Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anup Patel | 2311 | 75.97% | 3 | 11.54% |
Haibo Xu | 396 | 13.02% | 4 | 15.38% |
Sean Christopherson | 131 | 4.31% | 8 | 30.77% |
Andrew Jones | 90 | 2.96% | 3 | 11.54% |
Paolo Bonzini | 58 | 1.91% | 1 | 3.85% |
Ricardo Koller | 37 | 1.22% | 2 | 7.69% |
Eric Auger | 7 | 0.23% | 1 | 3.85% |
Wainer dos Santos Moschetta | 6 | 0.20% | 1 | 3.85% |
Aaron Lewis | 4 | 0.13% | 1 | 3.85% |
Oliver Upton | 1 | 0.03% | 1 | 3.85% |
Peter Xu | 1 | 0.03% | 1 | 3.85% |
Total | 3042 | 26 |
// SPDX-License-Identifier: GPL-2.0 /* * RISC-V code * * Copyright (C) 2021 Western Digital Corporation or its affiliates. */ #include <linux/compiler.h> #include <assert.h> #include "kvm_util.h" #include "processor.h" #define DEFAULT_RISCV_GUEST_STACK_VADDR_MIN 0xac0000 static vm_vaddr_t exception_handlers; bool __vcpu_has_ext(struct kvm_vcpu *vcpu, uint64_t ext) { unsigned long value = 0; int ret; ret = __vcpu_get_reg(vcpu, ext, &value); return !ret && !!value; } static uint64_t page_align(struct kvm_vm *vm, uint64_t v) { return (v + vm->page_size) & ~(vm->page_size - 1); } static uint64_t pte_addr(struct kvm_vm *vm, uint64_t entry) { return ((entry & PGTBL_PTE_ADDR_MASK) >> PGTBL_PTE_ADDR_SHIFT) << PGTBL_PAGE_SIZE_SHIFT; } static uint64_t ptrs_per_pte(struct kvm_vm *vm) { return PGTBL_PAGE_SIZE / sizeof(uint64_t); } static uint64_t pte_index_mask[] = { PGTBL_L0_INDEX_MASK, PGTBL_L1_INDEX_MASK, PGTBL_L2_INDEX_MASK, PGTBL_L3_INDEX_MASK, }; static uint32_t pte_index_shift[] = { PGTBL_L0_INDEX_SHIFT, PGTBL_L1_INDEX_SHIFT, PGTBL_L2_INDEX_SHIFT, PGTBL_L3_INDEX_SHIFT, }; static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva, int level) { TEST_ASSERT(level > -1, "Negative page table level (%d) not possible", level); TEST_ASSERT(level < vm->pgtable_levels, "Invalid page table level (%d)", level); return (gva & pte_index_mask[level]) >> pte_index_shift[level]; } void virt_arch_pgd_alloc(struct kvm_vm *vm) { size_t nr_pages = page_align(vm, ptrs_per_pte(vm) * 8) / vm->page_size; if (vm->pgd_created) return; vm->pgd = vm_phy_pages_alloc(vm, nr_pages, KVM_GUEST_PAGE_TABLE_MIN_PADDR, vm->memslots[MEM_REGION_PT]); vm->pgd_created = true; } void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) { uint64_t *ptep, next_ppn; int level = vm->pgtable_levels - 1; TEST_ASSERT((vaddr % vm->page_size) == 0, "Virtual address not on page boundary,\n" " vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size); TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), "Invalid virtual address, vaddr: 0x%lx", vaddr); TEST_ASSERT((paddr % vm->page_size) == 0, "Physical address not on page boundary,\n" " paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size); TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, "Physical address beyond maximum supported,\n" " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", paddr, vm->max_gfn, vm->page_size); ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, vaddr, level) * 8; if (!*ptep) { next_ppn = vm_alloc_page_table(vm) >> PGTBL_PAGE_SIZE_SHIFT; *ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) | PGTBL_PTE_VALID_MASK; } level--; while (level > -1) { ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, vaddr, level) * 8; if (!*ptep && level > 0) { next_ppn = vm_alloc_page_table(vm) >> PGTBL_PAGE_SIZE_SHIFT; *ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) | PGTBL_PTE_VALID_MASK; } level--; } paddr = paddr >> PGTBL_PAGE_SIZE_SHIFT; *ptep = (paddr << PGTBL_PTE_ADDR_SHIFT) | PGTBL_PTE_PERM_MASK | PGTBL_PTE_VALID_MASK; } vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) { uint64_t *ptep; int level = vm->pgtable_levels - 1; if (!vm->pgd_created) goto unmapped_gva; ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, gva, level) * 8; if (!ptep) goto unmapped_gva; level--; while (level > -1) { ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, gva, level) * 8; if (!ptep) goto unmapped_gva; level--; } return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1)); unmapped_gva: TEST_FAIL("No mapping for vm virtual address gva: 0x%lx level: %d", gva, level); exit(1); } static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent, uint64_t page, int level) { #ifdef DEBUG static const char *const type[] = { "pte", "pmd", "pud", "p4d"}; uint64_t pte, *ptep; if (level < 0) return; for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) { ptep = addr_gpa2hva(vm, pte); if (!*ptep) continue; fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "", type[level], pte, *ptep, ptep); pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level - 1); } #endif } void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) { int level = vm->pgtable_levels - 1; uint64_t pgd, *ptep; if (!vm->pgd_created) return; for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pte(vm) * 8; pgd += 8) { ptep = addr_gpa2hva(vm, pgd); if (!*ptep) continue; fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "", pgd, *ptep, ptep); pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level - 1); } } void riscv_vcpu_mmu_setup(struct kvm_vcpu *vcpu) { struct kvm_vm *vm = vcpu->vm; unsigned long satp; /* * The RISC-V Sv48 MMU mode supports 56-bit physical address * for 48-bit virtual address with 4KB last level page size. */ switch (vm->mode) { case VM_MODE_P52V48_4K: case VM_MODE_P48V48_4K: case VM_MODE_P40V48_4K: break; default: TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); } satp = (vm->pgd >> PGTBL_PAGE_SIZE_SHIFT) & SATP_PPN; satp |= SATP_MODE_48; vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(satp), satp); } void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent) { struct kvm_riscv_core core; vcpu_get_reg(vcpu, RISCV_CORE_REG(mode), &core.mode); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.pc), &core.regs.pc); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.ra), &core.regs.ra); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.sp), &core.regs.sp); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.gp), &core.regs.gp); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.tp), &core.regs.tp); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t0), &core.regs.t0); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t1), &core.regs.t1); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t2), &core.regs.t2); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s0), &core.regs.s0); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s1), &core.regs.s1); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a0), &core.regs.a0); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a1), &core.regs.a1); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a2), &core.regs.a2); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a3), &core.regs.a3); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a4), &core.regs.a4); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a5), &core.regs.a5); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a6), &core.regs.a6); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a7), &core.regs.a7); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s2), &core.regs.s2); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s3), &core.regs.s3); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s4), &core.regs.s4); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s5), &core.regs.s5); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s6), &core.regs.s6); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s7), &core.regs.s7); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s8), &core.regs.s8); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s9), &core.regs.s9); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s10), &core.regs.s10); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s11), &core.regs.s11); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t3), &core.regs.t3); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t4), &core.regs.t4); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t5), &core.regs.t5); vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t6), &core.regs.t6); fprintf(stream, " MODE: 0x%lx\n", core.mode); fprintf(stream, " PC: 0x%016lx RA: 0x%016lx SP: 0x%016lx GP: 0x%016lx\n", core.regs.pc, core.regs.ra, core.regs.sp, core.regs.gp); fprintf(stream, " TP: 0x%016lx T0: 0x%016lx T1: 0x%016lx T2: 0x%016lx\n", core.regs.tp, core.regs.t0, core.regs.t1, core.regs.t2); fprintf(stream, " S0: 0x%016lx S1: 0x%016lx A0: 0x%016lx A1: 0x%016lx\n", core.regs.s0, core.regs.s1, core.regs.a0, core.regs.a1); fprintf(stream, " A2: 0x%016lx A3: 0x%016lx A4: 0x%016lx A5: 0x%016lx\n", core.regs.a2, core.regs.a3, core.regs.a4, core.regs.a5); fprintf(stream, " A6: 0x%016lx A7: 0x%016lx S2: 0x%016lx S3: 0x%016lx\n", core.regs.a6, core.regs.a7, core.regs.s2, core.regs.s3); fprintf(stream, " S4: 0x%016lx S5: 0x%016lx S6: 0x%016lx S7: 0x%016lx\n", core.regs.s4, core.regs.s5, core.regs.s6, core.regs.s7); fprintf(stream, " S8: 0x%016lx S9: 0x%016lx S10: 0x%016lx S11: 0x%016lx\n", core.regs.s8, core.regs.s9, core.regs.s10, core.regs.s11); fprintf(stream, " T3: 0x%016lx T4: 0x%016lx T5: 0x%016lx T6: 0x%016lx\n", core.regs.t3, core.regs.t4, core.regs.t5, core.regs.t6); } static void __aligned(16) guest_unexp_trap(void) { sbi_ecall(KVM_RISCV_SELFTESTS_SBI_EXT, KVM_RISCV_SELFTESTS_SBI_UNEXP, 0, 0, 0, 0, 0, 0); } void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code) { vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.pc), (unsigned long)guest_code); } struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id) { int r; size_t stack_size; unsigned long stack_vaddr; unsigned long current_gp = 0; struct kvm_mp_state mps; struct kvm_vcpu *vcpu; stack_size = vm->page_size == 4096 ? DEFAULT_STACK_PGS * vm->page_size : vm->page_size; stack_vaddr = __vm_vaddr_alloc(vm, stack_size, DEFAULT_RISCV_GUEST_STACK_VADDR_MIN, MEM_REGION_DATA); vcpu = __vm_vcpu_add(vm, vcpu_id); riscv_vcpu_mmu_setup(vcpu); /* * With SBI HSM support in KVM RISC-V, all secondary VCPUs are * powered-off by default so we ensure that all secondary VCPUs * are powered-on using KVM_SET_MP_STATE ioctl(). */ mps.mp_state = KVM_MP_STATE_RUNNABLE; r = __vcpu_ioctl(vcpu, KVM_SET_MP_STATE, &mps); TEST_ASSERT(!r, "IOCTL KVM_SET_MP_STATE failed (error %d)", r); /* Setup global pointer of guest to be same as the host */ asm volatile ( "add %0, gp, zero" : "=r" (current_gp) : : "memory"); vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.gp), current_gp); /* Setup stack pointer and program counter of guest */ vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.sp), stack_vaddr + stack_size); /* Setup sscratch for guest_get_vcpuid() */ vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(sscratch), vcpu_id); /* Setup default exception vector of guest */ vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(stvec), (unsigned long)guest_unexp_trap); return vcpu; } void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...) { va_list ap; uint64_t id = RISCV_CORE_REG(regs.a0); int i; TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n" " num: %u", num); va_start(ap, num); for (i = 0; i < num; i++) { switch (i) { case 0: id = RISCV_CORE_REG(regs.a0); break; case 1: id = RISCV_CORE_REG(regs.a1); break; case 2: id = RISCV_CORE_REG(regs.a2); break; case 3: id = RISCV_CORE_REG(regs.a3); break; case 4: id = RISCV_CORE_REG(regs.a4); break; case 5: id = RISCV_CORE_REG(regs.a5); break; case 6: id = RISCV_CORE_REG(regs.a6); break; case 7: id = RISCV_CORE_REG(regs.a7); break; } vcpu_set_reg(vcpu, id, va_arg(ap, uint64_t)); } va_end(ap); } void kvm_exit_unexpected_exception(int vector, int ec) { ucall(UCALL_UNHANDLED, 2, vector, ec); } void assert_on_unhandled_exception(struct kvm_vcpu *vcpu) { struct ucall uc; if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) { TEST_FAIL("Unexpected exception (vector:0x%lx, ec:0x%lx)", uc.args[0], uc.args[1]); } } struct handlers { exception_handler_fn exception_handlers[NR_VECTORS][NR_EXCEPTIONS]; }; void route_exception(struct ex_regs *regs) { struct handlers *handlers = (struct handlers *)exception_handlers; int vector = 0, ec; ec = regs->cause & ~CAUSE_IRQ_FLAG; if (ec >= NR_EXCEPTIONS) goto unexpected_exception; /* Use the same handler for all the interrupts */ if (regs->cause & CAUSE_IRQ_FLAG) { vector = 1; ec = 0; } if (handlers && handlers->exception_handlers[vector][ec]) return handlers->exception_handlers[vector][ec](regs); unexpected_exception: return kvm_exit_unexpected_exception(vector, ec); } void vcpu_init_vector_tables(struct kvm_vcpu *vcpu) { extern char exception_vectors; vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(stvec), (unsigned long)&exception_vectors); } void vm_init_vector_tables(struct kvm_vm *vm) { vm->handlers = __vm_vaddr_alloc(vm, sizeof(struct handlers), vm->page_size, MEM_REGION_DATA); *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers; } void vm_install_exception_handler(struct kvm_vm *vm, int vector, exception_handler_fn handler) { struct handlers *handlers = addr_gva2hva(vm, vm->handlers); assert(vector < NR_EXCEPTIONS); handlers->exception_handlers[0][vector] = handler; } void vm_install_interrupt_handler(struct kvm_vm *vm, exception_handler_fn handler) { struct handlers *handlers = addr_gva2hva(vm, vm->handlers); handlers->exception_handlers[1][0] = handler; } uint32_t guest_get_vcpuid(void) { return csr_read(CSR_SSCRATCH); } struct sbiret sbi_ecall(int ext, int fid, unsigned long arg0, unsigned long arg1, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5) { register uintptr_t a0 asm ("a0") = (uintptr_t)(arg0); register uintptr_t a1 asm ("a1") = (uintptr_t)(arg1); register uintptr_t a2 asm ("a2") = (uintptr_t)(arg2); register uintptr_t a3 asm ("a3") = (uintptr_t)(arg3); register uintptr_t a4 asm ("a4") = (uintptr_t)(arg4); register uintptr_t a5 asm ("a5") = (uintptr_t)(arg5); register uintptr_t a6 asm ("a6") = (uintptr_t)(fid); register uintptr_t a7 asm ("a7") = (uintptr_t)(ext); struct sbiret ret; asm volatile ( "ecall" : "+r" (a0), "+r" (a1) : "r" (a2), "r" (a3), "r" (a4), "r" (a5), "r" (a6), "r" (a7) : "memory"); ret.error = a0; ret.value = a1; return ret; } bool guest_sbi_probe_extension(int extid, long *out_val) { struct sbiret ret; ret = sbi_ecall(SBI_EXT_BASE, SBI_EXT_BASE_PROBE_EXT, extid, 0, 0, 0, 0, 0); __GUEST_ASSERT(!ret.error || ret.error == SBI_ERR_NOT_SUPPORTED, "ret.error=%ld, ret.value=%ld\n", ret.error, ret.value); if (ret.error == SBI_ERR_NOT_SUPPORTED) return false; if (out_val) *out_val = ret.value; return true; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1