Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexei Starovoitov | 2990 | 28.11% | 11 | 14.10% |
John Fastabend | 2291 | 21.54% | 13 | 16.67% |
Martin KaFai Lau | 1710 | 16.07% | 5 | 6.41% |
Mauricio Vasquez B | 637 | 5.99% | 1 | 1.28% |
Daniel Borkmann | 637 | 5.99% | 5 | 6.41% |
Andrii Nakryiko | 568 | 5.34% | 6 | 7.69% |
Nikita V. Shirokov | 312 | 2.93% | 1 | 1.28% |
Martynas Pumputis | 255 | 2.40% | 2 | 2.56% |
Lorenz Bauer | 212 | 1.99% | 2 | 2.56% |
Lei Ming | 191 | 1.80% | 1 | 1.28% |
Anton Protopopov | 128 | 1.20% | 4 | 5.13% |
Teng Qin | 117 | 1.10% | 1 | 1.28% |
Mickaël Salaün | 106 | 1.00% | 4 | 5.13% |
Hou Tao | 74 | 0.70% | 2 | 2.56% |
Chenbo Feng | 66 | 0.62% | 1 | 1.28% |
Ilya Leoshkevich | 57 | 0.54% | 2 | 2.56% |
Denis Salopek | 55 | 0.52% | 1 | 1.28% |
Yucong Sun | 50 | 0.47% | 2 | 2.56% |
Prashant Bhole | 49 | 0.46% | 1 | 1.28% |
Stanislav Fomichev | 48 | 0.45% | 1 | 1.28% |
Toke Höiland-Jörgensen | 29 | 0.27% | 1 | 1.28% |
Andrey Grafin | 16 | 0.15% | 1 | 1.28% |
Breno Leitão | 15 | 0.14% | 1 | 1.28% |
Li Zhijian | 8 | 0.08% | 2 | 2.56% |
Jesper Dangaard Brouer | 5 | 0.05% | 1 | 1.28% |
Daniel Müller | 5 | 0.05% | 1 | 1.28% |
Colin Ian King | 3 | 0.03% | 2 | 2.56% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.28% |
Xiaozhou Liu | 1 | 0.01% | 1 | 1.28% |
Florian Lehner | 1 | 0.01% | 1 | 1.28% |
Total | 10638 | 78 |
// SPDX-License-Identifier: GPL-2.0-only /* * Testsuite for eBPF maps * * Copyright (c) 2014 PLUMgrid, http://plumgrid.com * Copyright (c) 2016 Facebook */ #include <stdio.h> #include <unistd.h> #include <errno.h> #include <string.h> #include <assert.h> #include <stdlib.h> #include <time.h> #include <sys/wait.h> #include <sys/socket.h> #include <netinet/in.h> #include <linux/bpf.h> #include <bpf/bpf.h> #include <bpf/libbpf.h> #include "bpf_util.h" #include "test_maps.h" #include "testing_helpers.h" #ifndef ENOTSUPP #define ENOTSUPP 524 #endif int skips; static struct bpf_map_create_opts map_opts = { .sz = sizeof(map_opts) }; static void test_hashmap(unsigned int task, void *data) { long long key, next_key, first_key, value; int fd; fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL, sizeof(key), sizeof(value), 2, &map_opts); if (fd < 0) { printf("Failed to create hashmap '%s'!\n", strerror(errno)); exit(1); } key = 1; value = 1234; /* Insert key=1 element. */ assert(bpf_map_update_elem(fd, &key, &value, BPF_ANY) == 0); value = 0; /* BPF_NOEXIST means add new element if it doesn't exist. */ assert(bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST) < 0 && /* key=1 already exists. */ errno == EEXIST); /* -1 is an invalid flag. */ assert(bpf_map_update_elem(fd, &key, &value, -1) < 0 && errno == EINVAL); /* Check that key=1 can be found. */ assert(bpf_map_lookup_elem(fd, &key, &value) == 0 && value == 1234); key = 2; value = 1234; /* Insert key=2 element. */ assert(bpf_map_update_elem(fd, &key, &value, BPF_ANY) == 0); /* Check that key=2 matches the value and delete it */ assert(bpf_map_lookup_and_delete_elem(fd, &key, &value) == 0 && value == 1234); /* Check that key=2 is not found. */ assert(bpf_map_lookup_elem(fd, &key, &value) < 0 && errno == ENOENT); /* BPF_EXIST means update existing element. */ assert(bpf_map_update_elem(fd, &key, &value, BPF_EXIST) < 0 && /* key=2 is not there. */ errno == ENOENT); /* Insert key=2 element. */ assert(bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST) == 0); /* key=1 and key=2 were inserted, check that key=0 cannot be * inserted due to max_entries limit. */ key = 0; assert(bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST) < 0 && errno == E2BIG); /* Update existing element, though the map is full. */ key = 1; assert(bpf_map_update_elem(fd, &key, &value, BPF_EXIST) == 0); key = 2; assert(bpf_map_update_elem(fd, &key, &value, BPF_ANY) == 0); key = 3; assert(bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST) < 0 && errno == E2BIG); /* Check that key = 0 doesn't exist. */ key = 0; assert(bpf_map_delete_elem(fd, &key) < 0 && errno == ENOENT); /* Iterate over two elements. */ assert(bpf_map_get_next_key(fd, NULL, &first_key) == 0 && (first_key == 1 || first_key == 2)); assert(bpf_map_get_next_key(fd, &key, &next_key) == 0 && (next_key == first_key)); assert(bpf_map_get_next_key(fd, &next_key, &next_key) == 0 && (next_key == 1 || next_key == 2) && (next_key != first_key)); assert(bpf_map_get_next_key(fd, &next_key, &next_key) < 0 && errno == ENOENT); /* Delete both elements. */ key = 1; assert(bpf_map_delete_elem(fd, &key) == 0); key = 2; assert(bpf_map_delete_elem(fd, &key) == 0); assert(bpf_map_delete_elem(fd, &key) < 0 && errno == ENOENT); key = 0; /* Check that map is empty. */ assert(bpf_map_get_next_key(fd, NULL, &next_key) < 0 && errno == ENOENT); assert(bpf_map_get_next_key(fd, &key, &next_key) < 0 && errno == ENOENT); close(fd); } static void test_hashmap_sizes(unsigned int task, void *data) { int fd, i, j; for (i = 1; i <= 512; i <<= 1) for (j = 1; j <= 1 << 18; j <<= 1) { fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL, i, j, 2, &map_opts); if (fd < 0) { if (errno == ENOMEM) return; printf("Failed to create hashmap key=%d value=%d '%s'\n", i, j, strerror(errno)); exit(1); } close(fd); usleep(10); /* give kernel time to destroy */ } } static void test_hashmap_percpu(unsigned int task, void *data) { unsigned int nr_cpus = bpf_num_possible_cpus(); BPF_DECLARE_PERCPU(long, value); long long key, next_key, first_key; int expected_key_mask = 0; int fd, i; fd = bpf_map_create(BPF_MAP_TYPE_PERCPU_HASH, NULL, sizeof(key), sizeof(bpf_percpu(value, 0)), 2, &map_opts); if (fd < 0) { printf("Failed to create hashmap '%s'!\n", strerror(errno)); exit(1); } for (i = 0; i < nr_cpus; i++) bpf_percpu(value, i) = i + 100; key = 1; /* Insert key=1 element. */ assert(!(expected_key_mask & key)); assert(bpf_map_update_elem(fd, &key, value, BPF_ANY) == 0); /* Lookup and delete elem key=1 and check value. */ assert(bpf_map_lookup_and_delete_elem(fd, &key, value) == 0 && bpf_percpu(value,0) == 100); for (i = 0; i < nr_cpus; i++) bpf_percpu(value,i) = i + 100; /* Insert key=1 element which should not exist. */ assert(bpf_map_update_elem(fd, &key, value, BPF_NOEXIST) == 0); expected_key_mask |= key; /* BPF_NOEXIST means add new element if it doesn't exist. */ assert(bpf_map_update_elem(fd, &key, value, BPF_NOEXIST) < 0 && /* key=1 already exists. */ errno == EEXIST); /* -1 is an invalid flag. */ assert(bpf_map_update_elem(fd, &key, value, -1) < 0 && errno == EINVAL); /* Check that key=1 can be found. Value could be 0 if the lookup * was run from a different CPU. */ bpf_percpu(value, 0) = 1; assert(bpf_map_lookup_elem(fd, &key, value) == 0 && bpf_percpu(value, 0) == 100); key = 2; /* Check that key=2 is not found. */ assert(bpf_map_lookup_elem(fd, &key, value) < 0 && errno == ENOENT); /* BPF_EXIST means update existing element. */ assert(bpf_map_update_elem(fd, &key, value, BPF_EXIST) < 0 && /* key=2 is not there. */ errno == ENOENT); /* Insert key=2 element. */ assert(!(expected_key_mask & key)); assert(bpf_map_update_elem(fd, &key, value, BPF_NOEXIST) == 0); expected_key_mask |= key; /* key=1 and key=2 were inserted, check that key=0 cannot be * inserted due to max_entries limit. */ key = 0; assert(bpf_map_update_elem(fd, &key, value, BPF_NOEXIST) < 0 && errno == E2BIG); /* Check that key = 0 doesn't exist. */ assert(bpf_map_delete_elem(fd, &key) < 0 && errno == ENOENT); /* Iterate over two elements. */ assert(bpf_map_get_next_key(fd, NULL, &first_key) == 0 && ((expected_key_mask & first_key) == first_key)); while (!bpf_map_get_next_key(fd, &key, &next_key)) { if (first_key) { assert(next_key == first_key); first_key = 0; } assert((expected_key_mask & next_key) == next_key); expected_key_mask &= ~next_key; assert(bpf_map_lookup_elem(fd, &next_key, value) == 0); for (i = 0; i < nr_cpus; i++) assert(bpf_percpu(value, i) == i + 100); key = next_key; } assert(errno == ENOENT); /* Update with BPF_EXIST. */ key = 1; assert(bpf_map_update_elem(fd, &key, value, BPF_EXIST) == 0); /* Delete both elements. */ key = 1; assert(bpf_map_delete_elem(fd, &key) == 0); key = 2; assert(bpf_map_delete_elem(fd, &key) == 0); assert(bpf_map_delete_elem(fd, &key) < 0 && errno == ENOENT); key = 0; /* Check that map is empty. */ assert(bpf_map_get_next_key(fd, NULL, &next_key) < 0 && errno == ENOENT); assert(bpf_map_get_next_key(fd, &key, &next_key) < 0 && errno == ENOENT); close(fd); } #define VALUE_SIZE 3 static int helper_fill_hashmap(int max_entries) { int i, fd, ret; long long key, value[VALUE_SIZE] = {}; fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL, sizeof(key), sizeof(value), max_entries, &map_opts); CHECK(fd < 0, "failed to create hashmap", "err: %s, flags: 0x%x\n", strerror(errno), map_opts.map_flags); for (i = 0; i < max_entries; i++) { key = i; value[0] = key; ret = bpf_map_update_elem(fd, &key, value, BPF_NOEXIST); CHECK(ret != 0, "can't update hashmap", "err: %s\n", strerror(ret)); } return fd; } static void test_hashmap_walk(unsigned int task, void *data) { int fd, i, max_entries = 10000; long long key, value[VALUE_SIZE], next_key; bool next_key_valid = true; fd = helper_fill_hashmap(max_entries); for (i = 0; bpf_map_get_next_key(fd, !i ? NULL : &key, &next_key) == 0; i++) { key = next_key; assert(bpf_map_lookup_elem(fd, &key, value) == 0); } assert(i == max_entries); assert(bpf_map_get_next_key(fd, NULL, &key) == 0); for (i = 0; next_key_valid; i++) { next_key_valid = bpf_map_get_next_key(fd, &key, &next_key) == 0; assert(bpf_map_lookup_elem(fd, &key, value) == 0); value[0]++; assert(bpf_map_update_elem(fd, &key, value, BPF_EXIST) == 0); key = next_key; } assert(i == max_entries); for (i = 0; bpf_map_get_next_key(fd, !i ? NULL : &key, &next_key) == 0; i++) { key = next_key; assert(bpf_map_lookup_elem(fd, &key, value) == 0); assert(value[0] - 1 == key); } assert(i == max_entries); close(fd); } static void test_hashmap_zero_seed(void) { int i, first, second, old_flags; long long key, next_first, next_second; old_flags = map_opts.map_flags; map_opts.map_flags |= BPF_F_ZERO_SEED; first = helper_fill_hashmap(3); second = helper_fill_hashmap(3); for (i = 0; ; i++) { void *key_ptr = !i ? NULL : &key; if (bpf_map_get_next_key(first, key_ptr, &next_first) != 0) break; CHECK(bpf_map_get_next_key(second, key_ptr, &next_second) != 0, "next_key for second map must succeed", "key_ptr: %p", key_ptr); CHECK(next_first != next_second, "keys must match", "i: %d first: %lld second: %lld\n", i, next_first, next_second); key = next_first; } map_opts.map_flags = old_flags; close(first); close(second); } static void test_arraymap(unsigned int task, void *data) { int key, next_key, fd; long long value; fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(key), sizeof(value), 2, NULL); if (fd < 0) { printf("Failed to create arraymap '%s'!\n", strerror(errno)); exit(1); } key = 1; value = 1234; /* Insert key=1 element. */ assert(bpf_map_update_elem(fd, &key, &value, BPF_ANY) == 0); value = 0; assert(bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST) < 0 && errno == EEXIST); /* Check that key=1 can be found. */ assert(bpf_map_lookup_elem(fd, &key, &value) == 0 && value == 1234); key = 0; /* Check that key=0 is also found and zero initialized. */ assert(bpf_map_lookup_elem(fd, &key, &value) == 0 && value == 0); /* key=0 and key=1 were inserted, check that key=2 cannot be inserted * due to max_entries limit. */ key = 2; assert(bpf_map_update_elem(fd, &key, &value, BPF_EXIST) < 0 && errno == E2BIG); /* Check that key = 2 doesn't exist. */ assert(bpf_map_lookup_elem(fd, &key, &value) < 0 && errno == ENOENT); /* Iterate over two elements. */ assert(bpf_map_get_next_key(fd, NULL, &next_key) == 0 && next_key == 0); assert(bpf_map_get_next_key(fd, &key, &next_key) == 0 && next_key == 0); assert(bpf_map_get_next_key(fd, &next_key, &next_key) == 0 && next_key == 1); assert(bpf_map_get_next_key(fd, &next_key, &next_key) < 0 && errno == ENOENT); /* Delete shouldn't succeed. */ key = 1; assert(bpf_map_delete_elem(fd, &key) < 0 && errno == EINVAL); close(fd); } static void test_arraymap_percpu(unsigned int task, void *data) { unsigned int nr_cpus = bpf_num_possible_cpus(); BPF_DECLARE_PERCPU(long, values); int key, next_key, fd, i; fd = bpf_map_create(BPF_MAP_TYPE_PERCPU_ARRAY, NULL, sizeof(key), sizeof(bpf_percpu(values, 0)), 2, NULL); if (fd < 0) { printf("Failed to create arraymap '%s'!\n", strerror(errno)); exit(1); } for (i = 0; i < nr_cpus; i++) bpf_percpu(values, i) = i + 100; key = 1; /* Insert key=1 element. */ assert(bpf_map_update_elem(fd, &key, values, BPF_ANY) == 0); bpf_percpu(values, 0) = 0; assert(bpf_map_update_elem(fd, &key, values, BPF_NOEXIST) < 0 && errno == EEXIST); /* Check that key=1 can be found. */ assert(bpf_map_lookup_elem(fd, &key, values) == 0 && bpf_percpu(values, 0) == 100); key = 0; /* Check that key=0 is also found and zero initialized. */ assert(bpf_map_lookup_elem(fd, &key, values) == 0 && bpf_percpu(values, 0) == 0 && bpf_percpu(values, nr_cpus - 1) == 0); /* Check that key=2 cannot be inserted due to max_entries limit. */ key = 2; assert(bpf_map_update_elem(fd, &key, values, BPF_EXIST) < 0 && errno == E2BIG); /* Check that key = 2 doesn't exist. */ assert(bpf_map_lookup_elem(fd, &key, values) < 0 && errno == ENOENT); /* Iterate over two elements. */ assert(bpf_map_get_next_key(fd, NULL, &next_key) == 0 && next_key == 0); assert(bpf_map_get_next_key(fd, &key, &next_key) == 0 && next_key == 0); assert(bpf_map_get_next_key(fd, &next_key, &next_key) == 0 && next_key == 1); assert(bpf_map_get_next_key(fd, &next_key, &next_key) < 0 && errno == ENOENT); /* Delete shouldn't succeed. */ key = 1; assert(bpf_map_delete_elem(fd, &key) < 0 && errno == EINVAL); close(fd); } static void test_arraymap_percpu_many_keys(void) { unsigned int nr_cpus = bpf_num_possible_cpus(); BPF_DECLARE_PERCPU(long, values); /* nr_keys is not too large otherwise the test stresses percpu * allocator more than anything else */ unsigned int nr_keys = 2000; int key, fd, i; fd = bpf_map_create(BPF_MAP_TYPE_PERCPU_ARRAY, NULL, sizeof(key), sizeof(bpf_percpu(values, 0)), nr_keys, NULL); if (fd < 0) { printf("Failed to create per-cpu arraymap '%s'!\n", strerror(errno)); exit(1); } for (i = 0; i < nr_cpus; i++) bpf_percpu(values, i) = i + 10; for (key = 0; key < nr_keys; key++) assert(bpf_map_update_elem(fd, &key, values, BPF_ANY) == 0); for (key = 0; key < nr_keys; key++) { for (i = 0; i < nr_cpus; i++) bpf_percpu(values, i) = 0; assert(bpf_map_lookup_elem(fd, &key, values) == 0); for (i = 0; i < nr_cpus; i++) assert(bpf_percpu(values, i) == i + 10); } close(fd); } static void test_devmap(unsigned int task, void *data) { int fd; __u32 key, value; fd = bpf_map_create(BPF_MAP_TYPE_DEVMAP, NULL, sizeof(key), sizeof(value), 2, NULL); if (fd < 0) { printf("Failed to create devmap '%s'!\n", strerror(errno)); exit(1); } close(fd); } static void test_devmap_hash(unsigned int task, void *data) { int fd; __u32 key, value; fd = bpf_map_create(BPF_MAP_TYPE_DEVMAP_HASH, NULL, sizeof(key), sizeof(value), 2, NULL); if (fd < 0) { printf("Failed to create devmap_hash '%s'!\n", strerror(errno)); exit(1); } close(fd); } static void test_queuemap(unsigned int task, void *data) { const int MAP_SIZE = 32; __u32 vals[MAP_SIZE + MAP_SIZE/2], val; int fd, i; /* Fill test values to be used */ for (i = 0; i < MAP_SIZE + MAP_SIZE/2; i++) vals[i] = rand(); /* Invalid key size */ fd = bpf_map_create(BPF_MAP_TYPE_QUEUE, NULL, 4, sizeof(val), MAP_SIZE, &map_opts); assert(fd < 0 && errno == EINVAL); fd = bpf_map_create(BPF_MAP_TYPE_QUEUE, NULL, 0, sizeof(val), MAP_SIZE, &map_opts); /* Queue map does not support BPF_F_NO_PREALLOC */ if (map_opts.map_flags & BPF_F_NO_PREALLOC) { assert(fd < 0 && errno == EINVAL); return; } if (fd < 0) { printf("Failed to create queuemap '%s'!\n", strerror(errno)); exit(1); } /* Push MAP_SIZE elements */ for (i = 0; i < MAP_SIZE; i++) assert(bpf_map_update_elem(fd, NULL, &vals[i], 0) == 0); /* Check that element cannot be pushed due to max_entries limit */ assert(bpf_map_update_elem(fd, NULL, &val, 0) < 0 && errno == E2BIG); /* Peek element */ assert(bpf_map_lookup_elem(fd, NULL, &val) == 0 && val == vals[0]); /* Replace half elements */ for (i = MAP_SIZE; i < MAP_SIZE + MAP_SIZE/2; i++) assert(bpf_map_update_elem(fd, NULL, &vals[i], BPF_EXIST) == 0); /* Pop all elements */ for (i = MAP_SIZE/2; i < MAP_SIZE + MAP_SIZE/2; i++) assert(bpf_map_lookup_and_delete_elem(fd, NULL, &val) == 0 && val == vals[i]); /* Check that there are not elements left */ assert(bpf_map_lookup_and_delete_elem(fd, NULL, &val) < 0 && errno == ENOENT); /* Check that non supported functions set errno to EINVAL */ assert(bpf_map_delete_elem(fd, NULL) < 0 && errno == EINVAL); assert(bpf_map_get_next_key(fd, NULL, NULL) < 0 && errno == EINVAL); close(fd); } static void test_stackmap(unsigned int task, void *data) { const int MAP_SIZE = 32; __u32 vals[MAP_SIZE + MAP_SIZE/2], val; int fd, i; /* Fill test values to be used */ for (i = 0; i < MAP_SIZE + MAP_SIZE/2; i++) vals[i] = rand(); /* Invalid key size */ fd = bpf_map_create(BPF_MAP_TYPE_STACK, NULL, 4, sizeof(val), MAP_SIZE, &map_opts); assert(fd < 0 && errno == EINVAL); fd = bpf_map_create(BPF_MAP_TYPE_STACK, NULL, 0, sizeof(val), MAP_SIZE, &map_opts); /* Stack map does not support BPF_F_NO_PREALLOC */ if (map_opts.map_flags & BPF_F_NO_PREALLOC) { assert(fd < 0 && errno == EINVAL); return; } if (fd < 0) { printf("Failed to create stackmap '%s'!\n", strerror(errno)); exit(1); } /* Push MAP_SIZE elements */ for (i = 0; i < MAP_SIZE; i++) assert(bpf_map_update_elem(fd, NULL, &vals[i], 0) == 0); /* Check that element cannot be pushed due to max_entries limit */ assert(bpf_map_update_elem(fd, NULL, &val, 0) < 0 && errno == E2BIG); /* Peek element */ assert(bpf_map_lookup_elem(fd, NULL, &val) == 0 && val == vals[i - 1]); /* Replace half elements */ for (i = MAP_SIZE; i < MAP_SIZE + MAP_SIZE/2; i++) assert(bpf_map_update_elem(fd, NULL, &vals[i], BPF_EXIST) == 0); /* Pop all elements */ for (i = MAP_SIZE + MAP_SIZE/2 - 1; i >= MAP_SIZE/2; i--) assert(bpf_map_lookup_and_delete_elem(fd, NULL, &val) == 0 && val == vals[i]); /* Check that there are not elements left */ assert(bpf_map_lookup_and_delete_elem(fd, NULL, &val) < 0 && errno == ENOENT); /* Check that non supported functions set errno to EINVAL */ assert(bpf_map_delete_elem(fd, NULL) < 0 && errno == EINVAL); assert(bpf_map_get_next_key(fd, NULL, NULL) < 0 && errno == EINVAL); close(fd); } #include <sys/ioctl.h> #include <arpa/inet.h> #include <sys/select.h> #include <linux/err.h> #define SOCKMAP_PARSE_PROG "./sockmap_parse_prog.bpf.o" #define SOCKMAP_VERDICT_PROG "./sockmap_verdict_prog.bpf.o" #define SOCKMAP_TCP_MSG_PROG "./sockmap_tcp_msg_prog.bpf.o" static void test_sockmap(unsigned int tasks, void *data) { struct bpf_map *bpf_map_rx, *bpf_map_tx, *bpf_map_msg, *bpf_map_break; int map_fd_msg = 0, map_fd_rx = 0, map_fd_tx = 0, map_fd_break; struct bpf_object *parse_obj, *verdict_obj, *msg_obj; int ports[] = {50200, 50201, 50202, 50204}; int err, i, fd, udp, sfd[6] = {0xdeadbeef}; u8 buf[20] = {0x0, 0x5, 0x3, 0x2, 0x1, 0x0}; int parse_prog, verdict_prog, msg_prog; struct sockaddr_in addr; int one = 1, s, sc, rc; struct timeval to; __u32 key, value; pid_t pid[tasks]; fd_set w; /* Create some sockets to use with sockmap */ for (i = 0; i < 2; i++) { sfd[i] = socket(AF_INET, SOCK_STREAM, 0); if (sfd[i] < 0) goto out; err = setsockopt(sfd[i], SOL_SOCKET, SO_REUSEADDR, (char *)&one, sizeof(one)); if (err) { printf("failed to setsockopt\n"); goto out; } err = ioctl(sfd[i], FIONBIO, (char *)&one); if (err < 0) { printf("failed to ioctl\n"); goto out; } memset(&addr, 0, sizeof(struct sockaddr_in)); addr.sin_family = AF_INET; addr.sin_addr.s_addr = inet_addr("127.0.0.1"); addr.sin_port = htons(ports[i]); err = bind(sfd[i], (struct sockaddr *)&addr, sizeof(addr)); if (err < 0) { printf("failed to bind: err %i: %i:%i\n", err, i, sfd[i]); goto out; } err = listen(sfd[i], 32); if (err < 0) { printf("failed to listen\n"); goto out; } } for (i = 2; i < 4; i++) { sfd[i] = socket(AF_INET, SOCK_STREAM, 0); if (sfd[i] < 0) goto out; err = setsockopt(sfd[i], SOL_SOCKET, SO_REUSEADDR, (char *)&one, sizeof(one)); if (err) { printf("set sock opt\n"); goto out; } memset(&addr, 0, sizeof(struct sockaddr_in)); addr.sin_family = AF_INET; addr.sin_addr.s_addr = inet_addr("127.0.0.1"); addr.sin_port = htons(ports[i - 2]); err = connect(sfd[i], (struct sockaddr *)&addr, sizeof(addr)); if (err) { printf("failed to connect\n"); goto out; } } for (i = 4; i < 6; i++) { sfd[i] = accept(sfd[i - 4], NULL, NULL); if (sfd[i] < 0) { printf("accept failed\n"); goto out; } } /* Test sockmap with connected sockets */ fd = bpf_map_create(BPF_MAP_TYPE_SOCKMAP, NULL, sizeof(key), sizeof(value), 6, NULL); if (fd < 0) { if (!libbpf_probe_bpf_map_type(BPF_MAP_TYPE_SOCKMAP, NULL)) { printf("%s SKIP (unsupported map type BPF_MAP_TYPE_SOCKMAP)\n", __func__); skips++; for (i = 0; i < 6; i++) close(sfd[i]); return; } printf("Failed to create sockmap %i\n", fd); goto out_sockmap; } /* Test update with unsupported UDP socket */ udp = socket(AF_INET, SOCK_DGRAM, 0); i = 0; err = bpf_map_update_elem(fd, &i, &udp, BPF_ANY); if (err) { printf("Failed socket update SOCK_DGRAM '%i:%i'\n", i, udp); goto out_sockmap; } close(udp); /* Test update without programs */ for (i = 0; i < 6; i++) { err = bpf_map_update_elem(fd, &i, &sfd[i], BPF_ANY); if (err) { printf("Failed noprog update sockmap '%i:%i'\n", i, sfd[i]); goto out_sockmap; } } /* Test attaching/detaching bad fds */ err = bpf_prog_attach(-1, fd, BPF_SK_SKB_STREAM_PARSER, 0); if (!err) { printf("Failed invalid parser prog attach\n"); goto out_sockmap; } err = bpf_prog_attach(-1, fd, BPF_SK_SKB_STREAM_VERDICT, 0); if (!err) { printf("Failed invalid verdict prog attach\n"); goto out_sockmap; } err = bpf_prog_attach(-1, fd, BPF_SK_MSG_VERDICT, 0); if (!err) { printf("Failed invalid msg verdict prog attach\n"); goto out_sockmap; } err = bpf_prog_attach(-1, fd, __MAX_BPF_ATTACH_TYPE, 0); if (!err) { printf("Failed unknown prog attach\n"); goto out_sockmap; } err = bpf_prog_detach(fd, BPF_SK_SKB_STREAM_PARSER); if (!err) { printf("Failed empty parser prog detach\n"); goto out_sockmap; } err = bpf_prog_detach(fd, BPF_SK_SKB_STREAM_VERDICT); if (!err) { printf("Failed empty verdict prog detach\n"); goto out_sockmap; } err = bpf_prog_detach(fd, BPF_SK_MSG_VERDICT); if (!err) { printf("Failed empty msg verdict prog detach\n"); goto out_sockmap; } err = bpf_prog_detach(fd, __MAX_BPF_ATTACH_TYPE); if (!err) { printf("Detach invalid prog successful\n"); goto out_sockmap; } /* Load SK_SKB program and Attach */ err = bpf_prog_test_load(SOCKMAP_PARSE_PROG, BPF_PROG_TYPE_SK_SKB, &parse_obj, &parse_prog); if (err) { printf("Failed to load SK_SKB parse prog\n"); goto out_sockmap; } err = bpf_prog_test_load(SOCKMAP_TCP_MSG_PROG, BPF_PROG_TYPE_SK_MSG, &msg_obj, &msg_prog); if (err) { printf("Failed to load SK_SKB msg prog\n"); goto out_sockmap; } err = bpf_prog_test_load(SOCKMAP_VERDICT_PROG, BPF_PROG_TYPE_SK_SKB, &verdict_obj, &verdict_prog); if (err) { printf("Failed to load SK_SKB verdict prog\n"); goto out_sockmap; } bpf_map_rx = bpf_object__find_map_by_name(verdict_obj, "sock_map_rx"); if (!bpf_map_rx) { printf("Failed to load map rx from verdict prog\n"); goto out_sockmap; } map_fd_rx = bpf_map__fd(bpf_map_rx); if (map_fd_rx < 0) { printf("Failed to get map rx fd\n"); goto out_sockmap; } bpf_map_tx = bpf_object__find_map_by_name(verdict_obj, "sock_map_tx"); if (!bpf_map_tx) { printf("Failed to load map tx from verdict prog\n"); goto out_sockmap; } map_fd_tx = bpf_map__fd(bpf_map_tx); if (map_fd_tx < 0) { printf("Failed to get map tx fd\n"); goto out_sockmap; } bpf_map_msg = bpf_object__find_map_by_name(verdict_obj, "sock_map_msg"); if (!bpf_map_msg) { printf("Failed to load map msg from msg_verdict prog\n"); goto out_sockmap; } map_fd_msg = bpf_map__fd(bpf_map_msg); if (map_fd_msg < 0) { printf("Failed to get map msg fd\n"); goto out_sockmap; } bpf_map_break = bpf_object__find_map_by_name(verdict_obj, "sock_map_break"); if (!bpf_map_break) { printf("Failed to load map tx from verdict prog\n"); goto out_sockmap; } map_fd_break = bpf_map__fd(bpf_map_break); if (map_fd_break < 0) { printf("Failed to get map tx fd\n"); goto out_sockmap; } err = bpf_prog_attach(parse_prog, map_fd_break, BPF_SK_SKB_STREAM_PARSER, 0); if (!err) { printf("Allowed attaching SK_SKB program to invalid map\n"); goto out_sockmap; } err = bpf_prog_attach(parse_prog, map_fd_rx, BPF_SK_SKB_STREAM_PARSER, 0); if (err) { printf("Failed stream parser bpf prog attach\n"); goto out_sockmap; } err = bpf_prog_attach(verdict_prog, map_fd_rx, BPF_SK_SKB_STREAM_VERDICT, 0); if (err) { printf("Failed stream verdict bpf prog attach\n"); goto out_sockmap; } err = bpf_prog_attach(msg_prog, map_fd_msg, BPF_SK_MSG_VERDICT, 0); if (err) { printf("Failed msg verdict bpf prog attach\n"); goto out_sockmap; } err = bpf_prog_attach(verdict_prog, map_fd_rx, __MAX_BPF_ATTACH_TYPE, 0); if (!err) { printf("Attached unknown bpf prog\n"); goto out_sockmap; } /* Test map update elem afterwards fd lives in fd and map_fd */ for (i = 2; i < 6; i++) { err = bpf_map_update_elem(map_fd_rx, &i, &sfd[i], BPF_ANY); if (err) { printf("Failed map_fd_rx update sockmap %i '%i:%i'\n", err, i, sfd[i]); goto out_sockmap; } err = bpf_map_update_elem(map_fd_tx, &i, &sfd[i], BPF_ANY); if (err) { printf("Failed map_fd_tx update sockmap %i '%i:%i'\n", err, i, sfd[i]); goto out_sockmap; } } /* Test map delete elem and remove send/recv sockets */ for (i = 2; i < 4; i++) { err = bpf_map_delete_elem(map_fd_rx, &i); if (err) { printf("Failed delete sockmap rx %i '%i:%i'\n", err, i, sfd[i]); goto out_sockmap; } err = bpf_map_delete_elem(map_fd_tx, &i); if (err) { printf("Failed delete sockmap tx %i '%i:%i'\n", err, i, sfd[i]); goto out_sockmap; } } /* Put sfd[2] (sending fd below) into msg map to test sendmsg bpf */ i = 0; err = bpf_map_update_elem(map_fd_msg, &i, &sfd[2], BPF_ANY); if (err) { printf("Failed map_fd_msg update sockmap %i\n", err); goto out_sockmap; } /* Test map send/recv */ for (i = 0; i < 2; i++) { buf[0] = i; buf[1] = 0x5; sc = send(sfd[2], buf, 20, 0); if (sc < 0) { printf("Failed sockmap send\n"); goto out_sockmap; } FD_ZERO(&w); FD_SET(sfd[3], &w); to.tv_sec = 30; to.tv_usec = 0; s = select(sfd[3] + 1, &w, NULL, NULL, &to); if (s == -1) { perror("Failed sockmap select()"); goto out_sockmap; } else if (!s) { printf("Failed sockmap unexpected timeout\n"); goto out_sockmap; } if (!FD_ISSET(sfd[3], &w)) { printf("Failed sockmap select/recv\n"); goto out_sockmap; } rc = recv(sfd[3], buf, sizeof(buf), 0); if (rc < 0) { printf("Failed sockmap recv\n"); goto out_sockmap; } } /* Negative null entry lookup from datapath should be dropped */ buf[0] = 1; buf[1] = 12; sc = send(sfd[2], buf, 20, 0); if (sc < 0) { printf("Failed sockmap send\n"); goto out_sockmap; } /* Push fd into same slot */ i = 2; err = bpf_map_update_elem(fd, &i, &sfd[i], BPF_NOEXIST); if (!err) { printf("Failed allowed sockmap dup slot BPF_NOEXIST\n"); goto out_sockmap; } err = bpf_map_update_elem(fd, &i, &sfd[i], BPF_ANY); if (err) { printf("Failed sockmap update new slot BPF_ANY\n"); goto out_sockmap; } err = bpf_map_update_elem(fd, &i, &sfd[i], BPF_EXIST); if (err) { printf("Failed sockmap update new slot BPF_EXIST\n"); goto out_sockmap; } /* Delete the elems without programs */ for (i = 2; i < 6; i++) { err = bpf_map_delete_elem(fd, &i); if (err) { printf("Failed delete sockmap %i '%i:%i'\n", err, i, sfd[i]); } } /* Test having multiple maps open and set with programs on same fds */ err = bpf_prog_attach(parse_prog, fd, BPF_SK_SKB_STREAM_PARSER, 0); if (err) { printf("Failed fd bpf parse prog attach\n"); goto out_sockmap; } err = bpf_prog_attach(verdict_prog, fd, BPF_SK_SKB_STREAM_VERDICT, 0); if (err) { printf("Failed fd bpf verdict prog attach\n"); goto out_sockmap; } for (i = 4; i < 6; i++) { err = bpf_map_update_elem(fd, &i, &sfd[i], BPF_ANY); if (!err) { printf("Failed allowed duplicate programs in update ANY sockmap %i '%i:%i'\n", err, i, sfd[i]); goto out_sockmap; } err = bpf_map_update_elem(fd, &i, &sfd[i], BPF_NOEXIST); if (!err) { printf("Failed allowed duplicate program in update NOEXIST sockmap %i '%i:%i'\n", err, i, sfd[i]); goto out_sockmap; } err = bpf_map_update_elem(fd, &i, &sfd[i], BPF_EXIST); if (!err) { printf("Failed allowed duplicate program in update EXIST sockmap %i '%i:%i'\n", err, i, sfd[i]); goto out_sockmap; } } /* Test tasks number of forked operations */ for (i = 0; i < tasks; i++) { pid[i] = fork(); if (pid[i] == 0) { for (i = 0; i < 6; i++) { bpf_map_delete_elem(map_fd_tx, &i); bpf_map_delete_elem(map_fd_rx, &i); bpf_map_update_elem(map_fd_tx, &i, &sfd[i], BPF_ANY); bpf_map_update_elem(map_fd_rx, &i, &sfd[i], BPF_ANY); } exit(0); } else if (pid[i] == -1) { printf("Couldn't spawn #%d process!\n", i); exit(1); } } for (i = 0; i < tasks; i++) { int status; assert(waitpid(pid[i], &status, 0) == pid[i]); assert(status == 0); } err = bpf_prog_detach2(parse_prog, map_fd_rx, __MAX_BPF_ATTACH_TYPE); if (!err) { printf("Detached an invalid prog type.\n"); goto out_sockmap; } err = bpf_prog_detach2(parse_prog, map_fd_rx, BPF_SK_SKB_STREAM_PARSER); if (err) { printf("Failed parser prog detach\n"); goto out_sockmap; } err = bpf_prog_detach2(verdict_prog, map_fd_rx, BPF_SK_SKB_STREAM_VERDICT); if (err) { printf("Failed parser prog detach\n"); goto out_sockmap; } /* Test map close sockets and empty maps */ for (i = 0; i < 6; i++) { bpf_map_delete_elem(map_fd_tx, &i); bpf_map_delete_elem(map_fd_rx, &i); close(sfd[i]); } close(fd); close(map_fd_rx); bpf_object__close(parse_obj); bpf_object__close(msg_obj); bpf_object__close(verdict_obj); return; out: for (i = 0; i < 6; i++) close(sfd[i]); printf("Failed to create sockmap '%i:%s'!\n", i, strerror(errno)); exit(1); out_sockmap: for (i = 0; i < 6; i++) { if (map_fd_tx) bpf_map_delete_elem(map_fd_tx, &i); if (map_fd_rx) bpf_map_delete_elem(map_fd_rx, &i); close(sfd[i]); } close(fd); exit(1); } #define MAPINMAP_PROG "./test_map_in_map.bpf.o" #define MAPINMAP_INVALID_PROG "./test_map_in_map_invalid.bpf.o" static void test_map_in_map(void) { struct bpf_object *obj; struct bpf_map *map; int mim_fd, fd, err; int pos = 0; struct bpf_map_info info = {}; __u32 len = sizeof(info); __u32 id = 0; libbpf_print_fn_t old_print_fn; obj = bpf_object__open(MAPINMAP_PROG); fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL, sizeof(int), sizeof(int), 2, NULL); if (fd < 0) { printf("Failed to create hashmap '%s'!\n", strerror(errno)); exit(1); } map = bpf_object__find_map_by_name(obj, "mim_array"); if (!map) { printf("Failed to load array of maps from test prog\n"); goto out_map_in_map; } err = bpf_map__set_inner_map_fd(map, fd); if (err) { printf("Failed to set inner_map_fd for array of maps\n"); goto out_map_in_map; } map = bpf_object__find_map_by_name(obj, "mim_hash"); if (!map) { printf("Failed to load hash of maps from test prog\n"); goto out_map_in_map; } err = bpf_map__set_inner_map_fd(map, fd); if (err) { printf("Failed to set inner_map_fd for hash of maps\n"); goto out_map_in_map; } err = bpf_object__load(obj); if (err) { printf("Failed to load test prog\n"); goto out_map_in_map; } map = bpf_object__find_map_by_name(obj, "mim_array"); if (!map) { printf("Failed to load array of maps from test prog\n"); goto out_map_in_map; } mim_fd = bpf_map__fd(map); if (mim_fd < 0) { printf("Failed to get descriptor for array of maps\n"); goto out_map_in_map; } err = bpf_map_update_elem(mim_fd, &pos, &fd, 0); if (err) { printf("Failed to update array of maps\n"); goto out_map_in_map; } map = bpf_object__find_map_by_name(obj, "mim_hash"); if (!map) { printf("Failed to load hash of maps from test prog\n"); goto out_map_in_map; } mim_fd = bpf_map__fd(map); if (mim_fd < 0) { printf("Failed to get descriptor for hash of maps\n"); goto out_map_in_map; } err = bpf_map_update_elem(mim_fd, &pos, &fd, 0); if (err) { printf("Failed to update hash of maps\n"); goto out_map_in_map; } close(fd); fd = -1; bpf_object__close(obj); /* Test that failing bpf_object__create_map() destroys the inner map */ obj = bpf_object__open(MAPINMAP_INVALID_PROG); err = libbpf_get_error(obj); if (err) { printf("Failed to load %s program: %d %d", MAPINMAP_INVALID_PROG, err, errno); goto out_map_in_map; } map = bpf_object__find_map_by_name(obj, "mim"); if (!map) { printf("Failed to load array of maps from test prog\n"); goto out_map_in_map; } old_print_fn = libbpf_set_print(NULL); err = bpf_object__load(obj); if (!err) { printf("Loading obj supposed to fail\n"); goto out_map_in_map; } libbpf_set_print(old_print_fn); /* Iterate over all maps to check whether the internal map * ("mim.internal") has been destroyed. */ while (true) { err = bpf_map_get_next_id(id, &id); if (err) { if (errno == ENOENT) break; printf("Failed to get next map: %d", errno); goto out_map_in_map; } fd = bpf_map_get_fd_by_id(id); if (fd < 0) { if (errno == ENOENT) continue; printf("Failed to get map by id %u: %d", id, errno); goto out_map_in_map; } err = bpf_map_get_info_by_fd(fd, &info, &len); if (err) { printf("Failed to get map info by fd %d: %d", fd, errno); goto out_map_in_map; } if (!strcmp(info.name, "mim.inner")) { printf("Inner map mim.inner was not destroyed\n"); goto out_map_in_map; } close(fd); } bpf_object__close(obj); return; out_map_in_map: if (fd >= 0) close(fd); exit(1); } #define MAP_SIZE (32 * 1024) static void test_map_large(void) { struct bigkey { int a; char b[4096]; long long c; } key; int fd, i, value; fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL, sizeof(key), sizeof(value), MAP_SIZE, &map_opts); if (fd < 0) { printf("Failed to create large map '%s'!\n", strerror(errno)); exit(1); } for (i = 0; i < MAP_SIZE; i++) { key = (struct bigkey) { .c = i }; value = i; assert(bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST) == 0); } key.c = -1; assert(bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST) < 0 && errno == E2BIG); /* Iterate through all elements. */ assert(bpf_map_get_next_key(fd, NULL, &key) == 0); key.c = -1; for (i = 0; i < MAP_SIZE; i++) assert(bpf_map_get_next_key(fd, &key, &key) == 0); assert(bpf_map_get_next_key(fd, &key, &key) < 0 && errno == ENOENT); key.c = 0; assert(bpf_map_lookup_elem(fd, &key, &value) == 0 && value == 0); key.a = 1; assert(bpf_map_lookup_elem(fd, &key, &value) < 0 && errno == ENOENT); close(fd); } #define run_parallel(N, FN, DATA) \ printf("Fork %u tasks to '" #FN "'\n", N); \ __run_parallel(N, FN, DATA) static void __run_parallel(unsigned int tasks, void (*fn)(unsigned int task, void *data), void *data) { pid_t pid[tasks]; int i; fflush(stdout); for (i = 0; i < tasks; i++) { pid[i] = fork(); if (pid[i] == 0) { fn(i, data); exit(0); } else if (pid[i] == -1) { printf("Couldn't spawn #%d process!\n", i); exit(1); } } for (i = 0; i < tasks; i++) { int status; assert(waitpid(pid[i], &status, 0) == pid[i]); assert(status == 0); } } static void test_map_stress(void) { run_parallel(100, test_hashmap_walk, NULL); run_parallel(100, test_hashmap, NULL); run_parallel(100, test_hashmap_percpu, NULL); run_parallel(100, test_hashmap_sizes, NULL); run_parallel(100, test_arraymap, NULL); run_parallel(100, test_arraymap_percpu, NULL); } #define TASKS 100 #define DO_UPDATE 1 #define DO_DELETE 0 #define MAP_RETRIES 20 #define MAX_DELAY_US 50000 #define MIN_DELAY_RANGE_US 5000 static bool retry_for_again_or_busy(int err) { return (err == EAGAIN || err == EBUSY); } int map_update_retriable(int map_fd, const void *key, const void *value, int flags, int attempts, retry_for_error_fn need_retry) { int delay = rand() % MIN_DELAY_RANGE_US; while (bpf_map_update_elem(map_fd, key, value, flags)) { if (!attempts || !need_retry(errno)) return -errno; if (delay <= MAX_DELAY_US / 2) delay *= 2; usleep(delay); attempts--; } return 0; } static int map_delete_retriable(int map_fd, const void *key, int attempts) { int delay = rand() % MIN_DELAY_RANGE_US; while (bpf_map_delete_elem(map_fd, key)) { if (!attempts || (errno != EAGAIN && errno != EBUSY)) return -errno; if (delay <= MAX_DELAY_US / 2) delay *= 2; usleep(delay); attempts--; } return 0; } static void test_update_delete(unsigned int fn, void *data) { int do_update = ((int *)data)[1]; int fd = ((int *)data)[0]; int i, key, value, err; if (fn & 1) test_hashmap_walk(fn, NULL); for (i = fn; i < MAP_SIZE; i += TASKS) { key = value = i; if (do_update) { err = map_update_retriable(fd, &key, &value, BPF_NOEXIST, MAP_RETRIES, retry_for_again_or_busy); if (err) printf("error %d %d\n", err, errno); assert(err == 0); err = map_update_retriable(fd, &key, &value, BPF_EXIST, MAP_RETRIES, retry_for_again_or_busy); if (err) printf("error %d %d\n", err, errno); assert(err == 0); } else { err = map_delete_retriable(fd, &key, MAP_RETRIES); if (err) printf("error %d %d\n", err, errno); assert(err == 0); } } } static void test_map_parallel(void) { int i, fd, key = 0, value = 0, j = 0; int data[2]; fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL, sizeof(key), sizeof(value), MAP_SIZE, &map_opts); if (fd < 0) { printf("Failed to create map for parallel test '%s'!\n", strerror(errno)); exit(1); } again: /* Use the same fd in children to add elements to this map: * child_0 adds key=0, key=1024, key=2048, ... * child_1 adds key=1, key=1025, key=2049, ... * child_1023 adds key=1023, ... */ data[0] = fd; data[1] = DO_UPDATE; run_parallel(TASKS, test_update_delete, data); /* Check that key=0 is already there. */ assert(bpf_map_update_elem(fd, &key, &value, BPF_NOEXIST) < 0 && errno == EEXIST); /* Check that all elements were inserted. */ assert(bpf_map_get_next_key(fd, NULL, &key) == 0); key = -1; for (i = 0; i < MAP_SIZE; i++) assert(bpf_map_get_next_key(fd, &key, &key) == 0); assert(bpf_map_get_next_key(fd, &key, &key) < 0 && errno == ENOENT); /* Another check for all elements */ for (i = 0; i < MAP_SIZE; i++) { key = MAP_SIZE - i - 1; assert(bpf_map_lookup_elem(fd, &key, &value) == 0 && value == key); } /* Now let's delete all elemenets in parallel. */ data[1] = DO_DELETE; run_parallel(TASKS, test_update_delete, data); /* Nothing should be left. */ key = -1; assert(bpf_map_get_next_key(fd, NULL, &key) < 0 && errno == ENOENT); assert(bpf_map_get_next_key(fd, &key, &key) < 0 && errno == ENOENT); key = 0; bpf_map_delete_elem(fd, &key); if (j++ < 5) goto again; close(fd); } static void test_map_rdonly(void) { int fd, key = 0, value = 0; __u32 old_flags; old_flags = map_opts.map_flags; map_opts.map_flags |= BPF_F_RDONLY; fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL, sizeof(key), sizeof(value), MAP_SIZE, &map_opts); map_opts.map_flags = old_flags; if (fd < 0) { printf("Failed to create map for read only test '%s'!\n", strerror(errno)); exit(1); } key = 1; value = 1234; /* Try to insert key=1 element. */ assert(bpf_map_update_elem(fd, &key, &value, BPF_ANY) < 0 && errno == EPERM); /* Check that key=1 is not found. */ assert(bpf_map_lookup_elem(fd, &key, &value) < 0 && errno == ENOENT); assert(bpf_map_get_next_key(fd, &key, &value) < 0 && errno == ENOENT); close(fd); } static void test_map_wronly_hash(void) { int fd, key = 0, value = 0; __u32 old_flags; old_flags = map_opts.map_flags; map_opts.map_flags |= BPF_F_WRONLY; fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL, sizeof(key), sizeof(value), MAP_SIZE, &map_opts); map_opts.map_flags = old_flags; if (fd < 0) { printf("Failed to create map for write only test '%s'!\n", strerror(errno)); exit(1); } key = 1; value = 1234; /* Insert key=1 element. */ assert(bpf_map_update_elem(fd, &key, &value, BPF_ANY) == 0); /* Check that reading elements and keys from the map is not allowed. */ assert(bpf_map_lookup_elem(fd, &key, &value) < 0 && errno == EPERM); assert(bpf_map_get_next_key(fd, &key, &value) < 0 && errno == EPERM); close(fd); } static void test_map_wronly_stack_or_queue(enum bpf_map_type map_type) { int fd, value = 0; __u32 old_flags; assert(map_type == BPF_MAP_TYPE_QUEUE || map_type == BPF_MAP_TYPE_STACK); old_flags = map_opts.map_flags; map_opts.map_flags |= BPF_F_WRONLY; fd = bpf_map_create(map_type, NULL, 0, sizeof(value), MAP_SIZE, &map_opts); map_opts.map_flags = old_flags; /* Stack/Queue maps do not support BPF_F_NO_PREALLOC */ if (map_opts.map_flags & BPF_F_NO_PREALLOC) { assert(fd < 0 && errno == EINVAL); return; } if (fd < 0) { printf("Failed to create map '%s'!\n", strerror(errno)); exit(1); } value = 1234; assert(bpf_map_update_elem(fd, NULL, &value, BPF_ANY) == 0); /* Peek element should fail */ assert(bpf_map_lookup_elem(fd, NULL, &value) < 0 && errno == EPERM); /* Pop element should fail */ assert(bpf_map_lookup_and_delete_elem(fd, NULL, &value) < 0 && errno == EPERM); close(fd); } static void test_map_wronly(void) { test_map_wronly_hash(); test_map_wronly_stack_or_queue(BPF_MAP_TYPE_STACK); test_map_wronly_stack_or_queue(BPF_MAP_TYPE_QUEUE); } static void prepare_reuseport_grp(int type, int map_fd, size_t map_elem_size, __s64 *fds64, __u64 *sk_cookies, unsigned int n) { socklen_t optlen, addrlen; struct sockaddr_in6 s6; const __u32 index0 = 0; const int optval = 1; unsigned int i; u64 sk_cookie; void *value; __s32 fd32; __s64 fd64; int err; s6.sin6_family = AF_INET6; s6.sin6_addr = in6addr_any; s6.sin6_port = 0; addrlen = sizeof(s6); optlen = sizeof(sk_cookie); for (i = 0; i < n; i++) { fd64 = socket(AF_INET6, type, 0); CHECK(fd64 == -1, "socket()", "sock_type:%d fd64:%lld errno:%d\n", type, fd64, errno); err = setsockopt(fd64, SOL_SOCKET, SO_REUSEPORT, &optval, sizeof(optval)); CHECK(err == -1, "setsockopt(SO_REUSEPORT)", "err:%d errno:%d\n", err, errno); /* reuseport_array does not allow unbound sk */ if (map_elem_size == sizeof(__u64)) value = &fd64; else { assert(map_elem_size == sizeof(__u32)); fd32 = (__s32)fd64; value = &fd32; } err = bpf_map_update_elem(map_fd, &index0, value, BPF_ANY); CHECK(err >= 0 || errno != EINVAL, "reuseport array update unbound sk", "sock_type:%d err:%d errno:%d\n", type, err, errno); err = bind(fd64, (struct sockaddr *)&s6, sizeof(s6)); CHECK(err == -1, "bind()", "sock_type:%d err:%d errno:%d\n", type, err, errno); if (i == 0) { err = getsockname(fd64, (struct sockaddr *)&s6, &addrlen); CHECK(err == -1, "getsockname()", "sock_type:%d err:%d errno:%d\n", type, err, errno); } err = getsockopt(fd64, SOL_SOCKET, SO_COOKIE, &sk_cookie, &optlen); CHECK(err == -1, "getsockopt(SO_COOKIE)", "sock_type:%d err:%d errno:%d\n", type, err, errno); if (type == SOCK_STREAM) { /* * reuseport_array does not allow * non-listening tcp sk. */ err = bpf_map_update_elem(map_fd, &index0, value, BPF_ANY); CHECK(err >= 0 || errno != EINVAL, "reuseport array update non-listening sk", "sock_type:%d err:%d errno:%d\n", type, err, errno); err = listen(fd64, 0); CHECK(err == -1, "listen()", "sock_type:%d, err:%d errno:%d\n", type, err, errno); } fds64[i] = fd64; sk_cookies[i] = sk_cookie; } } static void test_reuseport_array(void) { #define REUSEPORT_FD_IDX(err, last) ({ (err) ? last : !last; }) const __u32 array_size = 4, index0 = 0, index3 = 3; int types[2] = { SOCK_STREAM, SOCK_DGRAM }, type; __u64 grpa_cookies[2], sk_cookie, map_cookie; __s64 grpa_fds64[2] = { -1, -1 }, fd64 = -1; const __u32 bad_index = array_size; int map_fd, err, t, f; __u32 fds_idx = 0; int fd; map_fd = bpf_map_create(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, NULL, sizeof(__u32), sizeof(__u64), array_size, NULL); CHECK(map_fd < 0, "reuseport array create", "map_fd:%d, errno:%d\n", map_fd, errno); /* Test lookup/update/delete with invalid index */ err = bpf_map_delete_elem(map_fd, &bad_index); CHECK(err >= 0 || errno != E2BIG, "reuseport array del >=max_entries", "err:%d errno:%d\n", err, errno); err = bpf_map_update_elem(map_fd, &bad_index, &fd64, BPF_ANY); CHECK(err >= 0 || errno != E2BIG, "reuseport array update >=max_entries", "err:%d errno:%d\n", err, errno); err = bpf_map_lookup_elem(map_fd, &bad_index, &map_cookie); CHECK(err >= 0 || errno != ENOENT, "reuseport array update >=max_entries", "err:%d errno:%d\n", err, errno); /* Test lookup/delete non existence elem */ err = bpf_map_lookup_elem(map_fd, &index3, &map_cookie); CHECK(err >= 0 || errno != ENOENT, "reuseport array lookup not-exist elem", "err:%d errno:%d\n", err, errno); err = bpf_map_delete_elem(map_fd, &index3); CHECK(err >= 0 || errno != ENOENT, "reuseport array del not-exist elem", "err:%d errno:%d\n", err, errno); for (t = 0; t < ARRAY_SIZE(types); t++) { type = types[t]; prepare_reuseport_grp(type, map_fd, sizeof(__u64), grpa_fds64, grpa_cookies, ARRAY_SIZE(grpa_fds64)); /* Test BPF_* update flags */ /* BPF_EXIST failure case */ err = bpf_map_update_elem(map_fd, &index3, &grpa_fds64[fds_idx], BPF_EXIST); CHECK(err >= 0 || errno != ENOENT, "reuseport array update empty elem BPF_EXIST", "sock_type:%d err:%d errno:%d\n", type, err, errno); fds_idx = REUSEPORT_FD_IDX(err, fds_idx); /* BPF_NOEXIST success case */ err = bpf_map_update_elem(map_fd, &index3, &grpa_fds64[fds_idx], BPF_NOEXIST); CHECK(err < 0, "reuseport array update empty elem BPF_NOEXIST", "sock_type:%d err:%d errno:%d\n", type, err, errno); fds_idx = REUSEPORT_FD_IDX(err, fds_idx); /* BPF_EXIST success case. */ err = bpf_map_update_elem(map_fd, &index3, &grpa_fds64[fds_idx], BPF_EXIST); CHECK(err < 0, "reuseport array update same elem BPF_EXIST", "sock_type:%d err:%d errno:%d\n", type, err, errno); fds_idx = REUSEPORT_FD_IDX(err, fds_idx); /* BPF_NOEXIST failure case */ err = bpf_map_update_elem(map_fd, &index3, &grpa_fds64[fds_idx], BPF_NOEXIST); CHECK(err >= 0 || errno != EEXIST, "reuseport array update non-empty elem BPF_NOEXIST", "sock_type:%d err:%d errno:%d\n", type, err, errno); fds_idx = REUSEPORT_FD_IDX(err, fds_idx); /* BPF_ANY case (always succeed) */ err = bpf_map_update_elem(map_fd, &index3, &grpa_fds64[fds_idx], BPF_ANY); CHECK(err < 0, "reuseport array update same sk with BPF_ANY", "sock_type:%d err:%d errno:%d\n", type, err, errno); fd64 = grpa_fds64[fds_idx]; sk_cookie = grpa_cookies[fds_idx]; /* The same sk cannot be added to reuseport_array twice */ err = bpf_map_update_elem(map_fd, &index3, &fd64, BPF_ANY); CHECK(err >= 0 || errno != EBUSY, "reuseport array update same sk with same index", "sock_type:%d err:%d errno:%d\n", type, err, errno); err = bpf_map_update_elem(map_fd, &index0, &fd64, BPF_ANY); CHECK(err >= 0 || errno != EBUSY, "reuseport array update same sk with different index", "sock_type:%d err:%d errno:%d\n", type, err, errno); /* Test delete elem */ err = bpf_map_delete_elem(map_fd, &index3); CHECK(err < 0, "reuseport array delete sk", "sock_type:%d err:%d errno:%d\n", type, err, errno); /* Add it back with BPF_NOEXIST */ err = bpf_map_update_elem(map_fd, &index3, &fd64, BPF_NOEXIST); CHECK(err < 0, "reuseport array re-add with BPF_NOEXIST after del", "sock_type:%d err:%d errno:%d\n", type, err, errno); /* Test cookie */ err = bpf_map_lookup_elem(map_fd, &index3, &map_cookie); CHECK(err < 0 || sk_cookie != map_cookie, "reuseport array lookup re-added sk", "sock_type:%d err:%d errno:%d sk_cookie:0x%llx map_cookie:0x%llxn", type, err, errno, sk_cookie, map_cookie); /* Test elem removed by close() */ for (f = 0; f < ARRAY_SIZE(grpa_fds64); f++) close(grpa_fds64[f]); err = bpf_map_lookup_elem(map_fd, &index3, &map_cookie); CHECK(err >= 0 || errno != ENOENT, "reuseport array lookup after close()", "sock_type:%d err:%d errno:%d\n", type, err, errno); } /* Test SOCK_RAW */ fd64 = socket(AF_INET6, SOCK_RAW, IPPROTO_UDP); CHECK(fd64 == -1, "socket(SOCK_RAW)", "err:%d errno:%d\n", err, errno); err = bpf_map_update_elem(map_fd, &index3, &fd64, BPF_NOEXIST); CHECK(err >= 0 || errno != ENOTSUPP, "reuseport array update SOCK_RAW", "err:%d errno:%d\n", err, errno); close(fd64); /* Close the 64 bit value map */ close(map_fd); /* Test 32 bit fd */ map_fd = bpf_map_create(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, NULL, sizeof(__u32), sizeof(__u32), array_size, NULL); CHECK(map_fd < 0, "reuseport array create", "map_fd:%d, errno:%d\n", map_fd, errno); prepare_reuseport_grp(SOCK_STREAM, map_fd, sizeof(__u32), &fd64, &sk_cookie, 1); fd = fd64; err = bpf_map_update_elem(map_fd, &index3, &fd, BPF_NOEXIST); CHECK(err < 0, "reuseport array update 32 bit fd", "err:%d errno:%d\n", err, errno); err = bpf_map_lookup_elem(map_fd, &index3, &map_cookie); CHECK(err >= 0 || errno != ENOSPC, "reuseport array lookup 32 bit fd", "err:%d errno:%d\n", err, errno); close(fd); close(map_fd); } static void run_all_tests(void) { test_hashmap(0, NULL); test_hashmap_percpu(0, NULL); test_hashmap_walk(0, NULL); test_hashmap_zero_seed(); test_arraymap(0, NULL); test_arraymap_percpu(0, NULL); test_arraymap_percpu_many_keys(); test_devmap(0, NULL); test_devmap_hash(0, NULL); test_sockmap(0, NULL); test_map_large(); test_map_parallel(); test_map_stress(); test_map_rdonly(); test_map_wronly(); test_reuseport_array(); test_queuemap(0, NULL); test_stackmap(0, NULL); test_map_in_map(); } #define DEFINE_TEST(name) extern void test_##name(void); #include <map_tests/tests.h> #undef DEFINE_TEST int main(void) { srand(time(NULL)); libbpf_set_strict_mode(LIBBPF_STRICT_ALL); map_opts.map_flags = 0; run_all_tests(); map_opts.map_flags = BPF_F_NO_PREALLOC; run_all_tests(); #define DEFINE_TEST(name) test_##name(); #include <map_tests/tests.h> #undef DEFINE_TEST printf("test_maps: OK, %d SKIPPED\n", skips); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1