf_session__process_user_event(struct perf_session *session, union perf_event *event, u64 file_offset, const char *file_path) { struct ordered_events *oe = &session->ordered_events; struct perf_tool *tool = session->tool; struct perf_sample sample = { .time = 0, }; int fd = perf_data__fd(session->data); int err; if (event->header.type != PERF_RECORD_COMPRESSED || tool->compressed == perf_session__process_compressed_event_stub) dump_event(session->evlist, event, file_offset, &sample, file_path); /* These events are processed right away */ switch (event->header.type) { case PERF_RECORD_HEADER_ATTR: err = tool->attr(tool, event, &session->evlist); if (err == 0) { perf_session__set_id_hdr_size(session); perf_session__set_comm_exec(session); } return err; case PERF_RECORD_EVENT_UPDATE: return tool->event_update(tool, event, &session->evlist); case PERF_RECORD_HEADER_EVENT_TYPE: /* * Deprecated, but we need to handle it for sake * of old data files create in pipe mode. */ return 0; case PERF_RECORD_HEADER_TRACING_DATA: /* * Setup for reading amidst mmap, but only when we * are in 'file' mode. The 'pipe' fd is in proper * place already. */ if (!perf_data__is_pipe(session->data)) lseek(fd, file_offset, SEEK_SET); return tool->tracing_data(session, event); case PERF_RECORD_HEADER_BUILD_ID: return tool->build_id(session, event); case PERF_RECORD_FINISHED_ROUND: return tool->finished_round(tool, event, oe); case PERF_RECORD_ID_INDEX: return tool->id_index(session, event); case PERF_RECORD_AUXTRACE_INFO: return tool->auxtrace_info(session, event); case PERF_RECORD_AUXTRACE: /* * Setup for reading amidst mmap, but only when we * are in 'file' mode. The 'pipe' fd is in proper * place already. */ if (!perf_data__is_pipe(session->data)) lseek(fd, file_offset + event->header.size, SEEK_SET); return tool->auxtrace(session, event); case PERF_RECORD_AUXTRACE_ERROR: perf_session__auxtrace_error_inc(session, event); return tool->auxtrace_error(session, event); case PERF_RECORD_THREAD_MAP: return tool->thread_map(session, event); case PERF_RECORD_CPU_MAP: return tool->cpu_map(session, event); case PERF_RECORD_STAT_CONFIG: return tool->stat_config(session, event); case PERF_RECORD_STAT: return tool->stat(session, event); case PERF_RECORD_STAT_ROUND: return tool->stat_round(session, event); case PERF_RECORD_TIME_CONV: session->time_conv = event->time_conv; return tool->time_conv(session, event); case PERF_RECORD_HEADER_FEATURE: return tool->feature(session, event); case PERF_RECORD_COMPRESSED: err = tool->compressed(session, event, file_offset, file_path); if (err) dump_event(session->evlist, event, file_offset, &sample, file_path); return err; case PERF_RECORD_FINISHED_INIT: return tool->finished_init(session, event); default: return -EINVAL; } } int perf_session__deliver_synth_event(struct perf_session *session, union perf_event *event, struct perf_sample *sample) { struct evlist *evlist = session->evlist; struct perf_tool *tool = session->tool; events_stats__inc(&evlist->stats, event->header.type); if (event->header.type >= PERF_RECORD_USER_TYPE_START) return perf_session__process_user_event(session, event, 0, NULL); return machines__deliver_event(&session->machines, evlist, event, sample, tool, 0, NULL); } static void event_swap(union perf_event *event, bool sample_id_all) { perf_event__swap_op swap; swap = perf_event__swap_ops[event->header.type]; if (swap) swap(event, sample_id_all); } int perf_session__peek_event(struct perf_session *session, off_t file_offset, void *buf, size_t buf_sz, union perf_event **event_ptr, struct perf_sample *sample) { union perf_event *event; size_t hdr_sz, rest; int fd; if (session->one_mmap && !session->header.needs_swap) { event = file_offset - session->one_mmap_offset + session->one_mmap_addr; goto out_parse_sample; } if (perf_data__is_pipe(session->data)) return -1; fd = perf_data__fd(session->data); hdr_sz = sizeof(struct perf_event_header); if (buf_sz < hdr_sz) return -1; if (lseek(fd, file_offset, SEEK_SET) == (off_t)-1 || readn(fd, buf, hdr_sz) != (ssize_t)hdr_sz) return -1; event = (union perf_event *)buf; if (session->header.needs_swap) perf_event_header__bswap(&event->header); if (event->header.size < hdr_sz || event->header.size > buf_sz) return -1; buf += hdr_sz; rest = event->header.size - hdr_sz; if (readn(fd, buf, rest) != (ssize_t)rest) return -1; if (session->header.needs_swap) event_swap(event, evlist__sample_id_all(session->evlist)); out_parse_sample: if (sample && event->header.type < PERF_RECORD_USER_TYPE_START && evlist__parse_sample(session->evlist, event, sample)) return -1; *event_ptr = event; return 0; } int perf_session__peek_events(struct perf_session *session, u64 offset, u64 size, peek_events_cb_t cb, void *data) { u64 max_offset = offset + size; char buf[PERF_SAMPLE_MAX_SIZE]; union perf_event *event; int err; do { err = perf_session__peek_event(session, offset, buf, PERF_SAMPLE_MAX_SIZE, &event, NULL); if (err) return err; err = cb(session, event, offset, data); if (err) return err; offset += event->header.size; if (event->header.type == PERF_RECORD_AUXTRACE) offset += event->auxtrace.size; } while (offset < max_offset); return err; } static s64 perf_session__process_event(struct perf_session *session, union perf_event *event, u64 file_offset, const char *file_path) { struct evlist *evlist = session->evlist; struct perf_tool *tool = session->tool; int ret; if (session->header.needs_swap) event_swap(event, evlist__sample_id_all(evlist)); if (event->header.type >= PERF_RECORD_HEADER_MAX) return -EINVAL; events_stats__inc(&evlist->stats, event->header.type); if (event->header.type >= PERF_RECORD_USER_TYPE_START) return perf_session__process_user_event(session, event, file_offset, file_path); if (tool->ordered_events) { u64 timestamp = -1ULL; ret = evlist__parse_sample_timestamp(evlist, event, ×tamp); if (ret && ret != -1) return ret; ret = perf_session__queue_event(session, event, timestamp, file_offset, file_path); if (ret != -ETIME) return ret; } return perf_session__deliver_event(session, event, tool, file_offset, file_path); } void perf_event_header__bswap(struct perf_event_header *hdr) { hdr->type = bswap_32(hdr->type); hdr->misc = bswap_16(hdr->misc); hdr->size = bswap_16(hdr->size); } struct thread *perf_session__findnew(struct perf_session *session, pid_t pid) { return machine__findnew_thread(&session->machines.host, -1, pid); } int perf_session__register_idle_thread(struct perf_session *session) { struct thread *thread = machine__idle_thread(&session->machines.host); /* machine__idle_thread() got the thread, so put it */ thread__put(thread); return thread ? 0 : -1; } static void perf_session__warn_order(const struct perf_session *session) { const struct ordered_events *oe = &session->ordered_events; struct evsel *evsel; bool should_warn = true; evlist__for_each_entry(session->evlist, evsel) { if (evsel->core.attr.write_backward) should_warn = false; } if (!should_warn) return; if (oe->nr_unordered_events != 0) ui__warning("%u out of order events recorded.\n", oe->nr_unordered_events); } static void perf_session__warn_about_errors(const struct perf_session *session) { const struct events_stats *stats = &session->evlist->stats; if (session->tool->lost == perf_event__process_lost && stats->nr_events[PERF_RECORD_LOST] != 0) { ui__warning("Processed %d events and lost %d chunks!\n\n" "Check IO/CPU overload!\n\n", stats->nr_events[0], stats->nr_events[PERF_RECORD_LOST]); } if (session->tool->lost_samples == perf_event__process_lost_samples) { double drop_rate; drop_rate = (double)stats->total_lost_samples / (double) (stats->nr_events[PERF_RECORD_SAMPLE] + stats->total_lost_samples); if (drop_rate > 0.05) { ui__warning("Processed %" PRIu64 " samples and lost %3.2f%%!\n\n", stats->nr_events[PERF_RECORD_SAMPLE] + stats->total_lost_samples, drop_rate * 100.0); } } if (session->tool->aux == perf_event__process_aux && stats->total_aux_lost != 0) { ui__warning("AUX data lost %" PRIu64 " times out of %u!\n\n", stats->total_aux_lost, stats->nr_events[PERF_RECORD_AUX]); } if (session->tool->aux == perf_event__process_aux && stats->total_aux_partial != 0) { bool vmm_exclusive = false; (void)sysfs__read_bool("module/kvm_intel/parameters/vmm_exclusive", &vmm_exclusive); ui__warning("AUX data had gaps in it %" PRIu64 " times out of %u!\n\n" "Are you running a KVM guest in the background?%s\n\n", stats->total_aux_partial, stats->nr_events[PERF_RECORD_AUX], vmm_exclusive ? "\nReloading kvm_intel module with vmm_exclusive=0\n" "will reduce the gaps to only guest's timeslices." : ""); } if (session->tool->aux == perf_event__process_aux && stats->total_aux_collision != 0) { ui__warning("AUX data detected collision %" PRIu64 " times out of %u!\n\n", stats->total_aux_collision, stats->nr_events[PERF_RECORD_AUX]); } if (stats->nr_unknown_events != 0) { ui__warning("Found %u unknown events!\n\n" "Is this an older tool processing a perf.data " "file generated by a more recent tool?\n\n" "If that is not the case, consider " "reporting to linux-kernel@vger.kernel.org.\n\n", stats->nr_unknown_events); } if (stats->nr_unknown_id != 0) { ui__warning("%u samples with id not present in the header\n", stats->nr_unknown_id); } if (stats->nr_invalid_chains != 0) { ui__warning("Found invalid callchains!\n\n" "%u out of %u events were discarded for this reason.\n\n" "Consider reporting to linux-kernel@vger.kernel.org.\n\n", stats->nr_invalid_chains, stats->nr_events[PERF_RECORD_SAMPLE]); } if (stats->nr_unprocessable_samples != 0) { ui__warning("%u unprocessable samples recorded.\n" "Do you have a KVM guest running and not using 'perf kvm'?\n", stats->nr_unprocessable_samples); } perf_session__warn_order(session); events_stats__auxtrace_error_warn(stats); if (stats->nr_proc_map_timeout != 0) { ui__warning("%d map information files for pre-existing threads were\n" "not processed, if there are samples for addresses they\n" "will not be resolved, you may find out which are these\n" "threads by running with -v and redirecting the output\n" "to a file.\n" "The time limit to process proc map is too short?\n" "Increase it by --proc-map-timeout\n", stats->nr_proc_map_timeout); } } static int perf_session__flush_thread_stack(struct thread *thread, void *p __maybe_unused) { return thread_stack__flush(thread); } static int perf_session__flush_thread_stacks(struct perf_session *session) { return machines__for_each_thread(&session->machines, perf_session__flush_thread_stack, NULL); } volatile sig_atomic_t session_done; static int __perf_session__process_decomp_events(struct perf_session *session); static int __perf_session__process_pipe_events(struct perf_session *session) { struct ordered_events *oe = &session->ordered_events; struct perf_tool *tool = session->tool; union perf_event *event; uint32_t size, cur_size = 0; void *buf = NULL; s64 skip = 0; u64 head; ssize_t err; void *p; perf_tool__fill_defaults(tool); head = 0; cur_size = sizeof(union perf_event); buf = malloc(cur_size); if (!buf) return -errno; ordered_events__set_copy_on_queue(oe, true); more: event = buf; err = perf_data__read(session->data, event, sizeof(struct perf_event_header)); if (err <= 0) { if (err == 0) goto done; pr_err("failed to read event header\n"); goto out_err; } if (session->header.needs_swap) perf_event_header__bswap(&event->header); size = event->header.size; if (size < sizeof(struct perf_event_header)) { pr_err("bad event header size\n"); goto out_err; } if (size > cur_size) { void *new = realloc(buf, size); if (!new) { pr_err("failed to allocate memory to read event\n"); goto out_err; } buf = new; cur_size = size; event = buf; } p = event; p += sizeof(struct perf_event_header); if (size - sizeof(struct perf_event_header)) { err = perf_data__read(session->data, p, size - sizeof(struct perf_event_header)); if (err <= 0) { if (err == 0) { pr_err("unexpected end of event stream\n"); goto done; } pr_err("failed to read event data\n"); goto out_err; } } if ((skip = perf_session__process_event(session, event, head, "pipe")) < 0) { pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n", head, event->header.size, event->header.type); err = -EINVAL; goto out_err; } head += size; if (skip > 0) head += skip; err = __perf_session__process_decomp_events(session); if (err) goto out_err; if (!session_done()) goto more; done: /* do the final flush for ordered samples */ err = ordered_events__flush(oe, OE_FLUSH__FINAL); if (err) goto out_err; err = auxtrace__flush_events(session, tool); if (err) goto out_err; err = perf_session__flush_thread_stacks(session); out_err: free(buf); if (!tool->no_warn) perf_session__warn_about_errors(session); ordered_events__free(&session->ordered_events); auxtrace__free_events(session); return err; } static union perf_event * prefetch_event(char *buf, u64 head, size_t mmap_size, bool needs_swap, union perf_event *error) { union perf_event *event; u16 event_size; /* * Ensure we have enough space remaining to read * the size of the event in the headers. */ if (head + sizeof(event->header) > mmap_size) return NULL; event = (union perf_event *)(buf + head); if (needs_swap) perf_event_header__bswap(&event->header); event_size = event->header.size; if (head + event_size <= mmap_size) return event; /* We're not fetching the event so swap back again */ if (needs_swap) perf_event_header__bswap(&event->header); /* Check if the event fits into the next mmapped buf. */ if (event_size <= mmap_size - head % page_size) { /* Remap buf and fetch again. */ return NULL; } /* Invalid input. Event size should never exceed mmap_size. */ pr_debug("%s: head=%#" PRIx64 " event->header.size=%#x, mmap_size=%#zx:" " fuzzed or compressed perf.data?\n", __func__, head, event_size, mmap_size); return error; } static union perf_event * fetch_mmaped_event(u64 head, size_t mmap_size, char *buf, bool needs_swap) { return prefetch_event(buf, head, mmap_size, needs_swap, ERR_PTR(-EINVAL)); } static union perf_event * fetch_decomp_event(u64 head, size_t mmap_size, char *buf, bool needs_swap) { return prefetch_event(buf, head, mmap_size, needs_swap, NULL); } static int __perf_session__process_decomp_events(struct perf_session *session) { s64 skip; u64 size; struct decomp *decomp = session->active_decomp->decomp_last; if (!decomp) return 0; while (decomp->head < decomp->size && !session_done()) { union perf_event *event = fetch_decomp_event(decomp->head, decomp->size, decomp->data, session->header.needs_swap); if (!event) break; size = event->header.size; if (size < sizeof(struct perf_event_header) || (skip = perf_session__process_event(session, event, decomp->file_pos, decomp->file_path)) < 0) { pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n", decomp->file_pos + decomp->head, event->header.size, event->header.type); return -EINVAL; } if (skip) size += skip; decomp->head += size; } return 0; } /* * On 64bit we can mmap the data file in one go. No need for tiny mmap * slices. On 32bit we use 32MB. */ #if BITS_PER_LONG == 64 #define MMAP_SIZE ULLONG_MAX #define NUM_MMAPS 1 #else #define MMAP_SIZE (32 * 1024 * 1024ULL) #define NUM_MMAPS 128 #endif struct reader; typedef s64 (*reader_cb_t)(struct perf_session *session, union perf_event *event, u64 file_offset, const char *file_path); struct reader { int fd; const char *path; u64 data_size; u64 data_offset; reader_cb_t process; bool in_place_update; char *mmaps[NUM_MMAPS]; size_t mmap_size; int mmap_idx; char *mmap_cur; u64 file_pos; u64 file_offset; u64 head; u64 size; bool done; struct zstd_data zstd_data; struct decomp_data decomp_data; }; static int reader__init(struct reader *rd, bool *one_mmap) { u64 data_size = rd->data_size; char **mmaps = rd->mmaps; rd->head = rd->data_offset; data_size += rd->data_offset; rd->mmap_size = MMAP_SIZE; if (rd->mmap_size > data_size) { rd->mmap_size = data_size; if (one_mmap) *one_mmap = true; } memset(mmaps, 0, sizeof(rd->mmaps)); if (zstd_init(&rd->zstd_data, 0)) return -1; rd->decomp_data.zstd_decomp = &rd->zstd_data; return 0; } static void reader__release_decomp(struct reader *rd) { perf_decomp__release_events(rd->decomp_data.decomp); zstd_fini(&rd->zstd_data); } static int reader__mmap(struct reader *rd, struct perf_session *session) { int mmap_prot, mmap_flags; char *buf, **mmaps = rd->mmaps; u64 page_offset; mmap_prot = PROT_READ; mmap_flags = MAP_SHARED; if (rd->in_place_update) { mmap_prot |= PROT_WRITE; } else if (session->header.needs_swap) { mmap_prot |= PROT_WRITE; mmap_flags = MAP_PRIVATE; } if (mmaps[rd->mmap_idx]) { munmap(mmaps[rd->mmap_idx], rd->mmap_size); mmaps[rd->mmap_idx] = NULL; } page_offset = page_size * (rd->head / page_size); rd->file_offset += page_offset; rd->head -= page_offset; buf = mmap(NULL, rd->mmap_size, mmap_prot, mmap_flags, rd->fd, rd->file_offset); if (buf == MAP_FAILED) { pr_err("failed to mmap file\n"); return -errno; } mmaps[rd->mmap_idx] = rd->mmap_cur = buf; rd->mmap_idx = (rd->mmap_idx + 1) & (ARRAY_SIZE(rd->mmaps) - 1); rd->file_pos = rd->file_offset + rd->head; if (session->one_mmap) { session->one_mmap_addr = buf; session->one_mmap_offset = rd->file_offset; } return 0; } enum { READER_OK, READER_NODATA, }; static int reader__read_event(struct reader *rd, struct perf_session *session, struct ui_progress *prog) { u64 size; int err = READER_OK; union perf_event *event; s64 skip; event = fetch_mmaped_event(rd->head, rd->mmap_size, rd->mmap_cur, session->header.needs_swap); if (IS_ERR(event)) return PTR_ERR(event); if (!event) return READER_NODATA; size = event->header.size; skip = -EINVAL; if (size < sizeof(struct perf_event_header) || (skip = rd->process(session, event, rd->file_pos, rd->path)) < 0) { pr_err("%#" PRIx64 " [%#x]: failed to process type: %d [%s]\n", rd->file_offset + rd->head, event->header.size, event->header.type, strerror(-skip)); err = skip; goto out; } if (skip) size += skip; rd->size += size; rd->head += size; rd->file_pos += size; err = __perf_session__process_decomp_events(session); if (err) goto out; ui_progress__update(prog, size); out: return err; } static inline bool reader__eof(struct reader *rd) { return (rd->file_pos >= rd->data_size + rd->data_offset); } static int reader__process_events(struct reader *rd, struct perf_session *session, struct ui_progress *prog) { int err; err = reader__init(rd, &session->one_mmap); if (err) goto out; session->active_decomp = &rd->decomp_data; remap: err = reader__mmap(rd, session); if (err) goto out; more: err = reader__read_event(rd, session, prog); if (err < 0) goto out; else if (err == READER_NODATA) goto remap; if (session_done()) goto out; if (!reader__eof(rd)) goto more; out: session->active_decomp = &session->decomp_data; return err; } static s64 process_simple(struct perf_session *session, union perf_event *event, u64 file_offset, const char *file_path) { return perf_session__process_event(session, event, file_offset, file_path); } static int __perf_session__process_events(struct perf_session *session) { struct reader rd = { .fd = perf_data__fd(session->data), .path = session->data->file.path, .data_size = session->header.data_size, .data_offset = session->header.data_offset, .process = process_simple, .in_place_update = session->data->in_place_update, }; struct ordered_events *oe = &session->ordered_events; struct perf_tool *tool = session->tool; struct ui_progress prog; int err; perf_tool__fill_defaults(tool); if (rd.data_size == 0) return -1; ui_progress__init_size(&prog, rd.data_size, "Processing events..."); err = reader__process_events(&rd, session, &prog); if (err) goto out_err; /* do the final flush for ordered samples */ err = ordered_events__flush(oe, OE_FLUSH__FINAL); if (err) goto out_err; err = auxtrace__flush_events(session, tool); if (err) goto out_err; err = perf_session__flush_thread_stacks(session); out_err: ui_progress__finish(); if (!tool->no_warn) perf_session__warn_about_errors(session); /* * We may switching perf.data output, make ordered_events * reusable. */ ordered_events__reinit(&session->ordered_events); auxtrace__free_events(session); reader__release_decomp(&rd); session->one_mmap = false; return err; } /* * Processing 2 MB of data from each reader in sequence, * because that's the way the ordered events sorting works * most efficiently. */ #define READER_MAX_SIZE (2 * 1024 * 1024) /* * This function reads, merge and process directory data. * It assumens the version 1 of directory data, where each * data file holds per-cpu data, already sorted by kernel. */ static int __perf_session__process_dir_events(struct perf_session *session) { struct perf_data *data = session->data; struct perf_tool *tool = session->tool; int i, ret, readers, nr_readers; struct ui_progress prog; u64 total_size = perf_data__size(session->data); struct reader *rd; perf_tool__fill_defaults(tool); ui_progress__init_size(&prog, total_size, "Sorting events..."); nr_readers = 1; for (i = 0; i < data->dir.nr; i++) { if (data->dir.files[i].size) nr_readers++; } rd = zalloc(nr_readers * sizeof(struct reader)); if (!rd) return -ENOMEM; rd[0] = (struct reader) { .fd = perf_data__fd(session->data), .path = session->data->file.path, .data_size = session->header.data_size, .data_offset = session->header.data_offset, .process = process_simple, .in_place_update = session->data->in_place_update, }; ret = reader__init(&rd[0], NULL); if (ret) goto out_err; ret = reader__mmap(&rd[0], session); if (ret) goto out_err; readers = 1; for (i = 0; i < data->dir.nr; i++) { if (!data->dir.files[i].size) continue; rd[readers] = (struct reader) { .fd = data->dir.files[i].fd, .path = data->dir.files[i].path, .data_size = data->dir.files[i].size, .data_offset = 0, .process = process_simple, .in_place_update = session->data->in_place_update, }; ret = reader__init(&rd[readers], NULL); if (ret) goto out_err; ret = reader__mmap(&rd[readers], session); if (ret) goto out_err; readers++; } i = 0; while (readers) { if (session_done()) break; if (rd[i].done) { i = (i + 1) % nr_readers; continue; } if (reader__eof(&rd[i])) { rd[i].done = true; readers--; continue; } session->active_decomp = &rd[i].decomp_data; ret = reader__read_event(&rd[i], session, &prog); if (ret < 0) { goto out_err; } else if (ret == READER_NODATA) { ret = reader__mmap(&rd[i], session); if (ret) goto out_err; } if (rd[i].size >= READER_MAX_SIZE) { rd[i].size = 0; i = (i + 1) % nr_readers; } } ret = ordered_events__flush(&session->ordered_events, OE_FLUSH__FINAL); if (ret) goto out_err; ret = perf_session__flush_thread_stacks(session); out_err: ui_progress__finish(); if (!tool->no_warn) perf_session__warn_about_errors(session); /* * We may switching perf.data output, make ordered_events * reusable. */ ordered_events__reinit(&session->ordered_events); session->one_mmap = false; session->active_decomp = &session->decomp_data; for (i = 0; i < nr_readers; i++) reader__release_decomp(&rd[i]); zfree(&rd); return ret; } int perf_session__process_events(struct perf_session *session) { if (perf_session__register_idle_thread(session) < 0) return -ENOMEM; if (perf_data__is_pipe(session->data)) return __perf_session__process_pipe_events(session); if (perf_data__is_dir(session->data) && session->data->dir.nr) return __perf_session__process_dir_events(session); return __perf_session__process_events(session); } bool perf_session__has_traces(struct perf_session *session, const char *msg) { struct evsel *evsel; evlist__for_each_entry(session->evlist, evsel) { if (evsel->core.attr.type == PERF_TYPE_TRACEPOINT) return true; } pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg); return false; } int map__set_kallsyms_ref_reloc_sym(struct map *map, const char *symbol_name, u64 addr) { char *bracket; struct ref_reloc_sym *ref; struct kmap *kmap; ref = zalloc(sizeof(struct ref_reloc_sym)); if (ref == NULL) return -ENOMEM; ref->name = strdup(symbol_name); if (ref->name == NULL) { free(ref); return -ENOMEM; } bracket = strchr(ref->name, ']'); if (bracket) *bracket = '\0'; ref->addr = addr; kmap = map__kmap(map); if (kmap) kmap->ref_reloc_sym = ref; return 0; } size_t perf_session__fprintf_dsos(struct perf_session *session, FILE *fp) { return machines__fprintf_dsos(&session->machines, fp); } size_t perf_session__fprintf_dsos_buildid(struct perf_session *session, FILE *fp, bool (skip)(struct dso *dso, int parm), int parm) { return machines__fprintf_dsos_buildid(&session->machines, fp, skip, parm); } size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp, bool skip_empty) { size_t ret; const char *msg = ""; if (perf_header__has_feat(&session->header, HEADER_AUXTRACE)) msg = " (excludes AUX area (e.g. instruction trace) decoded / synthesized events)"; ret = fprintf(fp, "\nAggregated stats:%s\n", msg); ret += events_stats__fprintf(&session->evlist->stats, fp, skip_empty); return ret; } size_t perf_session__fprintf(struct perf_session *session, FILE *fp) { /* * FIXME: Here we have to actually print all the machines in this * session, not just the host... */ return machine__fprintf(&session->machines.host, fp); } void perf_session__dump_kmaps(struct perf_session *session) { int save_verbose = verbose; fflush(stdout); fprintf(stderr, "Kernel and module maps:\n"); verbose = 0; /* Suppress verbose to print a summary only */ maps__fprintf(machine__kernel_maps(&session->machines.host), stderr); verbose = save_verbose; } struct evsel *perf_session__find_first_evtype(struct perf_session *session, unsigned int type) { struct evsel *pos; evlist__for_each_entry(session->evlist, pos) { if (pos->core.attr.type == type) return pos; } return NULL; } int perf_session__cpu_bitmap(struct perf_session *session, const char *cpu_list, unsigned long *cpu_bitmap) { int i, err = -1; struct perf_cpu_map *map; int nr_cpus = min(session->header.env.nr_cpus_avail, MAX_NR_CPUS); for (i = 0; i < PERF_TYPE_MAX; ++i) { struct evsel *evsel; evsel = perf_session__find_first_evtype(session, i); if (!evsel) continue; if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CPU)) { pr_err("File does not contain CPU events. " "Remove -C option to proceed.\n"); return -1; } } map = perf_cpu_map__new(cpu_list); if (map == NULL) { pr_err("Invalid cpu_list\n"); return -1; } for (i = 0; i < perf_cpu_map__nr(map); i++) { struct perf_cpu cpu = perf_cpu_map__cpu(map, i); if (cpu.cpu >= nr_cpus) { pr_err("Requested CPU %d too large. " "Consider raising MAX_NR_CPUS\n", cpu.cpu); goto out_delete_map; } __set_bit(cpu.cpu, cpu_bitmap); } err = 0; out_delete_map: perf_cpu_map__put(map); return err; } void perf_session__fprintf_info(struct perf_session *session, FILE *fp, bool full) { if (session == NULL || fp == NULL) return; fprintf(fp, "# ========\n"); perf_header__fprintf_info(session, fp, full); fprintf(fp, "# ========\n#\n"); } static int perf_session__register_guest(struct perf_session *session, pid_t machine_pid) { struct machine *machine = machines__findnew(&session->machines, machine_pid); struct thread *thread; if (!machine) return -ENOMEM; machine->single_address_space = session->machines.host.single_address_space; thread = machine__idle_thread(machine); if (!thread) return -ENOMEM; thread__put(thread); machine->kallsyms_filename = perf_data__guest_kallsyms_name(session->data, machine_pid); return 0; } static int perf_session__set_guest_cpu(struct perf_session *session, pid_t pid, pid_t tid, int guest_cpu) { struct machine *machine = &session->machines.host; struct thread *thread = machine__findnew_thread(machine, pid, tid); if (!thread) return -ENOMEM; thread__set_guest_cpu(thread, guest_cpu); thread__put(thread); return 0; } int perf_event__process_id_index(struct perf_session *session, union perf_event *event) { struct evlist *evlist = session->evlist; struct perf_record_id_index *ie = &event->id_index; size_t sz = ie->header.size - sizeof(*ie); size_t i, nr, max_nr; size_t e1_sz = sizeof(struct id_index_entry); size_t e2_sz = sizeof(struct id_index_entry_2); size_t etot_sz = e1_sz + e2_sz; struct id_index_entry_2 *e2; pid_t last_pid = 0; max_nr = sz / e1_sz; nr = ie->nr; if (nr > max_nr) { printf("Too big: nr %zu max_nr %zu\n", nr, max_nr); return -EINVAL; } if (sz >= nr * etot_sz) { max_nr = sz / etot_sz; if (nr > max_nr) { printf("Too big2: nr %zu max_nr %zu\n", nr, max_nr); return -EINVAL; } e2 = (void *)ie + sizeof(*ie) + nr * e1_sz; } else { e2 = NULL; } if (dump_trace) fprintf(stdout, " nr: %zu\n", nr); for (i = 0; i < nr; i++, (e2 ? e2++ : 0)) { struct id_index_entry *e = &ie->entries[i]; struct perf_sample_id *sid; int ret; if (dump_trace) { fprintf(stdout, " ... id: %"PRI_lu64, e->id); fprintf(stdout, " idx: %"PRI_lu64, e->idx); fprintf(stdout, " cpu: %"PRI_ld64, e->cpu); fprintf(stdout, " tid: %"PRI_ld64, e->tid); if (e2) { fprintf(stdout, " machine_pid: %"PRI_ld64, e2->machine_pid); fprintf(stdout, " vcpu: %"PRI_lu64"\n", e2->vcpu); } else { fprintf(stdout, "\n"); } } sid = evlist__id2sid(evlist, e->id); if (!sid) return -ENOENT; sid->idx = e->idx; sid->cpu.cpu = e->cpu; sid->tid = e->tid; if (!e2) continue; sid->machine_pid = e2->machine_pid; sid->vcpu.cpu = e2->vcpu; if (!sid->machine_pid) continue; if (sid->machine_pid != last_pid) { ret = perf_session__register_guest(session, sid->machine_pid); if (ret) return ret; last_pid = sid->machine_pid; perf_guest = true; } ret = perf_session__set_guest_cpu(session, sid->machine_pid, e->tid, e2->vcpu); if (ret) return ret; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1