Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sri Jayaramappa | 829 | 83.74% | 1 | 11.11% |
Muhammad Usama Anjum | 108 | 10.91% | 2 | 22.22% |
Mark Brown | 37 | 3.74% | 2 | 22.22% |
John Hubbard | 11 | 1.11% | 1 | 11.11% |
Shuah Khan | 3 | 0.30% | 1 | 11.11% |
Yannick Brosseau | 1 | 0.10% | 1 | 11.11% |
Greg Kroah-Hartman | 1 | 0.10% | 1 | 11.11% |
Total | 990 | 9 |
// SPDX-License-Identifier: GPL-2.0 /* * * A test for the patch "Allow compaction of unevictable pages". * With this patch we should be able to allocate at least 1/4 * of RAM in huge pages. Without the patch much less is * allocated. */ #include <stdio.h> #include <stdlib.h> #include <sys/mman.h> #include <sys/resource.h> #include <fcntl.h> #include <errno.h> #include <unistd.h> #include <string.h> #include "../kselftest.h" #define MAP_SIZE_MB 100 #define MAP_SIZE (MAP_SIZE_MB * 1024 * 1024) struct map_list { void *map; struct map_list *next; }; int read_memory_info(unsigned long *memfree, unsigned long *hugepagesize) { char buffer[256] = {0}; char *cmd = "cat /proc/meminfo | grep -i memfree | grep -o '[0-9]*'"; FILE *cmdfile = popen(cmd, "r"); if (!(fgets(buffer, sizeof(buffer), cmdfile))) { ksft_print_msg("Failed to read meminfo: %s\n", strerror(errno)); return -1; } pclose(cmdfile); *memfree = atoll(buffer); cmd = "cat /proc/meminfo | grep -i hugepagesize | grep -o '[0-9]*'"; cmdfile = popen(cmd, "r"); if (!(fgets(buffer, sizeof(buffer), cmdfile))) { ksft_print_msg("Failed to read meminfo: %s\n", strerror(errno)); return -1; } pclose(cmdfile); *hugepagesize = atoll(buffer); return 0; } int prereq(void) { char allowed; int fd; fd = open("/proc/sys/vm/compact_unevictable_allowed", O_RDONLY | O_NONBLOCK); if (fd < 0) { ksft_print_msg("Failed to open /proc/sys/vm/compact_unevictable_allowed: %s\n", strerror(errno)); return -1; } if (read(fd, &allowed, sizeof(char)) != sizeof(char)) { ksft_print_msg("Failed to read from /proc/sys/vm/compact_unevictable_allowed: %s\n", strerror(errno)); close(fd); return -1; } close(fd); if (allowed == '1') return 0; ksft_print_msg("Compaction isn't allowed\n"); return -1; } int check_compaction(unsigned long mem_free, unsigned int hugepage_size) { int fd, ret = -1; int compaction_index = 0; char initial_nr_hugepages[10] = {0}; char nr_hugepages[10] = {0}; /* We want to test with 80% of available memory. Else, OOM killer comes in to play */ mem_free = mem_free * 0.8; fd = open("/proc/sys/vm/nr_hugepages", O_RDWR | O_NONBLOCK); if (fd < 0) { ksft_print_msg("Failed to open /proc/sys/vm/nr_hugepages: %s\n", strerror(errno)); ret = -1; goto out; } if (read(fd, initial_nr_hugepages, sizeof(initial_nr_hugepages)) <= 0) { ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n", strerror(errno)); goto close_fd; } /* Start with the initial condition of 0 huge pages*/ if (write(fd, "0", sizeof(char)) != sizeof(char)) { ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n", strerror(errno)); goto close_fd; } lseek(fd, 0, SEEK_SET); /* Request a large number of huge pages. The Kernel will allocate as much as it can */ if (write(fd, "100000", (6*sizeof(char))) != (6*sizeof(char))) { ksft_print_msg("Failed to write 100000 to /proc/sys/vm/nr_hugepages: %s\n", strerror(errno)); goto close_fd; } lseek(fd, 0, SEEK_SET); if (read(fd, nr_hugepages, sizeof(nr_hugepages)) <= 0) { ksft_print_msg("Failed to re-read from /proc/sys/vm/nr_hugepages: %s\n", strerror(errno)); goto close_fd; } /* We should have been able to request at least 1/3 rd of the memory in huge pages */ compaction_index = mem_free/(atoi(nr_hugepages) * hugepage_size); lseek(fd, 0, SEEK_SET); if (write(fd, initial_nr_hugepages, strlen(initial_nr_hugepages)) != strlen(initial_nr_hugepages)) { ksft_print_msg("Failed to write value to /proc/sys/vm/nr_hugepages: %s\n", strerror(errno)); goto close_fd; } ksft_print_msg("Number of huge pages allocated = %d\n", atoi(nr_hugepages)); if (compaction_index > 3) { ksft_print_msg("ERROR: Less that 1/%d of memory is available\n" "as huge pages\n", compaction_index); goto close_fd; } ret = 0; close_fd: close(fd); out: ksft_test_result(ret == 0, "check_compaction\n"); return ret; } int main(int argc, char **argv) { struct rlimit lim; struct map_list *list = NULL, *entry; size_t page_size, i; void *map = NULL; unsigned long mem_free = 0; unsigned long hugepage_size = 0; long mem_fragmentable_MB = 0; ksft_print_header(); if (prereq() || geteuid()) return ksft_exit_skip("Prerequisites unsatisfied\n"); ksft_set_plan(1); lim.rlim_cur = RLIM_INFINITY; lim.rlim_max = RLIM_INFINITY; if (setrlimit(RLIMIT_MEMLOCK, &lim)) ksft_exit_fail_msg("Failed to set rlimit: %s\n", strerror(errno)); page_size = getpagesize(); if (read_memory_info(&mem_free, &hugepage_size) != 0) ksft_exit_fail_msg("Failed to get meminfo\n"); mem_fragmentable_MB = mem_free * 0.8 / 1024; while (mem_fragmentable_MB > 0) { map = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_LOCKED, -1, 0); if (map == MAP_FAILED) break; entry = malloc(sizeof(struct map_list)); if (!entry) { munmap(map, MAP_SIZE); break; } entry->map = map; entry->next = list; list = entry; /* Write something (in this case the address of the map) to * ensure that KSM can't merge the mapped pages */ for (i = 0; i < MAP_SIZE; i += page_size) *(unsigned long *)(map + i) = (unsigned long)map + i; mem_fragmentable_MB -= MAP_SIZE_MB; } for (entry = list; entry != NULL; entry = entry->next) { munmap(entry->map, MAP_SIZE); if (!entry->next) break; entry = entry->next; } if (check_compaction(mem_free, hugepage_size) == 0) return ksft_exit_pass(); return ksft_exit_fail(); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1