Contributors: 12
Author Tokens Token Proportion Commits Commit Proportion
Dave Hansen 5462 73.51% 15 37.50%
Ram Pai 1035 13.93% 12 30.00%
Kyle Huey 731 9.84% 1 2.50%
Sandipan Das 144 1.94% 4 10.00%
Thiago Jung Bauermann 42 0.57% 1 2.50%
Ingo Molnar 5 0.07% 1 2.50%
Eric W. Biedermann 4 0.05% 1 2.50%
Ross Zwisler 2 0.03% 1 2.50%
Muhammad Usama Anjum 2 0.03% 1 2.50%
Colin Ian King 1 0.01% 1 2.50%
Greg Kroah-Hartman 1 0.01% 1 2.50%
Julia Lawall 1 0.01% 1 2.50%
Total 7430 40


// SPDX-License-Identifier: GPL-2.0
/*
 * Tests Memory Protection Keys (see Documentation/core-api/protection-keys.rst)
 *
 * There are examples in here of:
 *  * how to set protection keys on memory
 *  * how to set/clear bits in pkey registers (the rights register)
 *  * how to handle SEGV_PKUERR signals and extract pkey-relevant
 *    information from the siginfo
 *
 * Things to add:
 *	make sure KSM and KSM COW breaking works
 *	prefault pages in at malloc, or not
 *	protect MPX bounds tables with protection keys?
 *	make sure VMA splitting/merging is working correctly
 *	OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
 *	look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
 *	do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
 *
 * Compile like this:
 *	gcc -mxsave      -o protection_keys    -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
 *	gcc -mxsave -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
 */
#define _GNU_SOURCE
#define __SANE_USERSPACE_TYPES__
#include <errno.h>
#include <linux/elf.h>
#include <linux/futex.h>
#include <time.h>
#include <sys/time.h>
#include <sys/syscall.h>
#include <string.h>
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <signal.h>
#include <assert.h>
#include <stdlib.h>
#include <ucontext.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ptrace.h>
#include <setjmp.h>

#include "pkey-helpers.h"

int iteration_nr = 1;
int test_nr;

u64 shadow_pkey_reg;
int dprint_in_signal;
char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE];

void cat_into_file(char *str, char *file)
{
	int fd = open(file, O_RDWR);
	int ret;

	dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file);
	/*
	 * these need to be raw because they are called under
	 * pkey_assert()
	 */
	if (fd < 0) {
		fprintf(stderr, "error opening '%s'\n", str);
		perror("error: ");
		exit(__LINE__);
	}

	ret = write(fd, str, strlen(str));
	if (ret != strlen(str)) {
		perror("write to file failed");
		fprintf(stderr, "filename: '%s' str: '%s'\n", file, str);
		exit(__LINE__);
	}
	close(fd);
}

#if CONTROL_TRACING > 0
static int warned_tracing;
int tracing_root_ok(void)
{
	if (geteuid() != 0) {
		if (!warned_tracing)
			fprintf(stderr, "WARNING: not run as root, "
					"can not do tracing control\n");
		warned_tracing = 1;
		return 0;
	}
	return 1;
}
#endif

void tracing_on(void)
{
#if CONTROL_TRACING > 0
#define TRACEDIR "/sys/kernel/tracing"
	char pidstr[32];

	if (!tracing_root_ok())
		return;

	sprintf(pidstr, "%d", getpid());
	cat_into_file("0", TRACEDIR "/tracing_on");
	cat_into_file("\n", TRACEDIR "/trace");
	if (1) {
		cat_into_file("function_graph", TRACEDIR "/current_tracer");
		cat_into_file("1", TRACEDIR "/options/funcgraph-proc");
	} else {
		cat_into_file("nop", TRACEDIR "/current_tracer");
	}
	cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid");
	cat_into_file("1", TRACEDIR "/tracing_on");
	dprintf1("enabled tracing\n");
#endif
}

void tracing_off(void)
{
#if CONTROL_TRACING > 0
	if (!tracing_root_ok())
		return;
	cat_into_file("0", "/sys/kernel/tracing/tracing_on");
#endif
}

void abort_hooks(void)
{
	fprintf(stderr, "running %s()...\n", __func__);
	tracing_off();
#ifdef SLEEP_ON_ABORT
	sleep(SLEEP_ON_ABORT);
#endif
}

/*
 * This attempts to have roughly a page of instructions followed by a few
 * instructions that do a write, and another page of instructions.  That
 * way, we are pretty sure that the write is in the second page of
 * instructions and has at least a page of padding behind it.
 *
 * *That* lets us be sure to madvise() away the write instruction, which
 * will then fault, which makes sure that the fault code handles
 * execute-only memory properly.
 */
#ifdef __powerpc64__
/* This way, both 4K and 64K alignment are maintained */
__attribute__((__aligned__(65536)))
#else
__attribute__((__aligned__(PAGE_SIZE)))
#endif
void lots_o_noops_around_write(int *write_to_me)
{
	dprintf3("running %s()\n", __func__);
	__page_o_noops();
	/* Assume this happens in the second page of instructions: */
	*write_to_me = __LINE__;
	/* pad out by another page: */
	__page_o_noops();
	dprintf3("%s() done\n", __func__);
}

void dump_mem(void *dumpme, int len_bytes)
{
	char *c = (void *)dumpme;
	int i;

	for (i = 0; i < len_bytes; i += sizeof(u64)) {
		u64 *ptr = (u64 *)(c + i);
		dprintf1("dump[%03d][@%p]: %016llx\n", i, ptr, *ptr);
	}
}

static u32 hw_pkey_get(int pkey, unsigned long flags)
{
	u64 pkey_reg = __read_pkey_reg();

	dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
			__func__, pkey, flags, 0, 0);
	dprintf2("%s() raw pkey_reg: %016llx\n", __func__, pkey_reg);

	return (u32) get_pkey_bits(pkey_reg, pkey);
}

static int hw_pkey_set(int pkey, unsigned long rights, unsigned long flags)
{
	u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
	u64 old_pkey_reg = __read_pkey_reg();
	u64 new_pkey_reg;

	/* make sure that 'rights' only contains the bits we expect: */
	assert(!(rights & ~mask));

	/* modify bits accordingly in old pkey_reg and assign it */
	new_pkey_reg = set_pkey_bits(old_pkey_reg, pkey, rights);

	__write_pkey_reg(new_pkey_reg);

	dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x"
		" pkey_reg now: %016llx old_pkey_reg: %016llx\n",
		__func__, pkey, rights, flags, 0, __read_pkey_reg(),
		old_pkey_reg);
	return 0;
}

void pkey_disable_set(int pkey, int flags)
{
	unsigned long syscall_flags = 0;
	int ret;
	int pkey_rights;
	u64 orig_pkey_reg = read_pkey_reg();

	dprintf1("START->%s(%d, 0x%x)\n", __func__,
		pkey, flags);
	pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));

	pkey_rights = hw_pkey_get(pkey, syscall_flags);

	dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
			pkey, pkey, pkey_rights);

	pkey_assert(pkey_rights >= 0);

	pkey_rights |= flags;

	ret = hw_pkey_set(pkey, pkey_rights, syscall_flags);
	assert(!ret);
	/* pkey_reg and flags have the same format */
	shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
	dprintf1("%s(%d) shadow: 0x%016llx\n",
		__func__, pkey, shadow_pkey_reg);

	pkey_assert(ret >= 0);

	pkey_rights = hw_pkey_get(pkey, syscall_flags);
	dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
			pkey, pkey, pkey_rights);

	dprintf1("%s(%d) pkey_reg: 0x%016llx\n",
		__func__, pkey, read_pkey_reg());
	if (flags)
		pkey_assert(read_pkey_reg() >= orig_pkey_reg);
	dprintf1("END<---%s(%d, 0x%x)\n", __func__,
		pkey, flags);
}

void pkey_disable_clear(int pkey, int flags)
{
	unsigned long syscall_flags = 0;
	int ret;
	int pkey_rights = hw_pkey_get(pkey, syscall_flags);
	u64 orig_pkey_reg = read_pkey_reg();

	pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));

	dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
			pkey, pkey, pkey_rights);
	pkey_assert(pkey_rights >= 0);

	pkey_rights &= ~flags;

	ret = hw_pkey_set(pkey, pkey_rights, 0);
	shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
	pkey_assert(ret >= 0);

	pkey_rights = hw_pkey_get(pkey, syscall_flags);
	dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
			pkey, pkey, pkey_rights);

	dprintf1("%s(%d) pkey_reg: 0x%016llx\n", __func__,
			pkey, read_pkey_reg());
	if (flags)
		assert(read_pkey_reg() <= orig_pkey_reg);
}

void pkey_write_allow(int pkey)
{
	pkey_disable_clear(pkey, PKEY_DISABLE_WRITE);
}
void pkey_write_deny(int pkey)
{
	pkey_disable_set(pkey, PKEY_DISABLE_WRITE);
}
void pkey_access_allow(int pkey)
{
	pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS);
}
void pkey_access_deny(int pkey)
{
	pkey_disable_set(pkey, PKEY_DISABLE_ACCESS);
}

static char *si_code_str(int si_code)
{
	if (si_code == SEGV_MAPERR)
		return "SEGV_MAPERR";
	if (si_code == SEGV_ACCERR)
		return "SEGV_ACCERR";
	if (si_code == SEGV_BNDERR)
		return "SEGV_BNDERR";
	if (si_code == SEGV_PKUERR)
		return "SEGV_PKUERR";
	return "UNKNOWN";
}

int pkey_faults;
int last_si_pkey = -1;
void signal_handler(int signum, siginfo_t *si, void *vucontext)
{
	ucontext_t *uctxt = vucontext;
	int trapno;
	unsigned long ip;
	char *fpregs;
#if defined(__i386__) || defined(__x86_64__) /* arch */
	u32 *pkey_reg_ptr;
	int pkey_reg_offset;
#endif /* arch */
	u64 siginfo_pkey;
	u32 *si_pkey_ptr;

	dprint_in_signal = 1;
	dprintf1(">>>>===============SIGSEGV============================\n");
	dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
			__func__, __LINE__,
			__read_pkey_reg(), shadow_pkey_reg);

	trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO];
	ip = uctxt->uc_mcontext.gregs[REG_IP_IDX];
	fpregs = (char *) uctxt->uc_mcontext.fpregs;

	dprintf2("%s() trapno: %d ip: 0x%016lx info->si_code: %s/%d\n",
			__func__, trapno, ip, si_code_str(si->si_code),
			si->si_code);

#if defined(__i386__) || defined(__x86_64__) /* arch */
#ifdef __i386__
	/*
	 * 32-bit has some extra padding so that userspace can tell whether
	 * the XSTATE header is present in addition to the "legacy" FPU
	 * state.  We just assume that it is here.
	 */
	fpregs += 0x70;
#endif /* i386 */
	pkey_reg_offset = pkey_reg_xstate_offset();
	pkey_reg_ptr = (void *)(&fpregs[pkey_reg_offset]);

	/*
	 * If we got a PKEY fault, we *HAVE* to have at least one bit set in
	 * here.
	 */
	dprintf1("pkey_reg_xstate_offset: %d\n", pkey_reg_xstate_offset());
	if (DEBUG_LEVEL > 4)
		dump_mem(pkey_reg_ptr - 128, 256);
	pkey_assert(*pkey_reg_ptr);
#endif /* arch */

	dprintf1("siginfo: %p\n", si);
	dprintf1(" fpregs: %p\n", fpregs);

	if ((si->si_code == SEGV_MAPERR) ||
	    (si->si_code == SEGV_ACCERR) ||
	    (si->si_code == SEGV_BNDERR)) {
		printf("non-PK si_code, exiting...\n");
		exit(4);
	}

	si_pkey_ptr = siginfo_get_pkey_ptr(si);
	dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr);
	dump_mem((u8 *)si_pkey_ptr - 8, 24);
	siginfo_pkey = *si_pkey_ptr;
	pkey_assert(siginfo_pkey < NR_PKEYS);
	last_si_pkey = siginfo_pkey;

	/*
	 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
	 * checking
	 */
	dprintf1("signal pkey_reg from  pkey_reg: %016llx\n",
			__read_pkey_reg());
	dprintf1("pkey from siginfo: %016llx\n", siginfo_pkey);
#if defined(__i386__) || defined(__x86_64__) /* arch */
	dprintf1("signal pkey_reg from xsave: %08x\n", *pkey_reg_ptr);
	*(u64 *)pkey_reg_ptr = 0x00000000;
	dprintf1("WARNING: set PKEY_REG=0 to allow faulting instruction to continue\n");
#elif defined(__powerpc64__) /* arch */
	/* restore access and let the faulting instruction continue */
	pkey_access_allow(siginfo_pkey);
#endif /* arch */
	pkey_faults++;
	dprintf1("<<<<==================================================\n");
	dprint_in_signal = 0;
}

int wait_all_children(void)
{
	int status;
	return waitpid(-1, &status, 0);
}

void sig_chld(int x)
{
	dprint_in_signal = 1;
	dprintf2("[%d] SIGCHLD: %d\n", getpid(), x);
	dprint_in_signal = 0;
}

void setup_sigsegv_handler(void)
{
	int r, rs;
	struct sigaction newact;
	struct sigaction oldact;

	/* #PF is mapped to sigsegv */
	int signum  = SIGSEGV;

	newact.sa_handler = 0;
	newact.sa_sigaction = signal_handler;

	/*sigset_t - signals to block while in the handler */
	/* get the old signal mask. */
	rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
	pkey_assert(rs == 0);

	/* call sa_sigaction, not sa_handler*/
	newact.sa_flags = SA_SIGINFO;

	newact.sa_restorer = 0;  /* void(*)(), obsolete */
	r = sigaction(signum, &newact, &oldact);
	r = sigaction(SIGALRM, &newact, &oldact);
	pkey_assert(r == 0);
}

void setup_handlers(void)
{
	signal(SIGCHLD, &sig_chld);
	setup_sigsegv_handler();
}

pid_t fork_lazy_child(void)
{
	pid_t forkret;

	forkret = fork();
	pkey_assert(forkret >= 0);
	dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);

	if (!forkret) {
		/* in the child */
		while (1) {
			dprintf1("child sleeping...\n");
			sleep(30);
		}
	}
	return forkret;
}

int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
		unsigned long pkey)
{
	int sret;

	dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__,
			ptr, size, orig_prot, pkey);

	errno = 0;
	sret = syscall(__NR_pkey_mprotect, ptr, size, orig_prot, pkey);
	if (errno) {
		dprintf2("SYS_mprotect_key sret: %d\n", sret);
		dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot);
		dprintf2("SYS_mprotect_key failed, errno: %d\n", errno);
		if (DEBUG_LEVEL >= 2)
			perror("SYS_mprotect_pkey");
	}
	return sret;
}

int sys_pkey_alloc(unsigned long flags, unsigned long init_val)
{
	int ret = syscall(SYS_pkey_alloc, flags, init_val);
	dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n",
			__func__, flags, init_val, ret, errno);
	return ret;
}

int alloc_pkey(void)
{
	int ret;
	unsigned long init_val = 0x0;

	dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
			__func__, __LINE__, __read_pkey_reg(), shadow_pkey_reg);
	ret = sys_pkey_alloc(0, init_val);
	/*
	 * pkey_alloc() sets PKEY register, so we need to reflect it in
	 * shadow_pkey_reg:
	 */
	dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
			" shadow: 0x%016llx\n",
			__func__, __LINE__, ret, __read_pkey_reg(),
			shadow_pkey_reg);
	if (ret > 0) {
		/* clear both the bits: */
		shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
						~PKEY_MASK);
		dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
				" shadow: 0x%016llx\n",
				__func__,
				__LINE__, ret, __read_pkey_reg(),
				shadow_pkey_reg);
		/*
		 * move the new state in from init_val
		 * (remember, we cheated and init_val == pkey_reg format)
		 */
		shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
						init_val);
	}
	dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
			" shadow: 0x%016llx\n",
			__func__, __LINE__, ret, __read_pkey_reg(),
			shadow_pkey_reg);
	dprintf1("%s()::%d errno: %d\n", __func__, __LINE__, errno);
	/* for shadow checking: */
	read_pkey_reg();
	dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
		 " shadow: 0x%016llx\n",
		__func__, __LINE__, ret, __read_pkey_reg(),
		shadow_pkey_reg);
	return ret;
}

int sys_pkey_free(unsigned long pkey)
{
	int ret = syscall(SYS_pkey_free, pkey);
	dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret);
	return ret;
}

/*
 * I had a bug where pkey bits could be set by mprotect() but
 * not cleared.  This ensures we get lots of random bit sets
 * and clears on the vma and pte pkey bits.
 */
int alloc_random_pkey(void)
{
	int max_nr_pkey_allocs;
	int ret;
	int i;
	int alloced_pkeys[NR_PKEYS];
	int nr_alloced = 0;
	int random_index;
	memset(alloced_pkeys, 0, sizeof(alloced_pkeys));

	/* allocate every possible key and make a note of which ones we got */
	max_nr_pkey_allocs = NR_PKEYS;
	for (i = 0; i < max_nr_pkey_allocs; i++) {
		int new_pkey = alloc_pkey();
		if (new_pkey < 0)
			break;
		alloced_pkeys[nr_alloced++] = new_pkey;
	}

	pkey_assert(nr_alloced > 0);
	/* select a random one out of the allocated ones */
	random_index = rand() % nr_alloced;
	ret = alloced_pkeys[random_index];
	/* now zero it out so we don't free it next */
	alloced_pkeys[random_index] = 0;

	/* go through the allocated ones that we did not want and free them */
	for (i = 0; i < nr_alloced; i++) {
		int free_ret;
		if (!alloced_pkeys[i])
			continue;
		free_ret = sys_pkey_free(alloced_pkeys[i]);
		pkey_assert(!free_ret);
	}
	dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
			 " shadow: 0x%016llx\n", __func__,
			__LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
	return ret;
}

int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
		unsigned long pkey)
{
	int nr_iterations = random() % 100;
	int ret;

	while (0) {
		int rpkey = alloc_random_pkey();
		ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
		dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
				ptr, size, orig_prot, pkey, ret);
		if (nr_iterations-- < 0)
			break;

		dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
			" shadow: 0x%016llx\n",
			__func__, __LINE__, ret, __read_pkey_reg(),
			shadow_pkey_reg);
		sys_pkey_free(rpkey);
		dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
			" shadow: 0x%016llx\n",
			__func__, __LINE__, ret, __read_pkey_reg(),
			shadow_pkey_reg);
	}
	pkey_assert(pkey < NR_PKEYS);

	ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
	dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
			ptr, size, orig_prot, pkey, ret);
	pkey_assert(!ret);
	dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
			" shadow: 0x%016llx\n", __func__,
			__LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
	return ret;
}

struct pkey_malloc_record {
	void *ptr;
	long size;
	int prot;
};
struct pkey_malloc_record *pkey_malloc_records;
struct pkey_malloc_record *pkey_last_malloc_record;
long nr_pkey_malloc_records;
void record_pkey_malloc(void *ptr, long size, int prot)
{
	long i;
	struct pkey_malloc_record *rec = NULL;

	for (i = 0; i < nr_pkey_malloc_records; i++) {
		rec = &pkey_malloc_records[i];
		/* find a free record */
		if (rec)
			break;
	}
	if (!rec) {
		/* every record is full */
		size_t old_nr_records = nr_pkey_malloc_records;
		size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1);
		size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record);
		dprintf2("new_nr_records: %zd\n", new_nr_records);
		dprintf2("new_size: %zd\n", new_size);
		pkey_malloc_records = realloc(pkey_malloc_records, new_size);
		pkey_assert(pkey_malloc_records != NULL);
		rec = &pkey_malloc_records[nr_pkey_malloc_records];
		/*
		 * realloc() does not initialize memory, so zero it from
		 * the first new record all the way to the end.
		 */
		for (i = 0; i < new_nr_records - old_nr_records; i++)
			memset(rec + i, 0, sizeof(*rec));
	}
	dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
		(int)(rec - pkey_malloc_records), rec, ptr, size);
	rec->ptr = ptr;
	rec->size = size;
	rec->prot = prot;
	pkey_last_malloc_record = rec;
	nr_pkey_malloc_records++;
}

void free_pkey_malloc(void *ptr)
{
	long i;
	int ret;
	dprintf3("%s(%p)\n", __func__, ptr);
	for (i = 0; i < nr_pkey_malloc_records; i++) {
		struct pkey_malloc_record *rec = &pkey_malloc_records[i];
		dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
				ptr, i, rec, rec->ptr, rec->size);
		if ((ptr <  rec->ptr) ||
		    (ptr >= rec->ptr + rec->size))
			continue;

		dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
				ptr, i, rec, rec->ptr, rec->size);
		nr_pkey_malloc_records--;
		ret = munmap(rec->ptr, rec->size);
		dprintf3("munmap ret: %d\n", ret);
		pkey_assert(!ret);
		dprintf3("clearing rec->ptr, rec: %p\n", rec);
		rec->ptr = NULL;
		dprintf3("done clearing rec->ptr, rec: %p\n", rec);
		return;
	}
	pkey_assert(false);
}


void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey)
{
	void *ptr;
	int ret;

	read_pkey_reg();
	dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
			size, prot, pkey);
	pkey_assert(pkey < NR_PKEYS);
	ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
	pkey_assert(ptr != (void *)-1);
	ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey);
	pkey_assert(!ret);
	record_pkey_malloc(ptr, size, prot);
	read_pkey_reg();

	dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr);
	return ptr;
}

void *malloc_pkey_anon_huge(long size, int prot, u16 pkey)
{
	int ret;
	void *ptr;

	dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
			size, prot, pkey);
	/*
	 * Guarantee we can fit at least one huge page in the resulting
	 * allocation by allocating space for 2:
	 */
	size = ALIGN_UP(size, HPAGE_SIZE * 2);
	ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
	pkey_assert(ptr != (void *)-1);
	record_pkey_malloc(ptr, size, prot);
	mprotect_pkey(ptr, size, prot, pkey);

	dprintf1("unaligned ptr: %p\n", ptr);
	ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE);
	dprintf1("  aligned ptr: %p\n", ptr);
	ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE);
	dprintf1("MADV_HUGEPAGE ret: %d\n", ret);
	ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED);
	dprintf1("MADV_WILLNEED ret: %d\n", ret);
	memset(ptr, 0, HPAGE_SIZE);

	dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr);
	return ptr;
}

int hugetlb_setup_ok;
#define SYSFS_FMT_NR_HUGE_PAGES "/sys/kernel/mm/hugepages/hugepages-%ldkB/nr_hugepages"
#define GET_NR_HUGE_PAGES 10
void setup_hugetlbfs(void)
{
	int err;
	int fd;
	char buf[256];
	long hpagesz_kb;
	long hpagesz_mb;

	if (geteuid() != 0) {
		fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n");
		return;
	}

	cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages");

	/*
	 * Now go make sure that we got the pages and that they
	 * are PMD-level pages. Someone might have made PUD-level
	 * pages the default.
	 */
	hpagesz_kb = HPAGE_SIZE / 1024;
	hpagesz_mb = hpagesz_kb / 1024;
	sprintf(buf, SYSFS_FMT_NR_HUGE_PAGES, hpagesz_kb);
	fd = open(buf, O_RDONLY);
	if (fd < 0) {
		fprintf(stderr, "opening sysfs %ldM hugetlb config: %s\n",
			hpagesz_mb, strerror(errno));
		return;
	}

	/* -1 to guarantee leaving the trailing \0 */
	err = read(fd, buf, sizeof(buf)-1);
	close(fd);
	if (err <= 0) {
		fprintf(stderr, "reading sysfs %ldM hugetlb config: %s\n",
			hpagesz_mb, strerror(errno));
		return;
	}

	if (atoi(buf) != GET_NR_HUGE_PAGES) {
		fprintf(stderr, "could not confirm %ldM pages, got: '%s' expected %d\n",
			hpagesz_mb, buf, GET_NR_HUGE_PAGES);
		return;
	}

	hugetlb_setup_ok = 1;
}

void *malloc_pkey_hugetlb(long size, int prot, u16 pkey)
{
	void *ptr;
	int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB;

	if (!hugetlb_setup_ok)
		return PTR_ERR_ENOTSUP;

	dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey);
	size = ALIGN_UP(size, HPAGE_SIZE * 2);
	pkey_assert(pkey < NR_PKEYS);
	ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0);
	pkey_assert(ptr != (void *)-1);
	mprotect_pkey(ptr, size, prot, pkey);

	record_pkey_malloc(ptr, size, prot);

	dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr);
	return ptr;
}

void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey)
{
	void *ptr;
	int fd;

	dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
			size, prot, pkey);
	pkey_assert(pkey < NR_PKEYS);
	fd = open("/dax/foo", O_RDWR);
	pkey_assert(fd >= 0);

	ptr = mmap(0, size, prot, MAP_SHARED, fd, 0);
	pkey_assert(ptr != (void *)-1);

	mprotect_pkey(ptr, size, prot, pkey);

	record_pkey_malloc(ptr, size, prot);

	dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr);
	close(fd);
	return ptr;
}

void *(*pkey_malloc[])(long size, int prot, u16 pkey) = {

	malloc_pkey_with_mprotect,
	malloc_pkey_with_mprotect_subpage,
	malloc_pkey_anon_huge,
	malloc_pkey_hugetlb
/* can not do direct with the pkey_mprotect() API:
	malloc_pkey_mmap_direct,
	malloc_pkey_mmap_dax,
*/
};

void *malloc_pkey(long size, int prot, u16 pkey)
{
	void *ret;
	static int malloc_type;
	int nr_malloc_types = ARRAY_SIZE(pkey_malloc);

	pkey_assert(pkey < NR_PKEYS);

	while (1) {
		pkey_assert(malloc_type < nr_malloc_types);

		ret = pkey_malloc[malloc_type](size, prot, pkey);
		pkey_assert(ret != (void *)-1);

		malloc_type++;
		if (malloc_type >= nr_malloc_types)
			malloc_type = (random()%nr_malloc_types);

		/* try again if the malloc_type we tried is unsupported */
		if (ret == PTR_ERR_ENOTSUP)
			continue;

		break;
	}

	dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__,
			size, prot, pkey, ret);
	return ret;
}

int last_pkey_faults;
#define UNKNOWN_PKEY -2
void expected_pkey_fault(int pkey)
{
	dprintf2("%s(): last_pkey_faults: %d pkey_faults: %d\n",
			__func__, last_pkey_faults, pkey_faults);
	dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey);
	pkey_assert(last_pkey_faults + 1 == pkey_faults);

       /*
	* For exec-only memory, we do not know the pkey in
	* advance, so skip this check.
	*/
	if (pkey != UNKNOWN_PKEY)
		pkey_assert(last_si_pkey == pkey);

#if defined(__i386__) || defined(__x86_64__) /* arch */
	/*
	 * The signal handler shold have cleared out PKEY register to let the
	 * test program continue.  We now have to restore it.
	 */
	if (__read_pkey_reg() != 0)
#else /* arch */
	if (__read_pkey_reg() != shadow_pkey_reg)
#endif /* arch */
		pkey_assert(0);

	__write_pkey_reg(shadow_pkey_reg);
	dprintf1("%s() set pkey_reg=%016llx to restore state after signal "
		       "nuked it\n", __func__, shadow_pkey_reg);
	last_pkey_faults = pkey_faults;
	last_si_pkey = -1;
}

#define do_not_expect_pkey_fault(msg)	do {			\
	if (last_pkey_faults != pkey_faults)			\
		dprintf0("unexpected PKey fault: %s\n", msg);	\
	pkey_assert(last_pkey_faults == pkey_faults);		\
} while (0)

int test_fds[10] = { -1 };
int nr_test_fds;
void __save_test_fd(int fd)
{
	pkey_assert(fd >= 0);
	pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds));
	test_fds[nr_test_fds] = fd;
	nr_test_fds++;
}

int get_test_read_fd(void)
{
	int test_fd = open("/etc/passwd", O_RDONLY);
	__save_test_fd(test_fd);
	return test_fd;
}

void close_test_fds(void)
{
	int i;

	for (i = 0; i < nr_test_fds; i++) {
		if (test_fds[i] < 0)
			continue;
		close(test_fds[i]);
		test_fds[i] = -1;
	}
	nr_test_fds = 0;
}

#define barrier() __asm__ __volatile__("": : :"memory")
__attribute__((noinline)) int read_ptr(int *ptr)
{
	/*
	 * Keep GCC from optimizing this away somehow
	 */
	barrier();
	return *ptr;
}

void test_pkey_alloc_free_attach_pkey0(int *ptr, u16 pkey)
{
	int i, err;
	int max_nr_pkey_allocs;
	int alloced_pkeys[NR_PKEYS];
	int nr_alloced = 0;
	long size;

	pkey_assert(pkey_last_malloc_record);
	size = pkey_last_malloc_record->size;
	/*
	 * This is a bit of a hack.  But mprotect() requires
	 * huge-page-aligned sizes when operating on hugetlbfs.
	 * So, make sure that we use something that's a multiple
	 * of a huge page when we can.
	 */
	if (size >= HPAGE_SIZE)
		size = HPAGE_SIZE;

	/* allocate every possible key and make sure key-0 never got allocated */
	max_nr_pkey_allocs = NR_PKEYS;
	for (i = 0; i < max_nr_pkey_allocs; i++) {
		int new_pkey = alloc_pkey();
		pkey_assert(new_pkey != 0);

		if (new_pkey < 0)
			break;
		alloced_pkeys[nr_alloced++] = new_pkey;
	}
	/* free all the allocated keys */
	for (i = 0; i < nr_alloced; i++) {
		int free_ret;

		if (!alloced_pkeys[i])
			continue;
		free_ret = sys_pkey_free(alloced_pkeys[i]);
		pkey_assert(!free_ret);
	}

	/* attach key-0 in various modes */
	err = sys_mprotect_pkey(ptr, size, PROT_READ, 0);
	pkey_assert(!err);
	err = sys_mprotect_pkey(ptr, size, PROT_WRITE, 0);
	pkey_assert(!err);
	err = sys_mprotect_pkey(ptr, size, PROT_EXEC, 0);
	pkey_assert(!err);
	err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE, 0);
	pkey_assert(!err);
	err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE|PROT_EXEC, 0);
	pkey_assert(!err);
}

void test_read_of_write_disabled_region(int *ptr, u16 pkey)
{
	int ptr_contents;

	dprintf1("disabling write access to PKEY[1], doing read\n");
	pkey_write_deny(pkey);
	ptr_contents = read_ptr(ptr);
	dprintf1("*ptr: %d\n", ptr_contents);
	dprintf1("\n");
}
void test_read_of_access_disabled_region(int *ptr, u16 pkey)
{
	int ptr_contents;

	dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr);
	read_pkey_reg();
	pkey_access_deny(pkey);
	ptr_contents = read_ptr(ptr);
	dprintf1("*ptr: %d\n", ptr_contents);
	expected_pkey_fault(pkey);
}

void test_read_of_access_disabled_region_with_page_already_mapped(int *ptr,
		u16 pkey)
{
	int ptr_contents;

	dprintf1("disabling access to PKEY[%02d], doing read @ %p\n",
				pkey, ptr);
	ptr_contents = read_ptr(ptr);
	dprintf1("reading ptr before disabling the read : %d\n",
			ptr_contents);
	read_pkey_reg();
	pkey_access_deny(pkey);
	ptr_contents = read_ptr(ptr);
	dprintf1("*ptr: %d\n", ptr_contents);
	expected_pkey_fault(pkey);
}

void test_write_of_write_disabled_region_with_page_already_mapped(int *ptr,
		u16 pkey)
{
	*ptr = __LINE__;
	dprintf1("disabling write access; after accessing the page, "
		"to PKEY[%02d], doing write\n", pkey);
	pkey_write_deny(pkey);
	*ptr = __LINE__;
	expected_pkey_fault(pkey);
}

void test_write_of_write_disabled_region(int *ptr, u16 pkey)
{
	dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey);
	pkey_write_deny(pkey);
	*ptr = __LINE__;
	expected_pkey_fault(pkey);
}
void test_write_of_access_disabled_region(int *ptr, u16 pkey)
{
	dprintf1("disabling access to PKEY[%02d], doing write\n", pkey);
	pkey_access_deny(pkey);
	*ptr = __LINE__;
	expected_pkey_fault(pkey);
}

void test_write_of_access_disabled_region_with_page_already_mapped(int *ptr,
			u16 pkey)
{
	*ptr = __LINE__;
	dprintf1("disabling access; after accessing the page, "
		" to PKEY[%02d], doing write\n", pkey);
	pkey_access_deny(pkey);
	*ptr = __LINE__;
	expected_pkey_fault(pkey);
}

void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey)
{
	int ret;
	int test_fd = get_test_read_fd();

	dprintf1("disabling access to PKEY[%02d], "
		 "having kernel read() to buffer\n", pkey);
	pkey_access_deny(pkey);
	ret = read(test_fd, ptr, 1);
	dprintf1("read ret: %d\n", ret);
	pkey_assert(ret);
}
void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey)
{
	int ret;
	int test_fd = get_test_read_fd();

	pkey_write_deny(pkey);
	ret = read(test_fd, ptr, 100);
	dprintf1("read ret: %d\n", ret);
	if (ret < 0 && (DEBUG_LEVEL > 0))
		perror("verbose read result (OK for this to be bad)");
	pkey_assert(ret);
}

void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey)
{
	int pipe_ret, vmsplice_ret;
	struct iovec iov;
	int pipe_fds[2];

	pipe_ret = pipe(pipe_fds);

	pkey_assert(pipe_ret == 0);
	dprintf1("disabling access to PKEY[%02d], "
		 "having kernel vmsplice from buffer\n", pkey);
	pkey_access_deny(pkey);
	iov.iov_base = ptr;
	iov.iov_len = PAGE_SIZE;
	vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT);
	dprintf1("vmsplice() ret: %d\n", vmsplice_ret);
	pkey_assert(vmsplice_ret == -1);

	close(pipe_fds[0]);
	close(pipe_fds[1]);
}

void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey)
{
	int ignored = 0xdada;
	int futex_ret;
	int some_int = __LINE__;

	dprintf1("disabling write to PKEY[%02d], "
		 "doing futex gunk in buffer\n", pkey);
	*ptr = some_int;
	pkey_write_deny(pkey);
	futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL,
			&ignored, ignored);
	if (DEBUG_LEVEL > 0)
		perror("futex");
	dprintf1("futex() ret: %d\n", futex_ret);
}

/* Assumes that all pkeys other than 'pkey' are unallocated */
void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey)
{
	int err;
	int i;

	/* Note: 0 is the default pkey, so don't mess with it */
	for (i = 1; i < NR_PKEYS; i++) {
		if (pkey == i)
			continue;

		dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i);
		err = sys_pkey_free(i);
		pkey_assert(err);

		err = sys_pkey_free(i);
		pkey_assert(err);

		err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i);
		pkey_assert(err);
	}
}

/* Assumes that all pkeys other than 'pkey' are unallocated */
void test_pkey_syscalls_bad_args(int *ptr, u16 pkey)
{
	int err;
	int bad_pkey = NR_PKEYS+99;

	/* pass a known-invalid pkey in: */
	err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey);
	pkey_assert(err);
}

void become_child(void)
{
	pid_t forkret;

	forkret = fork();
	pkey_assert(forkret >= 0);
	dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);

	if (!forkret) {
		/* in the child */
		return;
	}
	exit(0);
}

/* Assumes that all pkeys other than 'pkey' are unallocated */
void test_pkey_alloc_exhaust(int *ptr, u16 pkey)
{
	int err;
	int allocated_pkeys[NR_PKEYS] = {0};
	int nr_allocated_pkeys = 0;
	int i;

	for (i = 0; i < NR_PKEYS*3; i++) {
		int new_pkey;
		dprintf1("%s() alloc loop: %d\n", __func__, i);
		new_pkey = alloc_pkey();
		dprintf4("%s()::%d, err: %d pkey_reg: 0x%016llx"
				" shadow: 0x%016llx\n",
				__func__, __LINE__, err, __read_pkey_reg(),
				shadow_pkey_reg);
		read_pkey_reg(); /* for shadow checking */
		dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC);
		if ((new_pkey == -1) && (errno == ENOSPC)) {
			dprintf2("%s() failed to allocate pkey after %d tries\n",
				__func__, nr_allocated_pkeys);
		} else {
			/*
			 * Ensure the number of successes never
			 * exceeds the number of keys supported
			 * in the hardware.
			 */
			pkey_assert(nr_allocated_pkeys < NR_PKEYS);
			allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
		}

		/*
		 * Make sure that allocation state is properly
		 * preserved across fork().
		 */
		if (i == NR_PKEYS*2)
			become_child();
	}

	dprintf3("%s()::%d\n", __func__, __LINE__);

	/*
	 * On x86:
	 * There are 16 pkeys supported in hardware.  Three are
	 * allocated by the time we get here:
	 *   1. The default key (0)
	 *   2. One possibly consumed by an execute-only mapping.
	 *   3. One allocated by the test code and passed in via
	 *      'pkey' to this function.
	 * Ensure that we can allocate at least another 13 (16-3).
	 *
	 * On powerpc:
	 * There are either 5, 28, 29 or 32 pkeys supported in
	 * hardware depending on the page size (4K or 64K) and
	 * platform (powernv or powervm). Four are allocated by
	 * the time we get here. These include pkey-0, pkey-1,
	 * exec-only pkey and the one allocated by the test code.
	 * Ensure that we can allocate the remaining.
	 */
	pkey_assert(i >= (NR_PKEYS - get_arch_reserved_keys() - 1));

	for (i = 0; i < nr_allocated_pkeys; i++) {
		err = sys_pkey_free(allocated_pkeys[i]);
		pkey_assert(!err);
		read_pkey_reg(); /* for shadow checking */
	}
}

void arch_force_pkey_reg_init(void)
{
#if defined(__i386__) || defined(__x86_64__) /* arch */
	u64 *buf;

	/*
	 * All keys should be allocated and set to allow reads and
	 * writes, so the register should be all 0.  If not, just
	 * skip the test.
	 */
	if (read_pkey_reg())
		return;

	/*
	 * Just allocate an absurd about of memory rather than
	 * doing the XSAVE size enumeration dance.
	 */
	buf = mmap(NULL, 1*MB, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);

	/* These __builtins require compiling with -mxsave */

	/* XSAVE to build a valid buffer: */
	__builtin_ia32_xsave(buf, XSTATE_PKEY);
	/* Clear XSTATE_BV[PKRU]: */
	buf[XSTATE_BV_OFFSET/sizeof(u64)] &= ~XSTATE_PKEY;
	/* XRSTOR will likely get PKRU back to the init state: */
	__builtin_ia32_xrstor(buf, XSTATE_PKEY);

	munmap(buf, 1*MB);
#endif
}


/*
 * This is mostly useless on ppc for now.  But it will not
 * hurt anything and should give some better coverage as
 * a long-running test that continually checks the pkey
 * register.
 */
void test_pkey_init_state(int *ptr, u16 pkey)
{
	int err;
	int allocated_pkeys[NR_PKEYS] = {0};
	int nr_allocated_pkeys = 0;
	int i;

	for (i = 0; i < NR_PKEYS; i++) {
		int new_pkey = alloc_pkey();

		if (new_pkey < 0)
			continue;
		allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
	}

	dprintf3("%s()::%d\n", __func__, __LINE__);

	arch_force_pkey_reg_init();

	/*
	 * Loop for a bit, hoping to get exercise the kernel
	 * context switch code.
	 */
	for (i = 0; i < 1000000; i++)
		read_pkey_reg();

	for (i = 0; i < nr_allocated_pkeys; i++) {
		err = sys_pkey_free(allocated_pkeys[i]);
		pkey_assert(!err);
		read_pkey_reg(); /* for shadow checking */
	}
}

/*
 * pkey 0 is special.  It is allocated by default, so you do not
 * have to call pkey_alloc() to use it first.  Make sure that it
 * is usable.
 */
void test_mprotect_with_pkey_0(int *ptr, u16 pkey)
{
	long size;
	int prot;

	assert(pkey_last_malloc_record);
	size = pkey_last_malloc_record->size;
	/*
	 * This is a bit of a hack.  But mprotect() requires
	 * huge-page-aligned sizes when operating on hugetlbfs.
	 * So, make sure that we use something that's a multiple
	 * of a huge page when we can.
	 */
	if (size >= HPAGE_SIZE)
		size = HPAGE_SIZE;
	prot = pkey_last_malloc_record->prot;

	/* Use pkey 0 */
	mprotect_pkey(ptr, size, prot, 0);

	/* Make sure that we can set it back to the original pkey. */
	mprotect_pkey(ptr, size, prot, pkey);
}

void test_ptrace_of_child(int *ptr, u16 pkey)
{
	__attribute__((__unused__)) int peek_result;
	pid_t child_pid;
	void *ignored = 0;
	long ret;
	int status;
	/*
	 * This is the "control" for our little expermient.  Make sure
	 * we can always access it when ptracing.
	 */
	int *plain_ptr_unaligned = malloc(HPAGE_SIZE);
	int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE);

	/*
	 * Fork a child which is an exact copy of this process, of course.
	 * That means we can do all of our tests via ptrace() and then plain
	 * memory access and ensure they work differently.
	 */
	child_pid = fork_lazy_child();
	dprintf1("[%d] child pid: %d\n", getpid(), child_pid);

	ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored);
	if (ret)
		perror("attach");
	dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__);
	pkey_assert(ret != -1);
	ret = waitpid(child_pid, &status, WUNTRACED);
	if ((ret != child_pid) || !(WIFSTOPPED(status))) {
		fprintf(stderr, "weird waitpid result %ld stat %x\n",
				ret, status);
		pkey_assert(0);
	}
	dprintf2("waitpid ret: %ld\n", ret);
	dprintf2("waitpid status: %d\n", status);

	pkey_access_deny(pkey);
	pkey_write_deny(pkey);

	/* Write access, untested for now:
	ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
	pkey_assert(ret != -1);
	dprintf1("poke at %p: %ld\n", peek_at, ret);
	*/

	/*
	 * Try to access the pkey-protected "ptr" via ptrace:
	 */
	ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored);
	/* expect it to work, without an error: */
	pkey_assert(ret != -1);
	/* Now access from the current task, and expect an exception: */
	peek_result = read_ptr(ptr);
	expected_pkey_fault(pkey);

	/*
	 * Try to access the NON-pkey-protected "plain_ptr" via ptrace:
	 */
	ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored);
	/* expect it to work, without an error: */
	pkey_assert(ret != -1);
	/* Now access from the current task, and expect NO exception: */
	peek_result = read_ptr(plain_ptr);
	do_not_expect_pkey_fault("read plain pointer after ptrace");

	ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0);
	pkey_assert(ret != -1);

	ret = kill(child_pid, SIGKILL);
	pkey_assert(ret != -1);

	wait(&status);

	free(plain_ptr_unaligned);
}

void *get_pointer_to_instructions(void)
{
	void *p1;

	p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE);
	dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write);
	/* lots_o_noops_around_write should be page-aligned already */
	assert(p1 == &lots_o_noops_around_write);

	/* Point 'p1' at the *second* page of the function: */
	p1 += PAGE_SIZE;

	/*
	 * Try to ensure we fault this in on next touch to ensure
	 * we get an instruction fault as opposed to a data one
	 */
	madvise(p1, PAGE_SIZE, MADV_DONTNEED);

	return p1;
}

void test_executing_on_unreadable_memory(int *ptr, u16 pkey)
{
	void *p1;
	int scratch;
	int ptr_contents;
	int ret;

	p1 = get_pointer_to_instructions();
	lots_o_noops_around_write(&scratch);
	ptr_contents = read_ptr(p1);
	dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);

	ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey);
	pkey_assert(!ret);
	pkey_access_deny(pkey);

	dprintf2("pkey_reg: %016llx\n", read_pkey_reg());

	/*
	 * Make sure this is an *instruction* fault
	 */
	madvise(p1, PAGE_SIZE, MADV_DONTNEED);
	lots_o_noops_around_write(&scratch);
	do_not_expect_pkey_fault("executing on PROT_EXEC memory");
	expect_fault_on_read_execonly_key(p1, pkey);
}

void test_implicit_mprotect_exec_only_memory(int *ptr, u16 pkey)
{
	void *p1;
	int scratch;
	int ptr_contents;
	int ret;

	dprintf1("%s() start\n", __func__);

	p1 = get_pointer_to_instructions();
	lots_o_noops_around_write(&scratch);
	ptr_contents = read_ptr(p1);
	dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);

	/* Use a *normal* mprotect(), not mprotect_pkey(): */
	ret = mprotect(p1, PAGE_SIZE, PROT_EXEC);
	pkey_assert(!ret);

	/*
	 * Reset the shadow, assuming that the above mprotect()
	 * correctly changed PKRU, but to an unknown value since
	 * the actual allocated pkey is unknown.
	 */
	shadow_pkey_reg = __read_pkey_reg();

	dprintf2("pkey_reg: %016llx\n", read_pkey_reg());

	/* Make sure this is an *instruction* fault */
	madvise(p1, PAGE_SIZE, MADV_DONTNEED);
	lots_o_noops_around_write(&scratch);
	do_not_expect_pkey_fault("executing on PROT_EXEC memory");
	expect_fault_on_read_execonly_key(p1, UNKNOWN_PKEY);

	/*
	 * Put the memory back to non-PROT_EXEC.  Should clear the
	 * exec-only pkey off the VMA and allow it to be readable
	 * again.  Go to PROT_NONE first to check for a kernel bug
	 * that did not clear the pkey when doing PROT_NONE.
	 */
	ret = mprotect(p1, PAGE_SIZE, PROT_NONE);
	pkey_assert(!ret);

	ret = mprotect(p1, PAGE_SIZE, PROT_READ|PROT_EXEC);
	pkey_assert(!ret);
	ptr_contents = read_ptr(p1);
	do_not_expect_pkey_fault("plain read on recently PROT_EXEC area");
}

#if defined(__i386__) || defined(__x86_64__)
void test_ptrace_modifies_pkru(int *ptr, u16 pkey)
{
	u32 new_pkru;
	pid_t child;
	int status, ret;
	int pkey_offset = pkey_reg_xstate_offset();
	size_t xsave_size = cpu_max_xsave_size();
	void *xsave;
	u32 *pkey_register;
	u64 *xstate_bv;
	struct iovec iov;

	new_pkru = ~read_pkey_reg();
	/* Don't make PROT_EXEC mappings inaccessible */
	new_pkru &= ~3;

	child = fork();
	pkey_assert(child >= 0);
	dprintf3("[%d] fork() ret: %d\n", getpid(), child);
	if (!child) {
		ptrace(PTRACE_TRACEME, 0, 0, 0);
		/* Stop and allow the tracer to modify PKRU directly */
		raise(SIGSTOP);

		/*
		 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
		 * checking
		 */
		if (__read_pkey_reg() != new_pkru)
			exit(1);

		/* Stop and allow the tracer to clear XSTATE_BV for PKRU */
		raise(SIGSTOP);

		if (__read_pkey_reg() != 0)
			exit(1);

		/* Stop and allow the tracer to examine PKRU */
		raise(SIGSTOP);

		exit(0);
	}

	pkey_assert(child == waitpid(child, &status, 0));
	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
	pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);

	xsave = (void *)malloc(xsave_size);
	pkey_assert(xsave > 0);

	/* Modify the PKRU register directly */
	iov.iov_base = xsave;
	iov.iov_len = xsave_size;
	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
	pkey_assert(ret == 0);

	pkey_register = (u32 *)(xsave + pkey_offset);
	pkey_assert(*pkey_register == read_pkey_reg());

	*pkey_register = new_pkru;

	ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
	pkey_assert(ret == 0);

	/* Test that the modification is visible in ptrace before any execution */
	memset(xsave, 0xCC, xsave_size);
	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
	pkey_assert(ret == 0);
	pkey_assert(*pkey_register == new_pkru);

	/* Execute the tracee */
	ret = ptrace(PTRACE_CONT, child, 0, 0);
	pkey_assert(ret == 0);

	/* Test that the tracee saw the PKRU value change */
	pkey_assert(child == waitpid(child, &status, 0));
	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
	pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);

	/* Test that the modification is visible in ptrace after execution */
	memset(xsave, 0xCC, xsave_size);
	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
	pkey_assert(ret == 0);
	pkey_assert(*pkey_register == new_pkru);

	/* Clear the PKRU bit from XSTATE_BV */
	xstate_bv = (u64 *)(xsave + 512);
	*xstate_bv &= ~(1 << 9);

	ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
	pkey_assert(ret == 0);

	/* Test that the modification is visible in ptrace before any execution */
	memset(xsave, 0xCC, xsave_size);
	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
	pkey_assert(ret == 0);
	pkey_assert(*pkey_register == 0);

	ret = ptrace(PTRACE_CONT, child, 0, 0);
	pkey_assert(ret == 0);

	/* Test that the tracee saw the PKRU value go to 0 */
	pkey_assert(child == waitpid(child, &status, 0));
	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
	pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);

	/* Test that the modification is visible in ptrace after execution */
	memset(xsave, 0xCC, xsave_size);
	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
	pkey_assert(ret == 0);
	pkey_assert(*pkey_register == 0);

	ret = ptrace(PTRACE_CONT, child, 0, 0);
	pkey_assert(ret == 0);
	pkey_assert(child == waitpid(child, &status, 0));
	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
	pkey_assert(WIFEXITED(status));
	pkey_assert(WEXITSTATUS(status) == 0);
	free(xsave);
}
#endif

void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey)
{
	int size = PAGE_SIZE;
	int sret;

	if (cpu_has_pkeys()) {
		dprintf1("SKIP: %s: no CPU support\n", __func__);
		return;
	}

	sret = syscall(__NR_pkey_mprotect, ptr, size, PROT_READ, pkey);
	pkey_assert(sret < 0);
}

void (*pkey_tests[])(int *ptr, u16 pkey) = {
	test_read_of_write_disabled_region,
	test_read_of_access_disabled_region,
	test_read_of_access_disabled_region_with_page_already_mapped,
	test_write_of_write_disabled_region,
	test_write_of_write_disabled_region_with_page_already_mapped,
	test_write_of_access_disabled_region,
	test_write_of_access_disabled_region_with_page_already_mapped,
	test_kernel_write_of_access_disabled_region,
	test_kernel_write_of_write_disabled_region,
	test_kernel_gup_of_access_disabled_region,
	test_kernel_gup_write_to_write_disabled_region,
	test_executing_on_unreadable_memory,
	test_implicit_mprotect_exec_only_memory,
	test_mprotect_with_pkey_0,
	test_ptrace_of_child,
	test_pkey_init_state,
	test_pkey_syscalls_on_non_allocated_pkey,
	test_pkey_syscalls_bad_args,
	test_pkey_alloc_exhaust,
	test_pkey_alloc_free_attach_pkey0,
#if defined(__i386__) || defined(__x86_64__)
	test_ptrace_modifies_pkru,
#endif
};

void run_tests_once(void)
{
	int *ptr;
	int prot = PROT_READ|PROT_WRITE;

	for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) {
		int pkey;
		int orig_pkey_faults = pkey_faults;

		dprintf1("======================\n");
		dprintf1("test %d preparing...\n", test_nr);

		tracing_on();
		pkey = alloc_random_pkey();
		dprintf1("test %d starting with pkey: %d\n", test_nr, pkey);
		ptr = malloc_pkey(PAGE_SIZE, prot, pkey);
		dprintf1("test %d starting...\n", test_nr);
		pkey_tests[test_nr](ptr, pkey);
		dprintf1("freeing test memory: %p\n", ptr);
		free_pkey_malloc(ptr);
		sys_pkey_free(pkey);

		dprintf1("pkey_faults: %d\n", pkey_faults);
		dprintf1("orig_pkey_faults: %d\n", orig_pkey_faults);

		tracing_off();
		close_test_fds();

		printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr);
		dprintf1("======================\n\n");
	}
	iteration_nr++;
}

void pkey_setup_shadow(void)
{
	shadow_pkey_reg = __read_pkey_reg();
}

int main(void)
{
	int nr_iterations = 22;
	int pkeys_supported = is_pkeys_supported();

	srand((unsigned int)time(NULL));

	setup_handlers();

	printf("has pkeys: %d\n", pkeys_supported);

	if (!pkeys_supported) {
		int size = PAGE_SIZE;
		int *ptr;

		printf("running PKEY tests for unsupported CPU/OS\n");

		ptr  = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
		assert(ptr != (void *)-1);
		test_mprotect_pkey_on_unsupported_cpu(ptr, 1);
		exit(0);
	}

	pkey_setup_shadow();
	printf("startup pkey_reg: %016llx\n", read_pkey_reg());
	setup_hugetlbfs();

	while (nr_iterations-- > 0)
		run_tests_once();

	printf("done (all tests OK)\n");
	return 0;
}