Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Raghavendra Rao Ananta | 762 | 77.05% | 2 | 16.67% |
Haibo Xu | 115 | 11.63% | 3 | 25.00% |
Sean Christopherson | 58 | 5.86% | 3 | 25.00% |
Marc Zyngier | 32 | 3.24% | 1 | 8.33% |
Vipin Sharma | 13 | 1.31% | 1 | 8.33% |
Andrew Jones | 5 | 0.51% | 1 | 8.33% |
Oliver Upton | 4 | 0.40% | 1 | 8.33% |
Total | 989 | 12 |
// SPDX-License-Identifier: GPL-2.0-only /* * arch_timer.c - Tests the arch timer IRQ functionality * * The guest's main thread configures the timer interrupt and waits * for it to fire, with a timeout equal to the timer period. * It asserts that the timeout doesn't exceed the timer period plus * a user configurable error margin(default to 100us) * * On the other hand, upon receipt of an interrupt, the guest's interrupt * handler validates the interrupt by checking if the architectural state * is in compliance with the specifications. * * The test provides command-line options to configure the timer's * period (-p), number of vCPUs (-n), iterations per stage (-i) and timer * interrupt arrival error margin (-e). To stress-test the timer stack * even more, an option to migrate the vCPUs across pCPUs (-m), at a * particular rate, is also provided. * * Copyright (c) 2021, Google LLC. */ #define _GNU_SOURCE #include <stdlib.h> #include <pthread.h> #include <linux/sizes.h> #include <linux/bitmap.h> #include <sys/sysinfo.h> #include "timer_test.h" struct test_args test_args = { .nr_vcpus = NR_VCPUS_DEF, .nr_iter = NR_TEST_ITERS_DEF, .timer_period_ms = TIMER_TEST_PERIOD_MS_DEF, .migration_freq_ms = TIMER_TEST_MIGRATION_FREQ_MS, .timer_err_margin_us = TIMER_TEST_ERR_MARGIN_US, .reserved = 1, }; struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; struct test_vcpu_shared_data vcpu_shared_data[KVM_MAX_VCPUS]; static pthread_t pt_vcpu_run[KVM_MAX_VCPUS]; static unsigned long *vcpu_done_map; static pthread_mutex_t vcpu_done_map_lock; static void *test_vcpu_run(void *arg) { unsigned int vcpu_idx = (unsigned long)arg; struct ucall uc; struct kvm_vcpu *vcpu = vcpus[vcpu_idx]; struct kvm_vm *vm = vcpu->vm; struct test_vcpu_shared_data *shared_data = &vcpu_shared_data[vcpu_idx]; vcpu_run(vcpu); /* Currently, any exit from guest is an indication of completion */ pthread_mutex_lock(&vcpu_done_map_lock); __set_bit(vcpu_idx, vcpu_done_map); pthread_mutex_unlock(&vcpu_done_map_lock); switch (get_ucall(vcpu, &uc)) { case UCALL_SYNC: case UCALL_DONE: break; case UCALL_ABORT: sync_global_from_guest(vm, *shared_data); fprintf(stderr, "Guest assert failed, vcpu %u; stage; %u; iter: %u\n", vcpu_idx, shared_data->guest_stage, shared_data->nr_iter); REPORT_GUEST_ASSERT(uc); break; default: TEST_FAIL("Unexpected guest exit"); } pr_info("PASS(vCPU-%d).\n", vcpu_idx); return NULL; } static uint32_t test_get_pcpu(void) { uint32_t pcpu; unsigned int nproc_conf; cpu_set_t online_cpuset; nproc_conf = get_nprocs_conf(); sched_getaffinity(0, sizeof(cpu_set_t), &online_cpuset); /* Randomly find an available pCPU to place a vCPU on */ do { pcpu = rand() % nproc_conf; } while (!CPU_ISSET(pcpu, &online_cpuset)); return pcpu; } static int test_migrate_vcpu(unsigned int vcpu_idx) { int ret; cpu_set_t cpuset; uint32_t new_pcpu = test_get_pcpu(); CPU_ZERO(&cpuset); CPU_SET(new_pcpu, &cpuset); pr_debug("Migrating vCPU: %u to pCPU: %u\n", vcpu_idx, new_pcpu); ret = pthread_setaffinity_np(pt_vcpu_run[vcpu_idx], sizeof(cpuset), &cpuset); /* Allow the error where the vCPU thread is already finished */ TEST_ASSERT(ret == 0 || ret == ESRCH, "Failed to migrate the vCPU:%u to pCPU: %u; ret: %d", vcpu_idx, new_pcpu, ret); return ret; } static void *test_vcpu_migration(void *arg) { unsigned int i, n_done; bool vcpu_done; do { usleep(msecs_to_usecs(test_args.migration_freq_ms)); for (n_done = 0, i = 0; i < test_args.nr_vcpus; i++) { pthread_mutex_lock(&vcpu_done_map_lock); vcpu_done = test_bit(i, vcpu_done_map); pthread_mutex_unlock(&vcpu_done_map_lock); if (vcpu_done) { n_done++; continue; } test_migrate_vcpu(i); } } while (test_args.nr_vcpus != n_done); return NULL; } static void test_run(struct kvm_vm *vm) { pthread_t pt_vcpu_migration; unsigned int i; int ret; pthread_mutex_init(&vcpu_done_map_lock, NULL); vcpu_done_map = bitmap_zalloc(test_args.nr_vcpus); TEST_ASSERT(vcpu_done_map, "Failed to allocate vcpu done bitmap"); for (i = 0; i < (unsigned long)test_args.nr_vcpus; i++) { ret = pthread_create(&pt_vcpu_run[i], NULL, test_vcpu_run, (void *)(unsigned long)i); TEST_ASSERT(!ret, "Failed to create vCPU-%d pthread", i); } /* Spawn a thread to control the vCPU migrations */ if (test_args.migration_freq_ms) { srand(time(NULL)); ret = pthread_create(&pt_vcpu_migration, NULL, test_vcpu_migration, NULL); TEST_ASSERT(!ret, "Failed to create the migration pthread"); } for (i = 0; i < test_args.nr_vcpus; i++) pthread_join(pt_vcpu_run[i], NULL); if (test_args.migration_freq_ms) pthread_join(pt_vcpu_migration, NULL); bitmap_free(vcpu_done_map); } static void test_print_help(char *name) { pr_info("Usage: %s [-h] [-n nr_vcpus] [-i iterations] [-p timer_period_ms]\n" "\t\t [-m migration_freq_ms] [-o counter_offset]\n" "\t\t [-e timer_err_margin_us]\n", name); pr_info("\t-n: Number of vCPUs to configure (default: %u; max: %u)\n", NR_VCPUS_DEF, KVM_MAX_VCPUS); pr_info("\t-i: Number of iterations per stage (default: %u)\n", NR_TEST_ITERS_DEF); pr_info("\t-p: Periodicity (in ms) of the guest timer (default: %u)\n", TIMER_TEST_PERIOD_MS_DEF); pr_info("\t-m: Frequency (in ms) of vCPUs to migrate to different pCPU. 0 to turn off (default: %u)\n", TIMER_TEST_MIGRATION_FREQ_MS); pr_info("\t-o: Counter offset (in counter cycles, default: 0) [aarch64-only]\n"); pr_info("\t-e: Interrupt arrival error margin (in us) of the guest timer (default: %u)\n", TIMER_TEST_ERR_MARGIN_US); pr_info("\t-h: print this help screen\n"); } static bool parse_args(int argc, char *argv[]) { int opt; while ((opt = getopt(argc, argv, "hn:i:p:m:o:e:")) != -1) { switch (opt) { case 'n': test_args.nr_vcpus = atoi_positive("Number of vCPUs", optarg); if (test_args.nr_vcpus > KVM_MAX_VCPUS) { pr_info("Max allowed vCPUs: %u\n", KVM_MAX_VCPUS); goto err; } break; case 'i': test_args.nr_iter = atoi_positive("Number of iterations", optarg); break; case 'p': test_args.timer_period_ms = atoi_positive("Periodicity", optarg); break; case 'm': test_args.migration_freq_ms = atoi_non_negative("Frequency", optarg); break; case 'e': test_args.timer_err_margin_us = atoi_non_negative("Error Margin", optarg); break; case 'o': test_args.counter_offset = strtol(optarg, NULL, 0); test_args.reserved = 0; break; case 'h': default: goto err; } } return true; err: test_print_help(argv[0]); return false; } int main(int argc, char *argv[]) { struct kvm_vm *vm; if (!parse_args(argc, argv)) exit(KSFT_SKIP); __TEST_REQUIRE(!test_args.migration_freq_ms || get_nprocs() >= 2, "At least two physical CPUs needed for vCPU migration"); vm = test_vm_create(); test_run(vm); test_vm_cleanup(vm); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1